1.3算法案例(适用)ppt

合集下载

1.3算法案例(进位制)(yong)

1.3算法案例(进位制)(yong)
满十二进一,就是十二进制; 满六十进一,就是六十进制
思考:生活最常见的进位制是什么?除此之外还有
哪些常见的进位制?请举例说明. • 最常见的进位制应该是我们数学中的十进制,比 如一般的数值计算,但是并不是生活中的每一种 数字都是十进制的. • 古人有半斤八两之说,就是十六进制与十进制的 转换. • 比如时间和角度的单位用六十进制, 计算“一打” 数值时是12进制的。 • 电子计算机用的是二进制 。
思考:其它进制是否也有类似的规律呢?
八进制
7342(8) =783+382+48+2 110011(2)=125+124+023 +022+12+1
二进制
一般地,若k是一个大于1的整数,那么以k为基 数的k进制可以表示为以下形式:
a n a n 1 a 1 ( k ) ( 0 a n k , 0 a 1 , , a n 1 k ).
a×82+b×8+c=c×72+b×7+a,得:63a+b﹣48c=0, b=3(16c﹣21a), 由此知b是三的倍数,且是整数, ∴b=0,3,6, 21 a 当b=0时,可得c= 1 6 又1≤a≤6,检验知,不存在符合条件的a使得c是整数,
当3时,得c=
当b=6时,得c=
21a 1 16
开始
输入a ,k,n b=0 i=1
把a的右数第i位数字赋给t b=b+t*ki-1 i=i+1

i>n

输出结果b 结束
三、十进制化为k进制 思考:既然,k进制转化为十进制有前述的方法与 相应的算法,那么十进数又是如何才能转化为k进 数呢? 回想:a=anan-1…a2a1(k) =ankn-1+an-1kn-2+ …+a2k+a1 =b

§1.3算法案例

§1.3算法案例

为了区别进制,我们就用下 标(k)表示k进制数
an k
n1
an1 k
n 2
a3 k a2 k a1
2
下面我们来用一个具体的例子来分析:
例3.将二进制数110 011(2)化成十进制数
解 根据k进制数的实际意义,我们可以这样来转换:
110011(2) 1 2 1 2 0 2 0 2 1 2 1 2 1 32 1 16 1 2 1 51
已知一个5次多项式为
f ( x) 4x 2x 3.5x 2.6x 1.7 x 0.8
5 4 3 2

x5
用秦九韶算法求这个多项式的值。
根据秦几韶算法,把多项式改写成如下形式: f ( x) ((((4 x 2) x 3.5) x 2.6) x 1.7) x 0.8 按照从内到外的顺序,依次计算一次多项式当绵值: v0 4; v1 4 5 2 22; v2 22 3.5 113.5; v3 113.5 5 2.6 564.9; v4 564.9 5 1.7 2826.2; v5 2826.2 5 0.8 14130.2. 所以,当x 5时, 多项式的值等于14130.2.
3. 已知一个5次多项式为
f ( x) 5x 2x 3.5x 2.6x 1.7 x 0.8
5 4 3 2
用秦九韶算法求这个多项式当
x5
时的值。
思考:(1)上式计算时需要多少次乘法计 算?多少次加法计算? (2)在利用秦九韶算法计算n次多项式 当时需要多少次乘法计算和多少次加法计算?
f ( x) an xn an1xn1 an2 xn2 a1x a0 把一个多项式

1.3算法案例(一)辗转相除法

1.3算法案例(一)辗转相除法

练习:
• 教材48页——1
程序框图
开始 输入m,n


求m除以n的余数r
m<n? 是
m=n t=m n=r
m=n n=t
r=0? 是 输出m


结束
程序语言
INPUT m,n IF n>m THEN t=m m=n n=t END IF DO r=m MOD n m=n n=r LOOP UNTIL r=0 PRINT m END
例1、用辗转相除法 求8251与6105的最大公因数
8251=6105×1+2146 6105=2146×2+1813
2146=1813×1+333 1813=333×5+148
333=148×2+37 148=37×4 8251与6105的最大公因数是37
辗转相除法:
给定两个正数,用 较大的数 除以 较小的数 ,
1.3算法案例(一)
辗转相除法
复习提问:
小学学过的求两个数的最大公约数的方法:
先用两个数公有的 质因数 连续去除,
一直除到所得的商是 互质数 为止,
然后把所有的除数 连乘 起来.
例如:求18与30的最大公约数.
2 3 18 9 3 30 15 5
所以18与30的最大公约数是2×3=6
1、辗转相除法
求得 商 和 余数 ,若余数不为一对数继续上面
的除法,直到大数被小数除尽,这时的 较小数
就是原来两数的最大公约数。
练习:
• 教材:45页——1
2、辗转相除法计算的程序框图及程序
算法步骤: • 第一步,给定两个正整数m,n. • 第二步,比较m,n的大小,若n>m则交换 m,n,否则直接执行下一步. • 第三步,计算m除以n所得的余数r. • 第四步,m=n,n=r. • 第五步,若r=0,则m,n的最大公约数等于m; 否则,返回第三步.

安徽省滁州市第二中学高中数学课件 必修3:1.3算法案例

安徽省滁州市第二中学高中数学课件 必修3:1.3算法案例
,基数是10;
十六进制可使用的数字或符号有0~9等10个 数字以及A~F等6个字母(规定字母A~F对应10~15),
十六进制的基数是16.
注意:为了区分不同的进位制,常在数字的
右下脚标明基数,.
如111001(2)表示二进制数,34(5)表示5进制数.
十进制数一般不标注基数.
第二十七页,编辑于星期日:八点 四十分。
第二页,编辑于星期日:八点 四十分。
第一节课
案例1
辗转相除法与更相减损术
安徽省滁州市第二中学高二数学备课组 2014年9月8日
第三页,编辑于星期日:八点 四十分。
〖创设情景,揭示课题〗
[问题1]:在小学,我们已经学过求最大公约数的 知识,你能求出18与30的最大公约数吗?
2 18 30
先用两个数公有的质因数连
数。
(12)
第十页,编辑于星期日:八点 四十分。
3.辗转相除法与更相减损术的比较:
(1)都是求最大公约数的方法,计算上辗转 相除法以除法为主,更相减损术以减法为主;计算
次数上辗转相除法计算次数相对较少,特别当两个数 字大小区别较大时计算次数的区别较明显。
(2)从结果体现形式来看,辗转相除法体 现结果是以相除余数为0则得到,而更相减损术则
它的特点是:把求一个n次多项式的值 转化为求n个一次多项式的值,通过这种转化 ,把运算的次数由至多n(n+1)/2次乘法运算 和n次加法运算,减少为n次乘法运算和n次 加法运算,大大提高了运算效率.
第二十二页,编辑于星期日:八点 四十分。
v1=anx+an-1,
v2=v1x+an-2,
v3=v2x+an-3, ……, vn=vn-1x+a0.

人教版高中数学必修三课件:1.3 算法案例(共55张PPT)

人教版高中数学必修三课件:1.3 算法案例(共55张PPT)

解:用辗转相除法求最大公约数:612=468×1+144,468=144×3+36,144=36×4,即612
和468的最大公约数是36. 用更相减损术检验:612和468均为偶数,两次用2约简得153和117,153-117=36,11736=81,81-36=45,45-36=9,36-9=27,27-9=18,18-9=9,所以612和468的最大公约数为
转化为求n个一次多项式的值.
预习探究
知识点二 进位制
1.进位制:进位制是为了计数和运算方便而约定的记数系统,约定“满k进一”就 是 k进制 ,k进制的基数(大于1的整数)就是 k . 2.将k进制数化为十进制数的方法:先把k进制数写成各位上的数字与k的幂的乘积之和 的形式,再按照十进制数的运算规则计算出结果. 3.将十进制数化为k进制数的方法是 除k取余法 .即用k连续去除十进制数所得 的 商 ,直到商为零为止,然后把各步得到的余数 倒序 写出.所得到的就是相应的k 进制数. 4.k进制数之间的转化:首先转化为十进制数,再转化为 k进制数.
第一章 算法初步
1.3 算法案例 第2课时 秦九韶算法与进位制
预习探究
知识点一 秦九韶算法
1.秦九韶算法是我国南宋数学家秦九韶在他的著作《数书九章》中提出的一 个用于计算多项式值的方法. 2.秦九韶算法的方法: 把一个n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0 改写成下列的形式: f(x)=(anxn-1+an-1xn-2+…+a1)x+a0= ((anxn-2+an-1xn-3+…+a2)x+a1)x+a0 =…=

第一章 1.3 算法案例:辗转相除法、秦九韶算法

第一章  1.3  算法案例:辗转相除法、秦九韶算法

3,答案:C
返回
• 4.用秦九韶算法求f(x)=3x?+4x?+5x? +6x?+7x?+8x+1,当x=0.4时的值, 需进行乘法运算和加法运算的次数分别为 ( ) • A. 6 6 B. 5 6 • C.6 5 D.6 12 • 解析:改写多项多f(x)=(((((3x+4)x+5)x+ 6)x+7)x+8)x+1,则需要6次乘法和6次加 法. • 答案:A
返回
课堂练习
2.用辗转相除法求294和84的最大公约数时,需要 做除法的次数是( ) A.1 B. 2 C.3 D. 4 3.用秦九韶算法求多项式的值,可用哪种结构的算 法实现( ) A.顺序结构 B.条件结构 C.循环结构 D.A、B两种 • 2,解析:由294=84×3+42,84=42×2知,共需 做2次除法. • 答案:B
返回
法二:更相减损术:
因为378与90都是偶数. 所以用2约简得189和45. 189-45=144,144-45=99, 99-45=54,54-45=9, 45-9=36,36-9=27, 27-9=18,18-9=9.
所以378与90的最大公约数为2×9=18.
返回
[例2]
用秦九韶算法求多项式
1.3 算法案例 辗转相除法、秦九韶算法
返回
预习思考
• 1,用辗转相除法求80和36的最大公约数, 并用更相减损术检验所得结果.
• 2,用秦九韶算法求多项式f(x)=2x4-6x3 -5x2+4x-6在x=5时的值.
返回
[例1]
用辗转相除法求80和36的最大公约数,并
用更相减损术检验所得结果. [自主解答] 用辗转相除法:
返回
1.秦九韶算法的步骤
返回
2.应用秦九韶算法计算多项式的值应注意的问题 (1)要正确将多项式的形式进行改写. (2)计算应由内向外依次计算. (3)当多项式函数中间出现空项式,要以系数为零的

高中数学人教A版必修3课件:1.3 算法案例

高中数学人教A版必修3课件:1.3 算法案例

1.3 算法案例
题型1 辗转相除法与更相减损术
4.分别用辗转相除法和更相减损术求36和80的最大公约数.

辗转相除法:
80=36×2+8,36=8×4+4,8=4×2.
故36和80的最大公约数是4.
更相减损术:
80-36=44,44-36=8,36-8=28,28-8=20,
20-8=12,12-8=4,8-4=4.
解析
111÷2=55……1,55÷2=27……1,27÷2=13……1,13÷2=6……1, 6÷2=3……0,3÷2=1……1,1÷2=0……1, 故111(10)=1101111(2).故选C.
1.3 算法案例
题型3 进位制
11.把十进制数189化为四进制数,则末位数字是( B )
A.0
B.1
1.3 算法案例
刷基础
题型3 进位制
13.十六进制数与十进制数的对应如下表:
十 六 进 1 2 3 4 5 6 7 8 9 10 A B C D E F 制 数 十 进 制 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 数
例如:A+B=11+12=16+7=F+7=17(16),所以A+B的值用十六进制表示就等于17(16).
f(x)=anxn+an-1xn-1+…+a1x+a0的具体函数值,运用常规方法计算出结果最多需要n次加法和
n(n 2
1)
次乘法,而运用秦九韶算法由内而外逐层计算一次多项式的值的算法至多需要n次加法和n次乘法.对于计
算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以此算法极大地缩短了CPU运算的
A.2
B.3
C.4
D.5

人教a版必修三:《1.3算法案例(1)》ppt课件(322页)

人教a版必修三:《1.3算法案例(1)》ppt课件(322页)

明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
§1.3(一)
探究点二:更相减损术
思考 2 (1)用更相减损术可以求两个正整数 m,n 的最大公约数,那么用什么逻辑结 构来构造算法?其算法步骤如何设计?
答 (1)用循环结构设计算法,算法如下:
第一步,任意给定两个正整数m,n(m>n). 第二步,计算 m-n 所得的差 k. 第三步,比较n与k的大小,其中大者用m表示,小者用n表示. 第四步,若m=n,则m,n的最大公约数等于m;否则,返回第二步.
第一章 算法初步
§1.3 算法案例(一)
本节知识目录
§1.3(一)
明目标、知重点
算法 案例 (一)
填要点、记疑点
探究点一 探究点二 探究点三
辗转相除法 更相减损术 秦九韶算法的基本思想
探要点、究所然
当堂测、查疑缺
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
明目标、知重点
§1.3(一)
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
§1.3(一)
探究点二:更相减损术
(2)该算法的程序框图如何表示?该程序框图对应的程序如何表述?
答 程序框图: 程序:
INPUT m,n WHILE m< >n k=m-n IF n>k THEN m=n n=k ELSE m=k END IF WEND PRINT m END
明目标、知重点 填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考4:辗转相除直到何时结束? 主要运用的是哪种算法结构?
辗转相除法是一个反复执行直到余数等于0停止的步骤, 这实际上是一个循环结构 辗转相除法求两个数的最大公约数,其算法可以描述如下: ① 输入两个正整数m和n; ② 求余数r:计算m除以n,将所得余数存放到变量r中; ③更新被除数和余数:m=n,n=r。 ④判断余数r是否为0:若余数为0则输出结果,否则转 向第②步继续循环执行。 如此循环,直到得到结果。
1.3.2
秦九韶算法
探究三、秦九韶算法
• 思考1,在初中,我们是如何求一个多项式的 值的?
• 思考2,已知一个n 次多项式 f(x)=anxn+an-1xn-1+…+a1x+a0当x=x0时,除 了用代入法求解外是否还有更好的方法呢?
秦九韶算法的基本思想
思考1:对于多项式f(x)=x5+x4+x3+x2+x+1,求 f(5)的值. 分析:把5代入多项式,若先计算各项的值, 然后再相加,那么一共要做: 4+3+2+1=10次乘法运算,5次加法运算.
思考2:对于8251与6105这两个数,它们的最大 公约数是多少?你是怎样得到的?
由于它们公有的质因数较大,利用上述方法求 最大公约数就比较困难.有没有其它的方法可以较简 单的找出它们的最大公约数呢?
思考3:注意到8251=6105×1+2146,那么8251 与6105这两个数的公约数和6105与2146的公约数有 什么关系? 我们发现6105=2146×2+1813,同理,6105与 2146的公约数和2146与1813的公约数相等. 思考4:重复上述操作,你能得到8251与6105这 两个数的最大公约数吗? 8251=6105×1+2146, 1813=333×5+148, 6105=2146×2+1813, 333=148×2+37, 2146=1813×1+333, 148=37×4+0. 定义:所谓的辗转相除法,就是对于给定的两个数,用较大的 数除以较小的数,若余数不为零,则将余数和较小的数构成 新的数对,继续上面的除法, 直到大数被小数除尽,则这时 较小的数就是原来两个数的最大公约数
思考5:你能把辗转相除法编成一个计算机程序吗? 第一步,给定两个正整数m,n(m>n). 第二步,计算m除以n所得的余数r. 第三步,m=n,n=r. 第四步,若r=0,则m,n的最大公约数等于m; 否则,返回第二步.
开始
程序框图 INPUT m,n DO r=m MOD n m=n n=r LOOP UNTIL PRINT m END 输入m,n 求m除以n的余数r m=n
练习:用辗转相除法求下列两数的最大公约数: (1)(225,135) 45 (2)(98,196) 98 24 (3)(72,168) (4)(153,119) 17
二、更相减损术 《九章算术》是中国古代的数学专著,其中的 “更相减损术”也可以用来求两个数的最大公约数, 即“可半者半之,不可半者,副置分母、子之数, 以少减多,更相减损,求其等也.以等数约之.” 意思是: 第一步:任意给定两个正整数,判断它们是否 都是偶数. 若是,用2约简;若不是,执行第二步. 第二步:以较大的数减去较小的数,接着把差 与较小的数比较,并以大数减小数.继续这个操作, 直到所得的数相等为止,则这个等数或这个数与约 简的数的乘积就是所求的最大公约数.
例1:用更相减损术求98与63的最大公约数. 因为63不是偶数,所以
98-63=35, 63-35=28, 35-28=7,
28-7=21,
21-7=14, 14-7=7.
所以最大公约数是7.
例2 分别用辗转相除法和更相减损术求168与93 的最大公约数. 辗转相除法:
168=93×1+75, 93=75×1+18, 75=18×4+3, 18=3×6. 更相减损术: 168-93=75, 93-75=18, 75-18=57, 57-18=39, 39-18=21, 21-18=3, 18-3=15, 15-3=12, 12-3=9, 9-3=6, 6-3=3.
探究一,辗转相除法
思考1:在小学中我们是如何求出两个正整数 的最大公约数的呢?
例、求18与24的最大公有质因数2除, 9 12 用公有质因数3除, 3 4 3和4互质不除了。 短除法 得:18和24最大公约数是:2×3=6
想一想,如何求8251与6105的最大公约数?
n=r r=0
r=0? 否 是 输出m
结束
思考6:如果用当型循环结构构造算法,则用辗 转相除法求两个正整数m、n的最大公约数的程序框 图和程序分别如何表示?
开始 输入m,n n=r m=n 求m除以n的余数r 是 r≠0 ? 否 输出m 结束
INPUT WHILE
m ,n r<>0
r=m MOD n m=n n=r WEND PRINT END m
例3 用更相减损术求80与36的最大公 约数.
例4 求325,130,270三个数的最大公约数.
因为325=130×2+65,130=65×2,所以325与130 的最大公约数是65.
因为270=65×4+10,65=10×6+5,10=5×2,所 以65与270最大公约数是5. 故325,130,270三个数的最大公约数是5.
思考2:另一种做法是先计算x2的值,然后依 次计算x2·x,(x2·x)·x,((x2·x)·x)·x的 值,这样每次都可以利用上一次计算的结果,这 时一共做了:
4次乘法运算,5次加法运算.
1.3
算法案例
1.3
算法案例
1.3.1 辗转相除法和更相减损术 1.3.2 秦九韶算法 1.3.3 K进制化十进制
1.3.4 十进制化K进制
1.3.1 辗转相除法 和更相减损术
复习 1.研究一个实际问题的算法,主要从哪几方面展开?
算法步骤、程序框图和编写程序三方面展开.
2.在程序框图中算法的基本逻辑结构有哪几种? 顺序结构、条件结构、循环结构 3.在程序设计中基本的算法语句有哪几种? 输入语句、输出语句、赋值语句、条件语句、循环语句
相关文档
最新文档