沪教版八年级下册数学全册综合检测卷(二)-含答案
沪教版八年级数学下册期末测试卷(附带答案)

沪教版八年级数学下册期末测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________1. 下列函数中,一次函数是 ( )2. A . y =x 2+2 B . y =1x +1 C . y =2−x D . y =√x −53. 一次函数 y =kx +b 的图象如图所示,那么 ( )4. A . k >0,b >0 B . k >0,b <0 C . k <0,b >0 D . k <0,b <05. 用换元法解方程x x 2−1−3(x 2−1)x =2 时,设 x x 2−1=y ,则原方程化为 y 的整式方程为 ( )A . 3y 2−6y +1=0B . y 2−2y −3=0 6.C . 2y 2−3y +1=0D . y 2−3y −2=0 7. 化简 AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ +DB ⃗⃗⃗⃗⃗⃗ 的结果等于 ( ) 8.A . CB ⃗⃗⃗⃗⃗ B . AC ⃗⃗⃗⃗⃗ C . DB ⃗⃗⃗⃗⃗⃗D . DC ⃗⃗⃗⃗⃗ 9. 下面结论中正确的是 ( )A .对角线相等的四边形是等腰梯形B .一组对边平行,另一组对边相等的四边形是等腰梯形C .两组对角分别互补的四边形是等腰梯形 10.D .等腰梯形是轴对称图形,经过两底中点的直线是它的对称轴11. 如图,已知正方形 ABCD 的边长为 8,点 E 在对角线 BD 上,且 ∠BAE =22.5∘,EF ⊥AB ,垂足为 F ,则 EF 的长为 ( )12.A . 2B . 4C . 8−4√2D . 6√2−813. 直线 y =2x −3 与 x 轴的交点坐标是 .14. 若直线 y =−2x +5 经过点 (a,−1),则 a = .15. 将直线 y =x +3 向下平移 5 个单位后,所得直线的解析式是 .16. 若一次函数 y =(m −2)x +1 的函数值 y 随 x 的增大而减小,那么 m 的取值范围是 .17. 方程 √2x +3=x 的解为 .18. 关于 x 的方程 ax −3=2x (a ≠2) 的解为 .19. 一个多边形的内角和等于 1080∘,则它是 边形.20. 在平行四边形 ABCD 中∠C =∠B +∠D ,则 ∠A = 度.21. 梯形上底长为 6 cm ,中位线长为 12 cm ,那么下底长为 cm .22. 某城市出租汽车收费标准为:3 千米以内(含 3 千米)收 10 元,超出 3 千米的部分,每千米收费 1.4 元.那么车费 y 元与行驶路程 x (x >3) 千米之间的函数关系式为 .23. 在一个盒子中有 4 张形状、大小相同质地均匀的卡片,上面分别标着 1,2,3,4 这四个数字,从盒子里随机抽出两张卡片,则所得卡片上的两数之和是 5 的概率是 .24. 在矩形 ABCD 中AB =3 cm ,BC =4 cm ,AC 的垂直平分线交 BC 于 E ,交 AD 于 F ,那么四边形 AECF 的面积等于 cm 2.25. 解方程:4x 2−4−2=3−xx−2.26. 解方程组:{x 2−2xy −3y 2=0,x +2y =5.27. 小丽的妈妈先用 120 元买某件小商品若干件,后来又用 240 元买同样的小商品,这次比上次多20 件,而且店家给予优惠,每件降价 4 元.请问第一次她买了多少件小商品?28. 如图,已知在梯形 ABCD 中AB ∥CD ,∠D =2∠B ,AD =12,CD =8.(1) 如果 ∠A =60∘,求证:四边形 ABCD 是等腰梯形;29. (2) 求 AB 的长.30. 如图,已知在平行四边形 ABCD 中,点 E ,F 分别是 AB ,CD 的中点,CE ,AF 与对角线 BD分别相交于点 G ,H ,连接 EH 、FG .(1) 求证:四边形EGFH是平行四边形;31.(2) 如果AD⊥BD,求证:四边形EGFH是菱形.32.如图,在矩形OABC中,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点D在边AB上,点D的坐标为(4,8),CD=2√17,点P是射线BC上一个动点,连接OP,DP.(1) 求点B的坐标;(2) 如果点B,P之间的距离为x,△ODP的面积为S,求S与x之间的函数关系式,并写出函数定义域;(3) 在点P运动过程中,△ODP是否有可能为等腰三角形?若有可能,求出点P的坐标;若不可能,请说明理由.参考答案1. 【答案】C2. 【答案】B3. 【答案】B4. 【答案】A5. 【答案】D6. 【答案】C,0)7. 【答案】(328. 【答案】39. 【答案】y=x−210. 【答案】m<211. 【答案】x=312. 【答案】 x =3a−213. 【答案】八 14. 【答案】 120 15. 【答案】 1816. 【答案】 y =5.8+1.4x17. 【答案】 1318. 【答案】 75819. 【答案】原方程的根是 x =−3.20. 【答案】原方程组的解是 {x 1=3,y 1=1;{x 2=−5,y 2=5.21. 【答案】小丽妈妈第一次买了 10 件小商品.22. 【答案】(1) ∵AB ∥CD∴∠A +∠D =180∘∵∠A =60∘∴∠D =120∘∵∠D =2∠B∴∠B =60∘∴∠A =∠B∴ 梯形 ABCD 是等腰梯形.(2) 作 DE ⊥AB 于点 E ,CF ⊥AB 于点 F∵ 梯形 ABCD 为等腰梯形∴AE =BF ,CD =EF =8在 △AED 中∠AED =90∘,∠A =60∘,AD =12∴AE =BF =6∴AB =AE +EF +BF =20.23. 【答案】(1) 连接 EF ,交 BD 于点 O∵AB ∥CD ,AB =CD ,点 E ,F 分别是 AB ,CD 的中点∴FOEO =OD BO =DF BE =12CD 12AB =1∴FO =EO ,DO =BO∵DH =GB∴OH =OG .∴ 四边形 EGFH 是平行四边形.(2) 由(1)知,四边形 EGFH 是平行四边形∵ 点 E ,O 分别是 AB ,BD 的中点∴OE ∥AD∵AD ⊥BD∴EF ⊥GH∴平行四边形HEGF是菱形.24. 【答案】(1) 点B的坐标为(6,8).(2) S=2x+8,函数定义域为x≥0.(3) 点P的坐标为P(6,8−2√19),P(6,−2√11),P(6,2√11),P(6,2).。
完整版沪教版八年级下册数学期末测试卷及含答案

沪教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知□ABCD的周长是26cm,其中△ABC的周长是18cm,则AC的长为( )A.12cmB.10cmC.8cmD.5cm2、已知一个多边形的内角和是外角和的4倍,则这个多边形()A.八边形B.十二边形C.十边形D.九边形3、菱形的一条对角线与它的边相等,则它的锐角等于()A.30°B.45°C.60°D.75°4、)如图,矩形ABCD中,AB=8cm,BC=4cm,E是DC的中点,BF=BC,则四边形DBFE的面积为()A.6B.10C.12D.165、图中两直线L1、L2的交点坐标可以看作方程组()的解.A. B. C. D.6、若直线x+2y=2m与直线2x+y=2m+3(m为常数)的交点在第四象限,则整数m的值为()A.-3,-2,-1,0B.-2,-1,0,1C.-1,0,1,2D.0,1,2,37、小强喜欢玩飞镖游戏,一天他用平行四边形做了一个飞镖盘,如图所示,▱ABCD中,过对角线BD上任一点F分别作FE∥AB,FG∥BC分别交AD,CD于点E,G,连接EG,则小强随机掷一次飞镖,飞镖落在阴影部分的概率是()A. B. C. D.8、如图,矩形ABCD的对角线交于点O,若∠ACB=30°,AB=2,则OC的长为()A.2B.3C.2D.49、下列事件为不可能事件的是()A.某个数的相反数等于它本身B.某个数的倒数是0C.某两个负数积大于0D.某两数的和小于010、如图,在矩形ABCD 中,AB=4,AD=a,点P在AD上,且AP=2,点E是边AB上的动点,以PE为边作直角∠EPF,射线PF交BC于点F,连接EF,给出下列结论:①tan∠PFE= ;②a的最小值为10.则下列说法正确的是( )A.①②都对B.①②都错C.①对②错D.①错②对11、如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD 的两条对角线的和是()A.18B.28C.36D.4612、已知抛一枚均匀硬币正面朝上的概率为,下列说法正确的是().A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次,不可能正面都朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的13、“翻开华东师大版数学九年级上册,恰好翻到第50页”,这个事件是()A.必然事件B.随机事件C.不可能事件D.确定事件14、甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A. =B. =C. =D. =15、下面图形都是由同样大小的平行四边形按一定的规律组成,其中,第一个图形有1个平行四边形,第二个图形有5个平行四边形,第三个图形有11个平行四边形,……,则第六个图形中平行四边形的个数为()A.55B.42C.41D.29二、填空题(共10题,共计30分)16、一次函数 y = kx 和 y = -x + 3 的图象如图所示,则关于 x 的不等式 k ≤ -x + 3的解集是________.17、如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件________ ,使ABCD成为菱形(只需添加一个即可)18、从1,2,3这三个数中任选两个组成两位数,在组成的所有数中任意抽取一个数,这个数恰好能被3整除的概率是________.19、如图,直线y=﹣x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为________.20、实验中学举行中国古诗词大赛,四道题分别是①锄禾日当午;②春眠不觉晓;③白日依山尽;④床前明月光.要求甲乙两选手任选一道题在自己的答题板上写出下一句,他们选取的诗句恰好相同的概率是________.21、如图,正方形ABCD的边长为6,E是边AB的中点,F是边AD上的一个动点,EF=GF,且∠EFG=90°,则GB+GC的最小值为________.22、已知直线y=x+b和y=ax﹣3交于点P(2,1),则关于x的方程x+b=ax ﹣3的解为________.23、梯形的上底长为5cm,将一腰平移到上底的另一端点位置后与另一腰和下底所构成的三角形的周长为20cm,那么梯形的周长为________.24、如图,菱形ABCD,∠A=60°,AB=6,点E,F分别是AB,BC边上沿某一方向运动的点,且DE=DF,当点E从A运动到B时,线段EF的中点O运动的路程为________.25、写出一个经过点(1,-3)且y随x增大而增大的一次函数解析式________ 。
2022年最新沪科版八年级下册数学综合测试 卷(Ⅱ)(含详解)

沪科版八年级下册数学综合测试 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、2021年5月11日,国新办发布我国第七次人口普查结果,全国总人口约14.11亿,与第五次、第六次人口普查数据相比较,我国人口总量持续增长.据查,2000年第五次人口普查全国总人口约12.95亿.若设从第五次到第七次人口普查总人口的平均增长率为x ,则可列方程为( )A .12.95(1)14.11+=xB .212.95(12)14.11+=xC .12.95(12)14.11+=xD .212.95(1)14.11+=x2、为了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间条形统计图如图所示,则所调查学生睡眠时间的众数,中位数分别为( ) A .7h ,7h B .8h ,7.5h C .7h ,7.5h D .8h ,8h3、下列结论中,对于任何实数a 、b 都成立的是( ) ·线○封○密○外A b a BC a =D 2a4、下列方程中,没有实数根的是( )A .2310x x --=B .230x x -=C .2210x x -+=D .2230x x -+=5、下列运算正确的是( )A .3=BC 3-D .215=6、实数a ,b 在数轴上的位置如图所示,化简2 ).A .a b -+B .a b --C .a b +D .-a b7、下列方程中,是一元二次方程的是( )A .x 2﹣x =x 2+3B .211x x x+=C .x 2=﹣1D .2)0.=8、探索一元二次方程x 2+3x ﹣5=0的一个正数解的过程如表:可以看出方程的一个正数解应界于整数a 和b 之间,则整数a 、b 分别是( )A .﹣1,0B .0,1C .1,2D .﹣1,59) AB .2C .3D .4 10、一元二次方程2240x x --=的一次项系数是( ) A .2x B .2x - C .2 D .2-第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、写出一个最简二次根式a ,使得23a <<,则a 可以是______. 2、若关于x 的一元二次方程()()10x x k --=有两个不相等的解,则k 的取值范围是________.3、设m 、n 分别为一元二次方程x 2+2x ﹣13=0的两个实数根,则m 2+3m +n 的值为 _____.4、若正多边形的一个外角为40°,则这个正多边形是_____边形.5、已知关于x 的一元二次方程230x kx +-=有一个根为-3,则k 的值为______. 三、解答题(5小题,每小题10分,共计50分) 1、如图,把一块直角三角形△ABC ,(∠ACB =90°)土地划出一个三角形△ADC 后,测得CD =3米,AD =4米,BC =12米,AB =13米,求图中阴影部分土地的面积. 2、接种疫苗是阻断新冠病毒传播的有效途经,为保障人民群众的身体健康,2021年11月我市启动新冠疫苗加强针接种工作.已知11月甲接种点平均每天按种加强针的人数比乙接种点平均每天接种加强针的人数多20%,两接种点平均每天共有440人按种加强针. (1)求11月平均每天分别有多少人前往甲、乙两接种点接种加强针? (2)12月份,在m 天内平均每天接种加强针的人数,甲接种点比11月平均每天接种加强针的人数少10m 人,乙接种点比11月平均每天接种加强针的人数多30%.在这m 天期间,甲、乙两接种点共有·线○封○密○外2250人接种加强针,求m的值.3、计算:(1)((其中a>0,b>0);(2)4、某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查,在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,得到两种西瓜得分的统计图:对数据进行分析,得到如下统计量:请根据以上信息分析哪种西瓜的品质更好,并说明理由.5、用适当的方法解下列方程:(1)x2-2x=3;(2)5x 2+2x -1=0;(3)(x -1)2=(2-3x )2.-参考答案-一、单选题1、D【分析】 根据等量关系第五次总人口×(1+x )2=第七次总人口列方程即可. 【详解】 解:根据题意,得:12.95(1+x )2=14.11, 故选:D . 【点睛】 本题考查一元二次方程的应用,理解题意,找准等量关系列出方程是解答的关键. 2、C 【分析】 权数最大的数据是众数,第25个,26个数据的平均数是中位数,计算即可. 【详解】 ∵7的权数是19,最大, ∴所调查学生睡眠时间的众数是7小时, 根据条形图,得第25个数据是7小时,第26个数据是8小时, ∴所调查学生睡眠时间的中位数是782 =7.5小时, 故选C .·线○封○密·○外【点睛】本题考查了条形统计图,中位数即数据排序后,中间的数或中间两位数的平均数;众数即数据中出现次数最多的数据,正确计算中位数是解题的关键.3、D【分析】根据二次根式运算的公式条件逐一判断即可.【详解】∵a≥0,b≥0b=,a∴A不成立;∵a>0,b≥0,∴B不成立;∵a≥0a=,∴C不成立;2a,∴D成立;故选D.【点睛】本题考查了二次根式的性质,熟练掌握公式的使用条件是解题的关键.4、D【分析】利用一元二次方程根的判别式,即可求解.【详解】解:A 、()()2341130∆=--⨯-=> ,所以方程有两个不相等的实数根,故本选项不符合题意; B 、()234090∆=--⨯=>,所以方程有两个不相等的实数根,故本选项不符合题意; C 、()22410∆=--⨯=,所以方程有两个相等的实数根,故本选项不符合题意; D 、()224380∆=--⨯=-<,所以方程没有的实数根,故本选项符合题意;故选:D 【点睛】 本题主要考查了一元二次方程根的判别式,熟练掌握二次函数()20y ax bx c a =++≠ ,当240b ac ∆=-> 时,方程有两个不相等的实数根;当240b ac ∆=-= 时,方程有两个相等的实数根;当240b ac ∆=-< 时,方程没有实数根是解题的关键. 5、D【分析】||a,2(0)a a =≥,计算选择即可. 【详解】∵ ∴A 计算错误;∴B 计算错误;|3|3=-=, ∴C 计算错误; ·线○封○密○外∵105>,∴215=,∴D 计算正确;故选D .【点睛】||a ,2(0)a a =≥,是解题的关键.6、D【分析】根据题意得出b <0<1<a ,进而化简求出即可.【详解】解:由数轴可得:b <0<1<a ,则原式=a -b .故选:D .【点睛】本题主要考查了二次根式的性质与化简,正确得出a ,b 的符号是解题关键.7、C【详解】解:A 、方程223x x x =+-整理为3x -=,是一元一次方程,此项不符题意;B 、方程211x x x +=中的1x 是分式,不是一元二次方程,此项不符题意; C 、方程21x =-是一元二次方程,此项符合题意; D、方程2)0=故选:C .【点睛】本题考查了一元二次方程,熟练掌握一元二次方程的定义(只含有一个未知数,并且未知数的最高次数2的整式方程,叫做一元二次方程)是解题关键. 8、C 【分析】 根据表格中的数据,可以发现当1x =时,10y =-<,当2x =时,50y =>,从而可以得到整数a 、b 的值. 【详解】 解:由表格可得, 当1x =时,10y =-<,当2x =时,50y =>, 2350x x ∴+-=的一个正数解为1和2之间, 2350x x +-=的一个正数解应界于整数a 和b 之间, a ∴、b 分别是1,2, 故选:C . 【点睛】 本题考查估算一元二次方程的近似解,解题的关键是明确题意,由表格中的数据,可以估算出方程的解所在的范围. 9、B 【分析】·线○封○密○外二次根式的乘法:把被开方数相乘,根指数不变,根据运算法则直接进行运算即可.【详解】26=6=4=2,3故选B【点睛】本题考查的是二次根式的乘法,掌握“二次根式的乘法运算法则”是解本题的关键.10、D【分析】根据一元二次方程的一般形式20ax bx c++=中,bx叫做方程的一次项,其中b是一次项系数进行解答.【详解】解:一元二次方程2240x x--=的一次项系数是2-,故选:D.【点睛】本题考查了一元二次方程的一般形式及其各项的概念,掌握一元二次方程的一般形式20++=ax bx c中,2ax叫做方程的二次项,其中a是二次项系数,bx叫做方程的一次项,其中b是一次项系数,c叫做方程的常数项是解题关键.二、填空题1【分析】由题意根据最简二次根式的定义进行分析可得答案.【详解】解:由23a <<a <,所以a. 【点睛】 本题主要考查最简二次根式的定义(被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式。
沪教版初二数学题(下册期末试卷及答案)

初二数学(沪教版)一、填空题:(本大题共16题,每题2分,满分32分)1.如果k kx y -=是一次函数,那么k 的取值范围是 k ≠0 .2.已知直线)3(2+=x y ,那么这条直线在y 轴上的截距是 6 .3.函数mx y +=2中的y 随x 的增大而增大,那么m 的取值范围是 m >0 .4.一元二次方程0132=++x x 的根是(-3加减根号5) /25.已知方程0732=+-kx x 的一个根是-1,那么这个方程的另一个根是 -7/36.设方程012=-+x x 的两个实根分别为1x 和2x ,那么2111x x += 1 . 7.二次函数322-+=x x y 图象的对称轴是直线 x=-1 .8.如果二次函数的图象与x 轴没有交点,且与y 轴的交点的纵坐标为-3,那么这个二次函数图象的开口方向是 向下 .9.把抛物线2x y -=向上平移2个单位,那么所得抛物线与x 轴的两个交点之间的距离是 2根号2 .10.用一根长为60米的绳子围成一个矩形,那么这个矩形的面积y (平方米)与一条边长x (米)的函数解析式为 y=-x 2+30x ,定义域为 0<x <30 米.11.已知等边三角形的边长为4cm ,那么它的高等于 2根号3 cm .12.梯形的上底和下底长分别为3cm 、9cm ,那么这个梯形的中位线长为 6 cm .13.已知菱形的周长为20cm ,一条对角线长为5cm ,那么这个菱形的一个较大的内角为 120 度.14.在梯形ABCD 中,AD ∥BC ,S △AOD ∶S △AOB =2∶3,那么S △COD ∶S △BOC = 2:3 .15.如果四边形的两条对角线长都等于14cm ,那么顺次连结这个四边形各边的中点所得四边形的周长等于 28 cm .16.以不在同一条直线上的三点为顶点作平行四边形,最多能作 3 个.二、选择题:(本大题共4题,每题2分,满分8分)17.如果a 、c 异号,那么一元二次方程02=++c bx ax ………………………………( A )(A )有两个不相等的实数根; (B )有两个相等的实数根;(C )没有实数根; (D )根的情况无法确定.18.已知二次函数bx ax y +=2的图象如图所示,那么a 、b 的符号 为…………………………………………………………( C(A )a >0,b >0; (B )a >0,b <0;(C )a <0,b >0; (D )a <0,b <0. 19.下列图形中,是轴对称图形,(A )矩形; (B )菱形; (C )等腰梯形; (D )直角梯形.20.下列命题中,正确的是………………………………………………………………( B )(A )一组对边平行且另一组对边相等的四边形是平行四边形;(B )一组对边平行且相等的四边形是平行四边形;(C )两条对角线相等的四边形是等腰梯形;(D )两条对角线相等的四边形是矩形.三、(本大题共6题,每题6分,满分36分)21.已知一次函数的图象经过点(0,4),并且与直线x y 2-=相交于点(2,m ),求这个一次函数的解析式.解:设一次函数的解析式是y=kx+b (k ≠0).则根据题意,得4=b m=-2×2 m=2k+b ,解得 k=-4 b=4 m=-4 ,∴该一次函数的解析式是:y=-4x+4.22.求证:当0≠k 时,方程02)1(22=-+--k x k kx 有两个不相等的实数根. 证明:∵k ≠0,∴方程kx2-2(k-1)x+k-2=0为一元二次方程,∴△=4(k-1)2-4×k ×(k-2)=4k2-8k+4-4k2+8k=4>0,∴当k ≠0时,方程kx2-2(k-1)x+k-2=0有两个不相等的实数根.23.已知一元二次方程0532=-+x x ,求这个方程两根的平方和.解:设一元二次方程x2+3x-5=0的两根为a 、b ,∴a+b=-3,ab=-5,∴两根的平方和为a2+b2=(a+b )2-2ab=(-3)2-2×(-5)=19.故答案为:19.24.如图,M 是Rt △ABC 斜边AB 上的中点,D 是边BC 延长线上一点,∠B =2∠D ,AB =16cm ,求线段CD 的长.解:连接CM ,∵∠ACB=90°,M 为AB 的中点,∴CM=BM=AM=8cm ,∴∠B=∠MCB=2∠D ,∵∠MCB=∠D+∠DMC ,∴∠D=∠DMC ,∴DC=CM=8cm .答:线段CD 的长是8cm .A B M C D25.如图,在四边形ABCD 中,对角线BD ⊥AB ,AD =20, AB =16,BC =15,CD =9,求证:四边形ABCD 是梯形.解:∵BD ⊥AB ,∴△ABD 是直角三角形, ∴BD2=202-162=12,∵122+92=152,即:BC2=BD2+DC2,∴∠BDC=90°,∴DC ∥AB ,又∵DC ≠AB ,∴四边形ABCD 是梯形.26.如图,某隧道口的横截面是抛物线形,已知路宽AB 为6米, 最高点离地面的距离OC 为5米.以最高点O 为坐标原点, 抛物线的对称轴为y 轴,1米为数轴的单位长度,建立平面直角坐标系,求以这一部分抛物线为图象的函数解析式,并写出x 的取值范围. 解:(1)设所求函数的解析式为y=ax2.由题意,得函数图象经过点B (3,-5),∴-5=9a .∴a=-5 9 .∴所求的二次函数的解析式为y=-5 9 x2.x 的取值范围是-3≤x ≤3;四、(本大题共3题,每题8分,满分24分)27.已知直线4+=kx y 经过点A (-2,0),且与y 轴交于点B .把这条直线向右平移5个单位,得到的直线与x 轴交于点C ,与y 轴交于点D ,求四边形ABCD 的面积. 解:∵直线y=kx+4经过点A (-2,0),∴-2k+4=0,k=2.∴y=2x+4.当x=0时,y=4.∴B 点的坐标为(0,4).把直线y=2x+4向右平移5个单位,得到直线y=2(x-5)+4,即y=2x-6,令y=0,得x=3.∴C 点的坐标为(3,0);令x=0,得y=-6.∴D 点的坐标为(0,-6).∴四边形ABCD 的面积=△ABC 的面积+△ADC 的面积=1 2 AC •OB+1 2 AC •OD=1 2 ×5×4+1 2 ×5×6=25.故四边形ABCD 的面积为2528.如图,在Rt△ABC中,∠C=90°,D、E分别是边AC、ABB的中点,过点B作BF⊥DE,交线段DE的延长线于为点F,过点C作CG⊥AB,交BF于点G,如果AC=2BC,求证:(1)四边形BCDF是正方形;(2)AB=2CG.证明:(1)∵D、E分别是边AC、AB的中点,∴DF∥CB,∴CD垂直于DF,又∵BF垂直于DF,∴DC∥BF,又∵AC=2BC,∴DC=BC,∴四边形BCDF为正方形,(2)根据题意知△CBG≌△ADE,∴CG=AE,又∵E为AB中点,∴AB=2CG.。
2021-2022学年基础强化沪教版(上海)八年级数学第二学期第二十二章四边形综合测试试题(含解析)

八年级数学第二学期第二十二章四边形综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.C D∠+∠+∠+∠=()2、如图,在六边形ABCDEF中,若1290∠+∠=︒,则3456A.180°B.240°C.270°D.360°3、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D',若B AD∠''=10°,则∠EAF的度数为()A.40°B.45°C.50°D.55°4、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以v cm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为()A.2 B.4 C.4或65D.2或1255、欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,长度恰好是方程x2+x﹣1=0的一个正根的线段为()A.线段BF B.线段DG C.线段CG D.线段GF6、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为()A.7 B.6 C.4 D.87、多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为()A.9条B.8条C.7条D.6条∠+∠的度数是()8、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中αβA.180°B.220°C.240°D.260°9、如图所示,四边形ABCD是矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=5,设AB=x,AD=y,则x2+(y﹣5)2的值为()A.10 B.25 C.50 D.7510、如图,在菱形ABCD中,AB=5,AC=8,过点B作BE⊥CD于点E,则BE的长为()A.125B.245C.6 D.485第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个长方形的周长是22cm,若这个长方形的长减少2cm,宽增加3cm,就可以成为一个正方形,则长方形的长是______cm.2、如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE翻折至△AFE,连接CF,则CF的长为___.3、如图,已知在矩形ABCD中,4AB=,8AD=,将ABC沿对角线AC翻折,点B落在点E处,连接DE,则DE的长为_________.4、如图,矩形ABCD中,AC、BD相交于点O且AC=12,如果∠AOD=60°,则DC=__.5、若一个n边形的每个内角都等于135°,则该n边形的边数是____________.三、解答题(5小题,每小题10分,共计50分)1、已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(点P、点G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时,①求证:DF=PG;②请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,四边形PEFD的形状是否发生了变化?请写出你的结论.2、如图,在正方形ABCD中,P是直线CD上的一点,连接BP,过点D作DE BP⊥,交直线BP于点E,连接CE.(1)当点P在线段CD上时,如图①,求证:BE DE-;(2)当点P在直线CD上移动时,位置如图②、图③所示,线段BE,DE与CE之间又有怎样的数量关系?请直接写出你的猜想,不需证明.3、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF.(1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;(2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;(3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.4、(1)如图1,在△ABC中,BE平分∠ABC,CE平分∠ACD,试说明:∠E12∠A;(拓展应用)(2)如图2,在四边形ABDC中,对角线AD平分∠BAC.①若∠ACD=130°,∠BCD=50°,∠CBA=40°,求∠CDA的度数;②若∠ABD+∠CBD=180°,∠ACB=82°,写出∠CBD与∠CAD之间的数量关系.5、如图,四边形ABCD为平行四边形,∠BAD的平分线AF交CD于点E,交BC的延长线于点F.点E 恰是CD的中点.求证:(1)△ADE≌△FCE;(2)BE⊥AF.-参考答案-一、单选题1、D【分析】利用矩形的性质,求证明90OAB ∠=︒,进而在Rt AOB ∆中利用勾股定理求出OB 的长度,弧长就是OB 的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.【详解】 解:四边形OABC 是矩形,∴90OAB ∠=︒,在Rt AOB ∆中,由勾股定理可知:222OB OA AB =+,OB ∴==∴故选:D .【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.2、C【分析】根据多边形外角和360︒求解即可.【详解】解:123456360∠+∠+∠+∠+∠+∠=︒ ,1290∠+∠=︒()∴∠+∠+∠+∠=︒-∠+∠=︒,345636012270故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和360︒是解题的关键.3、A【分析】可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【详解】解:设∠EAD′=α,∠FAB′=β,根据折叠性质可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四边形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.则∠EAF的度数为40°.故选:A.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.4、D【分析】根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP 时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.【详解】解:当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,∴点P和点Q的运动时间为:4÷2=2s,∴v的值为:4÷2=2cm/s;②当AP =BP 时,△AEP ≌△BQP (SAS ),∵AB =10cm ,AE =6cm ,∴AP =BP =5cm ,BQ =AE =6cm ,∵5÷2=2.5s ,∴2.5v =6,∴v =125. 故选:D .【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.5、B【分析】首先根据方程x 2+x -1=0,再判断这个数值和题目中的哪条线段接近.线段BF =0.5排除,其余三条线段可以通过设未知数找到等量关系.利用正方形的面积等于图中各个三角形的面积和,列等量关系.设DG =m ,则GC =1-m ,从而可以用m 表示等式.【详解】解:设DG =m ,则GC =1-m .由题意可知:△ADG ≌△AHG ,F 是BC 的中点,∴DG =GH =m ,FC =0.5.∵S 正方形=S △ABF +S △ADG +S △CGF +S AGF ,∴1×1=12×1×12+12×1×m +12×12×(1-m )+12×m ,∴m .∵x 2+x -1=0的解为:x∴取正值为x . ∴这条线段是线段DG .故选:B .【点睛】此题考查的是一元二次方程的解法,运用勾股定理和面积法找到线段的关系是解题的关键.6、A【分析】如图所示,连接AC ,OB 交于点D ,先求出C 和A 的坐标,然后根据矩形的性质得到D 是AC 的中点,从而求出D 点坐标为(2,1),再由当直线32y x =+经过点D 时,可将矩形OABC 的面积平分,进行求解即可.【详解】解:如图所示,连接AC ,OB 交于点D ,∵C 是直线32y x =+与y 轴的交点,∴点C 的坐标为(0,2),∵OA =4,∴A 点坐标为(4,0),∵四边形OABC 是矩形,∴D 是AC 的中点,∴D 点坐标为(2,1),当直线32y x =+经过点D 时,可将矩形OABC 的面积平分,由题意得平移后的直线解析式为32y x m =+-,∴3221⨯+-=,mm=,∴7故选A.【点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.7、A【分析】多边形从一个顶点出发的对角线共有(n-3)条.多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n-3)条,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12-3=9条.故选A .【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.8、C【分析】根据四边形内角和为360°及等边三角形的性质可直接进行求解.【详解】解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,∴3606060240αβ∠+∠=︒-︒-︒=︒;故选C .【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.9、B【分析】根据题意知点F 是Rt△BDE 的斜边上的中点,因此可知DF =BF =EF =5,根据矩形的性质可知AB =DC =x ,BC =AD =y ,因此在Rt△CDF 中,CD 2+CF 2=DF 2,即可得答案.【详解】解:∵四边形ABCD 是矩形,AB =x ,AD =y ,∴CD =AB =x ,BC =AD =y ,∠BCD =90°,又∵BD ⊥DE ,点F 是BE 的中点,DF =5,∴BF =DF =EF =5,∴CF =5-BC =5-y ,∴在Rt△DCF 中,DC 2+CF 2=DF 2,即x 2+(5-y )2=52=25,∴x 2+(y -5)2=x 2+(5-y )2=25,故选:B .【点睛】本题考查了直角三角形斜边中线等于斜边的一半、矩形的性质、勾股定理,做题的关键是利用直角三角形斜边中线等于斜边的一半求出BF 的长度.10、B【分析】根据菱形的性质求得BD 的长,进而根据菱形的面积等于12AC BD CD BE ⋅=⋅,即可求得BE 的长【详解】解:如图,设,AC BD 的交点为O ,四边形ABCD 是菱形AC BD ∴⊥,142AO CO AC ===,DO BO =,5CD AB == 在Rt AOB 中,5AB =,4AO =3BO ∴26BD BO ∴==菱形的面积等于12AC BD CD BE ⋅=⋅1168242255AC BD BE CD ⋅⨯∴==⨯= 故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得BD 的长是解题的关键.二、填空题1、8【分析】设这个长方形的长为xcm ,则长方形的宽为()11x -cm ,由题意得长2-=宽+3.进而得到方程2113x x -=-+,解方程即可得到答案.【详解】解:设这个长方形的长为x cm ,由题意得:2113x x -=-+,216,x ∴=解得:8,x =答:这个长方形的长为8.cm故答案为:8【点睛】本题主要考查了一元一次方程的应用,关键是正确理解题意,抓住关键语句,表示出正方形的边长,进而利用正方形边长相等得到方程.2、3.6【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【详解】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE5==,∴BH=3412 55⨯=,则BF=245,∵点E为BC的中点,∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE= EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF 3.6==.故答案为:3.6.【点睛】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.3【分析】过点E作EF⊥AD于点F,先证明CG=AG,再利用勾股定理列方程,求出AG的值,结合三角形的面积法和勾股定理,即可求解.【详解】解:如图所示:过点E作EF⊥AD于点F,有折叠的性质可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG =AG ,设CG =x ,则DG =8-x ,∵在Rt CDG 中,()22284x x -+=,∴x =5,∴AG =5,在Rt AEG 中,3==,EF ⊥AD ,∠AEG =90°, ∴125AE EG EF AG ⨯==, ∵在Rt AEF 中,22165AFAE EF ,、 ∴DF =8-165=245, ∴在Rt DEF △中,221255DEEF DF ,【点睛】本题主要考查矩形的性质,折叠的性质,勾股定理,等腰三角形的判定定理,添加辅助线构造直角三角形,是解题的关键.4、【分析】根据矩形的对角线互相平分且相等可得OA =OD ,然后判断出△AOD 是等边三角形,再根据勾股定理解答即可.【详解】解:∵四边形ABCD 是矩形,∴OA=OD=12AC=12×12=6,∠ADC=90°,∵∠AOD=60°,∴△AOD是等边三角形,∴AD=OA=6,∴DC=故答案为:【点睛】本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出△AOD是等边三角形.5、8【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n边形的边数【详解】解:∵一个n边形的每个内角都等于135°,∴则这个n边形的每个外角等于18013545︒-︒=︒360458÷=∴该n边形的边数是8故答案为:8【点睛】本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键.三、解答题1、(1)①见解析;②四边形PEFD是菱形,理由见解析;(2)四边形PEFD的形状没有发生变化,仍然是菱形,理由见解析【分析】(1)①根据四边形ABCD为正方形得AD=CD,然后证明△ADF≌△CDP,则DF=DP,得到DF=PG;②由四边形PMDC是矩形得CD=PM,由△ADF≌△MPG,推出PG=PF,进而可得DP=PF,再证明DF∥PE,推出四边形PEFD是平行四边形,再结合PD=PE即可证明四边形PEFD是菱形;(2)如图2中,作PM⊥AD于M.则四边形CDMP是矩形,CD=PM,由△ADF≌△MPG,推出DP=PG=PE=PF,再证明DF∥PE,推出四边形PEFD是平行四边形,由PD=PE,即可证明四边形PEFD是菱形.【详解】解:(1)∵四边形ABCD是正方形,∴AD=CD,∠A= ∠C=∠ADC=90°,∵DF⊥PG,∴∠DHG=90°,∴∠HGD+∠ADF=90°,∠CDP+∠PDG=90°,∵ PD=PG,∴∠PGD=∠PDG,∴∠ADF=∠CDP,∴△ADF≌△CDP(ASA),∴DF=DP,∵ PD=PG,∴DF=PG;②如图所示,作PM⊥AD于M,由旋转的性质得PE=PG,∠EPG=90°,∵四边形ABCD是正方形,∴∠C =∠CDM =∠DMP =90°,AD =CD ,∴四边形DCPM 是矩形,∴CD =PM ,∵AD =CD ,∴AD =PM ,∵DF ⊥PG ,∴∠DAF =∠PMG =∠GHD =90°,∴∠ADF +∠AFD =90°,∠ADF +∠PGM =90°,∴∠AFD =∠PGM ,在△ADF 和△MPG 中,AFD PGM FAD PMG AD PM ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△GMP (AAS ),∴DF =PG ,∵PG =PE =PD ,∵∠FHG =∠EPG =90°,∴DF∥PE ,∴四边形PEFD 是平行四边形,∵PD =PE ,∴四边形PEFD 是菱形.(2)四边形PEFD 的形状没有发生变化,仍然是菱形,理由:如图2中,作PM ⊥AD 于M .则四边形CDMP 是矩形,CD =PM ,∵∠DAF =∠PMG =∠DHG =90°,∴∠ADF +∠AFD =90°,∠G +∠GDH =90°,∵∠ADF =∠GDH ,∴∠AFD =∠G ,∵AD =CD ,CD =PM ,∴AD =PM ,在△ADF 和△MPG 中,AFD G FAD PMG AD PM ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△MPG (AAS ),∴DP =PG =PE =PD ,∵∠FHG =∠EPG =90°,∴DF∥PE ,∴四边形PEFD 是平行四边形,∵PD =PE ,∴四边形PEFD 是菱形.【点睛】本题主要考查了旋转的性质、等腰三角形的性质、正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,属于中考常考题型.2、(1)见解析;(2)图②中BE DE +=,图③中DE BE -=【分析】(1)在BE 上截取BF DE =,连接CF ,可先证得BCF DCE ∆∆≌,则CF CE =,BCF DCE ∠=∠,进而可证得△AED 为等腰直角三角形,即可得证;(2)仿照(1)的证明思路,作出相应的辅助线,即可证得对应的BE ,DE 与CE 之间的数量关系.【详解】解:(1)证明:如图,在BE 上截取BF DE =,连接CF .∵四边形ABCD 是正方形,BC DC ∴=,90BCD ︒∠=,DE BP ⊥,90BCD ︒∠=,90PBC BPC PDE DPE ︒∠∠∴∠+∠=+=,BPC DPE ∠=∠,PBC PDE ∴∠=∠,BF DE =,BC DC =,(SAS)BCF DCE ∴∆∆≌,CF CE ∴=,BCF DCE ∠=∠,90FCE FCD DCE FCD BCF BCD ︒∴∠=∠+∠=+==∠∠∠,∴△ECF 是等腰直角三角形,在Rt FCE ∆中,22222FE CF CE CE =+=,EF ∴=,BE DE BE BF EF ∴-=-==;(2)图②:BE DE +=,理由如下:如下图,在EB 延长线上截取BF DE =,连接CF .BC DC ∴=,90BCD ︒∠=,DE BP ⊥,90BCD ︒∠=,90PBC BPC PDE DPE ︒∠∠∴∠+∠=+=,BPC DPE ∠=∠,FBC EDC ∴∠=∠BF DE =,BC DC =,(SAS)BCF DCE ∴∆∆≌,CF CE ∴=,BCF DCE ∠=∠,90FCE FCD DCE FCD BCF BCD ︒∴∠=∠-∠=∠-∠=∠=,∴△ECF 是等腰直角三角形,在Rt FCE ∆中,22222FE CF CE CE =+=,EF ∴=,BE DE BE BF EF ∴+=+==;图③:DE BE -=如图,在DE 上截取DF =BE ,连接CF .BC DC ∴=,90BCD ︒∠=,DE BP ⊥,90BCD ︒∠=,90PBC BPC PDE DPE ︒∠∠∴∠+∠=+=,BPC DPE ∠=∠,EBC FDC ∴∠=∠BE DF =,BC DC =,(SAS)BCE DCF ∴∆∆≌,CE CF ∴=,BCE DCF ∠=∠,90FCE FCB BCE FCB DCF BCD ︒∴∠=∠+∠=+==∠∠∠,∴△ECF 是等腰直角三角形,在Rt FCE ∆中,22222FE CF CE CE =+=,EF ∴=,DE BE DE DF EF ∴-=-==.【点睛】本题是四边形综合题,考查了正方形的性质、全等三角形的判定及性质、等腰直角三角形、勾股定理等相关知识,正确作出辅助线构造全等三角形是解决本题的关键.3、(1)EF =DF +BE ;(2)EF =DF -BE ;(3)线段EF 的长为103或203. 【分析】(1)延长FD 至G ,使DG =BE ,连接AG ,先证△ABE ≌△ADG ,再证△GAF ≌△EAF 即可;(2)在DC 上截取DH =BE ,连接AH ,先证△ADH ≌△ABE ,再证△HAF ≌EAF 即可;(3)分两种情形分别求解即可解决问题.解:(1)结论:EF=BE+DF.理由:延长FD至G,使DG=BE,连接AG,如图①,∵ABCD是正方形,∴AB=AD,∠ABE=ADG=∠DAB=90°,∴△ABE≌△ADG(AAS),∴AE=AG,∠DAG=∠EAB,∵∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠DAF+∠DAG=45°,∴∠GAF=∠EAF=45°,∵AF=AF,∴△GAF≌△EAF(AAS),∴GF=DF+DG=DF+BE,即:EF=DF+BE;(2)结论:EF=DF-BE.理由:在DC上截取DH=BE,连接AH,如图②,∵AD=AB,∠ADH=∠ABE=90°,∴△ADH≌△ABE(SAS),∴AH=AE,∠DAH=∠EAB,∵∠EAF=∠EAB+∠BAF=45°,∴∠DAH+∠BAF=45°,∴∠HAF=45°=∠EAF,∵AF=AF,∴△HAF≌EAF(SAS),∴HF=EF,∵DF=DH+HF,∴EF=DF-BE;(3)①当MA经过BC的中点E时,同(1)作辅助线,如图:设FD=x,由(1)的结论得FG=EF=2+x,FC=4-x.在Rt△EFC中,(x+2)2=(4-x)2+22,∴x=43,∴EF=x+2=103.②当NA经过BC的中点G时,同(2)作辅助线,设BE=x,由(2)的结论得EC=4+x,EF=FH,∵K 为BC 边的中点,∴CK =12BC =2,同理可证△ABK ≌FCK (SAS ),∴CF =AB =4,EF =FH=CF+CD-DH =8-x ,在Rt △EFC 中,由勾股定理得到:(4+x )2+42=(8-x )2,∴x =43, ∴EF =8-43=203. 综上,线段EF 的长为103或203. 【点睛】 本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.4、(1)见解析;(2)①∠CDA =20°;②∠CAD +41°=∠CBD .【分析】(1)由三角形外角的性质可得∠ACD =∠A +∠ABC ,∠ECD =∠E +∠EBC ;由角平分线的性质可得1()2ECD A ABC =∠+∠∠,12EBC ABC ∠=∠,利用等量代换,即可求得∠A 与∠E 的关系; (2)①根据三角形的内角和定理和角平分线的定义即可解答;②设∠CBD =a ,根据已知条件得到∠ABC =180°-2a ,根据三角形的内角和定理和角平分线的定义即可解答.【详解】(1)证明:∵∠ACD 是△ABC 的外角∴∠ACD =∠A +∠ABC∵CE 平分∠ACD∴1()2∠=∠+∠ECD A ABC又∵∠ECD=∠E+∠EBC∴1()2ECD EBC A ABC ∠+∠=∠+∠∵BE平分∠ABC∴12EBC ABC ∠=∠∴11() 22∠+∠=∠+∠ABC E A ABC∴12∠=∠E A;(2)①∵∠ACD=130°,∠BCD=50°∴∠ACB=∠ACD﹣∠BCD=130°﹣50°=80°∵∠CBA=40°∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣80°﹣40°=60°∵AD平分∠BAC∴1302CAD CAB︒∠=∠=∴∠CDA=180°﹣∠CAD﹣∠ACD=20°;②∠CAD+41°=∠CBD设∠CBD=α∵∠ABD+∠CBD=180°∴∠ABC=180°﹣2α∵∠ACB=82°∴∠CAB=180°﹣∠ABC﹣∠ACB=180°﹣(180°﹣2α)﹣82°=2α﹣82°∵AD 平分∠BAC∴∠CAD =12∠CAB =α﹣41°∴∠CAD +41°=∠CBD .【点睛】本题主要考查了多边形的内角与外角、三角形内角和定理、角平分线等知识点,掌握三角形内角和是180°是解答本题的关键.5、(1)见解析;(2)见解析.【分析】(1)由平行四边形的性质得出AD ∥BC ,得出∠D =∠ECF ,则可证明△ADE ≌△FCE (ASA );(2)由平行四边形的性质证出AB =BF ,由全等三角形的性质得出AE =FE ,由等腰三角形的性质可得出结论.【详解】证明:(1)∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠D =∠ECF ,∵E 为CD 的中点,∴ED =EC ,在△ADE 和△FCE 中,D ECF ED ECAED FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA );(2)∵四边形ABCD 为平行四边形,∴AB=CD,AD∥BC,∴∠FAD=∠AFB,又∵AF平分∠BAD,∴∠FAD=∠FAB.∴∠AFB=∠FAB.∴AB=BF,∵△ADE≌△FCE,∴AE=FE,∴BE⊥AF.【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,角平分线的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.。
沪教版八年级下册数学期末测试卷及含答案(考试直接用)

沪教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为α,则重叠部分的面积为()A. B. C.tanα D.12、下列性质中,菱形具有矩形不一定具有的是()A.对角线相等B.对角线互相平分C.邻边互相垂直D.对角线互相垂直3、下列命题中,不正确的是()A.对角线相等且垂直的四边形是正方形B.有一个角是直角的菱形是正方形C.顺次连接菱形各边中点所得的四边形是矩形D.有一个角是的等腰三角形是等边三角形4、已知在平行四边形ABCD中,∠A=36°,则∠C为()A.18°B.36°C.72°D.144°5、如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形6、池塘里,一只青蛙刚从水里钻出来,同学们开始议论:①青蛙可能会再次钻入水底;②青蛙一定会爬上岸;③青蛙可能会飞上天。
这些说法中正确的有()A.1个B.2个C.3个D.4个7、一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8、下列四个分式方程中无解的是().A. B. C. D.9、如图是以KL所在的直线为对称轴的轴对称图形,六边形EFGHLK的各个内角相等,记四边形HCH'L、四边形EKE'A、△BGF的周长分别为C1、C2、C3,且G 1=2G2=4G3,已知FG=LK,EF=6,则AB的长是()A.9.5B.10C.10.5D.1110、多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有( ).A.7条B.8条C.9条D.10条11、下面关于平行四边形的说法中错误的是()A.平行四边形的两条对角线相等B.平行四边形的两条对角线互相平分 C.平行四边形的对角相等 D.平行四边形的对边相等12、如图,在平行四边形ABCD中,点O是对角线AC上一点,连结BO,DO,△COD,△AOD,△AOB,△BOC的面积分别是S1, S2, S3, S4。
沪教版数学八年级下学期期中测试卷二(含答案及解析)
ax,沪教版数学八年级下学期期中测试卷二一、选择题(本题共 10 小题,每小题 3 分,共 30 分) 1.(4 分)在二次根式 16x 3,−2,, 3中,最简二次根式有()个.A .1B .2C .3D .42.(4 分)若二次根式在实数范围内有意义,则 x 的取值范围是( ) A .x ≤﹣1B .x ≥﹣1C .x ≤1D .x ≥13.(4 分)五根小木棒,其长度分别为 7,15,20,24,25,现将它们摆成两个直角三角形,如图, 其中正确的是()A .B .C .D .4.(4 分)已知 x =1 是方程 x 2+ax+2=0 的一个根,则方程的另一个根为()A .﹣2B .2C .﹣3D .35.(4 分)若 a 为方程 x 2+x ﹣5=0 的解,则 a 2+a+1 的值为()A .12B .6C .9D .166.(4 分)为了美化环境,加大对绿化的投资.2008 年用于绿化投资 20 万元,2010 年用于绿化投资 25 万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为 x ,根据题意所列方程为()A .20x 2=25B .20(1+x )=25C .20(1+x )+20(1+x )2=25D .20(1+x )2=257.(4 分)将方程 x 2+8x+9=0 左边变成完全平方式后,方程是()A .(x+4)2=7B .(x+4)2=25C .(x+4)2=﹣9D .(x+4)2=﹣78.(4 分)下列命题中,是假命题的是()A. 在△ABC 中,若∠B =∠C ﹣∠A ,则△ABC 是直角三角形B.在△ABC 中,若a2=(b+c)(b﹣c),则△ABC 是直角三角形C.在△ABC 中,若∠A:∠B:∠C=3:4:5,则△ABC 是直角三角形D.在△ABC 中,若a:b:c=3:4:5,则△ABC 是直角三角形9.(4 分)已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0 的根,则该三角形的周长可以是()A.5 B.7 C.5 或7 D.1010.(4 分)如图,设正方体ABCD﹣A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→…,白甲壳虫爬行的路线是AB→BB1→…,并且都遵循如下规则:所爬行的第n+2 与第n 条棱所在的直线必须是既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2013 条棱分别停止在所到的正方体顶点处时,它们之间的距离是()A.0 B.1 C.D.二、填空题(本大题共 4 小题,共 20 分)11.(5 分)使式子有意义的实数x 的取值范围是12.(5 分)设x1、x2是方程x2﹣4x+m=0 的两个根,且x1+x2﹣x1x2=1.则m=13.(5 分)如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN⊥AC 于点N,则MN 的长是14.(5 分)如图,点P 是等边△ABC 内一点,连接PA,PB,PC,PA:PB:PC=3:4:5,以AC 为边作△AP′C≌△APB,连接PP′,则有以下结论:①△APP′是等边三角形;②△PCP′是直角三角形;③∠APB=150°;④∠APC=105°.其中一定正确的是(把所有正确答案的序号都填在横线上)11 11三、解答题(共7小题,共 70 分)15.(6 分)计算:2− 3 + + 3 − 316.(6 分)(x﹣3)2+2x(x﹣3)=0.17.(10 分)如图,在边长为1 的小正方形组成的网格中,四边形ABCD 的四个顶点都在格点上,请按要求完成下列各题.(1)线段AB 的长为,BC 的长为,CD 的长为;(2)连接AC,通过计算说明△ACD 和△ABC 是什么特殊三角形.18.(10 分)关于x 的一元二次方程x2+(2m+1)x+m2﹣1=0 有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最小整数时,求方程的解.19.(12 分)如图,在△ABC 中,AB=15,BC=14,AC=13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC 于D,设BD=x,用含x 的代数式表示CD,则CD=;(2)请根据勾股定理,利用AD 作为“桥梁”建立方程,并求出x 的值;(3)利用勾股定理求出AD 的长,再计算三角形的面积.20.(12 分)若一元二次方程ax2=b(ab>0)的两根分别为m+1 与2m﹣4.(1)求m 的值;(2)求的值.21.(14 分)某商业街有店面房共195 间,2014 年平均每间店面房的年租金为10 万元,由于物价上涨,到2016 年平均每间店面房的年租金上涨到了12.1 万元,据预测,当每间的年租金定为12.1 万元时,可全部租出;若每间的年租金每增加1 万元,就要少租出10 间.该商业街管委会要为租出的商铺每间每年交各种费用 1.1 万元,未租出的商铺每间每年交各种费用5000 元.5(1)求2014 年至2016 年平均每间店面房年租金的平均增长率;(2)当每间店面房的年租金上涨多少万元时,该商业街的年收益(收益=租金﹣各种费用)为2305 万元?ax,沪教版数学八年级下学期期中测试卷二参考答案与试题解析一、选择题(本题共 10 小题,每小题 3 分,共 30 分) 1.(4 分)在二次根式 16x 3,−2,, 3中,最简二次根式有()个.A .1B .2C .3D .4【分析】根据二次根式的性质看看每个二次根式是否能继续往外开(也可以根据最简二次根式 的定义直接判断),即可得出答案. 【解答】解:=4x,不是最简二次根式;﹣是最简二次根式; = =,不是最简二次根式;=,不是最简二次根式; 是最简二次根式;即最简二次根式有 2 个. 故选:B .【点评】本题考查了二次根式的性质和最简二次根式的定义等知识点,注意最简二次根式的定 义包括一下三方面的内容:①根指数是 2 次,②被开方数是整式或整数,③被开方数中每一个因式的指数都小于根指数 2.2.(4 分)若二次根式在实数范围内有意义,则 x 的取值范围是( ) A .x ≤﹣1B .x ≥﹣1C .x ≤1D .x ≥1【分析】根据被开方数大于等于 0 列式计算即可得解. 【解答】解:由题意得,x ﹣1≥0, 解得 x ≥1. 故选:D .3.(4 分)五根小木棒,其长度分别为 7,15,20,24,25,现将它们摆成两个直角三角形,如图, 其中正确的是()A.B.C.D.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、72+242=252,152+202≠242,222+202≠252,故A 不正确;B、72+242=252,152+202≠242,故B 不正确;C、72+242=252,152+202=252,故C 正确;D、72+202≠252,242+152≠252,故D 不正确.故选:C.4.(4 分)已知x=1 是方程x2+ax+2=0 的一个根,则方程的另一个根为()A.﹣2 B.2 C.﹣3 D.3【分析】本题根据一元二次方程根与系数的关系求解.【解答】解:设另一根为m,则1•m=2,解得m=2.故选:B.【点评】本题考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=﹣,x1•x2=.要求熟练运用此公式解题.5.(4 分)若a 为方程x2+x﹣5=0 的解,则a2+a+1 的值为()A.12 B.6 C.9 D.16【分析】根据一元二次方程的解的定义直接得出a2+a 进而求出即可.【解答】解:∵a 为方程x2+x﹣5=0 的解,∴a2+a﹣5=0,∴a2+a=5则a2+a+1=5+1=6.故选:B.【点评】此题主要考查了一元二次方程的解,根据定义将a2+a 看作整体求出是解题关键.6.(4 分)为了美化环境,加大对绿化的投资.2008 年用于绿化投资20 万元,2010 年用于绿化投资25 万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x,根据题意所列方程为()A.20x2=25 B.20(1+x)=25C.20(1+x)+20(1+x)2=25 D.20(1+x)2=25【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),设这两年绿化投资的年平均增长率为x,根据“2007 年用于绿化投资20 万元,2009 年用于绿化投资25 万元”,可得出方程.【解答】解:设这两年绿化投资的年平均增长率为x,那么依题意得20(1+x)2=25故选:D.【点评】本题为平均增长率问题,一般形式为a(1+x)2=b,a 为起始时间的有关数量,b 为终止时间的有关数量.7.(4 分)将方程x2+8x+9=0 左边变成完全平方式后,方程是()A.(x+4)2=7 B.(x+4)2=25 C.(x+4)2=﹣9 D.(x+4)2=﹣7 【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是 2 的倍数.【解答】解:∵x2+8x+9=0∴x2+8x=﹣9∴x2+8x+16=﹣9+16∴(x+4)2=7故选:A.8.(4 分)下列命题中,是假命题的是()A.在△ABC 中,若∠B=∠C﹣∠A,则△ABC 是直角三角形B.在△ABC 中,若a2=(b+c)(b﹣c),则△ABC 是直角三角形C.在△ABC 中,若∠A:∠B:∠C=3:4:5,则△ABC 是直角三角形D.在△ABC 中,若a:b:c=3:4:5,则△ABC 是直角三角形9.(4 分)已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0 的根,则该三角形的周长可以是()A.5 B.7 C.5 或7 D.10【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、在△ABC 中,若∠B=∠C﹣∠A,则△ABC 是直角三角形,是真命题;B、在△ABC 中,若a2=(b+c)(b﹣c),则△ABC 是直角三角形,是真命题;C、在△ABC 中,若∠A:∠B:∠C=3:4:5,则△ABC 是直角三角形,是假命题;D、在△ABC 中,若a:b:c=3:4:5,则△ABC 是直角三角形,是真命题;故选:C.【点评】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(4 分)如图,设正方体ABCD﹣A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→…,白甲壳虫爬行的路线是AB→BB1→…,并且都遵循如下规则:所爬行的第n+2 与第n 条棱所在的直线必须是既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2013 条棱分别停止在所到的正方体顶点处时,它们之间的距离是()A.0 B.1 C.D.【分析】先确定黑、白两个甲壳虫各爬行完第2013 条棱分别停止的点,再根据停止点确定它们之间的距离.【解答】解:根据题意可知黑甲壳虫爬行一圈的路线是AA1→A1D1→D1C1→C1C→CB→BA,回到起点.乙甲壳虫爬行一圈的路线是AB→BB1→B1C1→C1D1→D1A1→A1A.因此可以判断两个甲壳虫爬行一圈都是6 条棱,因为2013÷6=335…3,所以黑、白两个甲壳虫各爬行完第2013 条棱分别停止的点都是C1,所以它们之间的距离是0,故选:A.【点评】此题考查了立体图形的有关知识.注意找到规律:黑、白甲壳虫每爬行 6 条边后又重复原来的路径是解此题的关键.二、填空题(本大题共 4 小题,共 20 分)11.(5 分)使式子有意义的实数x 的取值范围是【分析】根据二次根式有意义可得3﹣x≥0,且x≠0,再解即可.【解答】解:由题意得:3﹣x≥0,且x≠0,解得:x≤3,且x≠0,故答案为:x≤3,且x≠0.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不为零.12.(5 分)设x1、x2是方程x2﹣4x+m=0 的两个根,且x1+x2﹣x1x2=1.则m=【分析】根据根与系数的关系,确定x1+x2、x1x2的值,然后代入方程中,解方程确定m 的值.【解答】解:∵x1、x2是方程x2﹣4x+m=0 的两个根,∴x1+x2=4,x1x2=m,∵x1+x2﹣x1x2=1∴4﹣m=1,∴m=3故答案为:3【点评】此题主要考查了根与系数的关系、一元一次方程的解法,将x1+x2=4,x1x2=m 代入方程,并解方程是解决此类题目经常使用的方法.13.(5 分)如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN⊥AC 于点N,则MN 的长是【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM 的长,再根据在直角三角形的面积公式即可求得MN 的长.【解答】解:连接AM,∵AB=AC,点M 为BC 中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM 中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.14.(5 分)如图,点P 是等边△ABC 内一点,连接PA,PB,PC,PA:PB:PC=3:4:5,以AC 为边作△AP′C≌△APB,连接PP′,则有以下结论:①△APP′是等边三角形;②△PCP′是直角三角形;③∠APB=150°;④∠APC=105°.其中一定正确的是(把所有正确答案的序号都填在横线上)【分析】先运用全等得出AP′=AP,∠CAP′=∠BAP,从而∠PAP′=∠BAC=60°,得出△PAP′是等边三角形,∠AP′P=60°,PP′=AP,再运用勾股定理逆定理得出∠PP′C=90°,由此得解.【解答】解:△ABC 是等边三角形,则∠BAC=60°,又△AP'C≌△APB,则AP=AP′,∠ PAP′=∠BAC=60°,∴△APP'是正三角形,①正确;又PA:PB:PC=3:4:5,∴设PA=3x,则:PP′=PA=3x,P′C=PB=4x,PC=5x,根据勾股定理的逆定理可知:△PCP'是直角三角形,且∠PP′C=90°,②正确;又△APP'是正三角形,∴∠AP′P=60°,∴∠APB=150°③正确;错误的结论只能是∠APC=105°.故答案为①②③.11 11【点评】本题主要考查了勾股定理的逆定理、全等三角形的性质以及等边三角形的知识,解决本题的关键是能够正确理解题意,由已知条件,联想到所学的定理,充分挖掘题目中的结论是解题的关键.三、解答题(共 7 小题,共 50 分)15.(6 分)计算:2− 3 + + 3 − 3【分析】利用完全平方公式,利用平方差公式计算,然后再合并同类项.【解答】解:原式=5﹣6 +9+11﹣9=16﹣6 .【点评】本题主要考查完全平方公式和平方差公式在二次根式混合运算中的作用.16.(6 分)(x﹣3)2+2x(x﹣3)=0.【分析】利用“提取公因式(x﹣3)”对等式的左边进行因式分解,然后解方程.【解答】解:由原方程,得3(x﹣3)(x﹣1)=0,所以,x﹣3=0 或x﹣1=0,解得,x1=3,x2=1.【点评】本题考查了解一元二次方程﹣﹣因式分解法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).17.(10 分)如图,在边长为1 的小正方形组成的网格中,四边形ABCD 的四个顶点都在格点上,请按要求完成下列各题.(1)线段AB 的长为,BC 的长为,CD 的长为;(2)连接AC,通过计算说明△ACD 和△ABC 是什么特殊三角形.【分析】(1)把线段AB、BC、CD、放在一个直角三角形中利用勾股定理计算即可;(2)根据勾股定理的逆定理求出AC=AD,即可判断△ACD 的形状;由勾股定理的逆定理得出△ABC 是直角三角形.5【解答】解:(1)由勾股定理得:AB==,BC==5,CD==2 ;故答案为:,5,2 ;(2)∵AC==2 ,AD═=2 ,∴AC=AD,∴△ACD 是等腰三角形;∵AB2+AC2=5+20=25=BC2,∴△ABC 是直角三角形.【点评】此题主要考查了勾股定理、勾股定理的逆定理以及等腰三角形的判定;熟练掌握勾股定理是解决问题的关键.18.(10 分)关于x 的一元二次方程x2+(2m+1)x+m2﹣1=0 有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最小整数时,求方程的解.【分析】(1)根据方程有两个不相等的实数根根,则根的判别式△=b2﹣4ac>0,建立关于m 的不等式,求出m 的取值范围;(2)得到m 的最小整数,利用因式分解法解一元二次方程即可.【解答】解:(1)∵一元二次方程x2+(2m+1)x+m2﹣1=0 有两个不相等的实数根,∴△=(2m+1)2﹣4(m2﹣1)=4m+5>0,∴m>﹣;(2)m 满足条件的最小值为m=﹣1,此时方程为x2﹣x=0,解得x1=0,x2=1.【点评】考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.19.(12 分)如图,在△ABC 中,AB=15,BC=14,AC=13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC 于D,设BD=x,用含x 的代数式表示CD,则CD=;(2)请根据勾股定理,利用AD 作为“桥梁”建立方程,并求出x 的值;(3)利用勾股定理求出AD 的长,再计算三角形的面积.【分析】(1)直接利用BC 的长表示出DC 的长;(2)直接利用勾股定理进而得出x 的值;(3)利用三角形面积求法得出答案.【解答】解:(1)∵BC=14,BD=x,∴DC=14﹣x,故答案为:14﹣x;(2)∵AD⊥BC,∴AD2=AC2﹣CD2,AD2=AB2﹣BD2,∴132﹣(14﹣x)2=152﹣x2,解得:x=9;(3)由(2)得:AD===12,∴S△ABC=•BC•AD=×14×12=84.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出AD 的长是解题关键.20.(12 分)若一元二次方程ax2=b(ab>0)的两根分别为m+1 与2m﹣4.(1)求m 的值;(2)求的值.【分析】(1)求出方程ax2=b 的根,得出方程m+1+2m﹣4=0,求出即可;(2)根据(1)中求出的x=得出=(±2)2,求出即可.【解答】解:(1)ax2=b,x2=,x=,即方程的两根互为相反数,∵一元二次方程ax2=b(ab>0)的两根分别为m+1 与2m﹣4.∴m+1+2m﹣4=0,解得:m=1;(2)当m=1 时,m+1=2,2m﹣4=﹣2,∵x=±,一元二次方程ax2=b(ab>0)的两根分别为m+1 与2m﹣4,∴=(±2)2=4.【点评】本题考查了解一元二次方程和相反数,能求出关于m 的方程是解此题的关键.21.(14 分)某商业街有店面房共195 间,2014 年平均每间店面房的年租金为10 万元,由于物价上涨,到2016 年平均每间店面房的年租金上涨到了12.1 万元,据预测,当每间的年租金定为12.1 万元时,可全部租出;若每间的年租金每增加1 万元,就要少租出10 间.该商业街管委会要为租出的商铺每间每年交各种费用 1.1 万元,未租出的商铺每间每年交各种费用5000 元.(1)求2014 年至2016 年平均每间店面房年租金的平均增长率;(2)当每间店面房的年租金上涨多少万元时,该商业街的年收益(收益=租金﹣各种费用)为2305 万元?【分析】(1)设2014 年至2016 年平均每间店面房年租金的平均增长率为x,根据2013 年平均每间店面房的年租金为10 万元;由于物价上涨,到2015 年平均每间店面房的年租金上涨到了12.1 万元,可列方程求解;(2)设每间商铺的年租金增加x 万元,直接根据收益=租金﹣各种费用=2305 万元作为等量关系列方程求解即可.【解答】解:(1)设2014 年至2016 年平均每间店面房年租金的平均增长率为x,根据题意得出:10(1+x)2=12.1,解得:x1=10%,x2=﹣2.1(不合题意舍去),答:2014 年至2016 年平均每间店面房年租金的平均增长率为10%;(2)当每间店面房的年租金上涨x 万元时,该商业街的年收益(收益=租金﹣各种费用)为2305 万元,故根据题意得出:(12.1+x﹣1.1)(195﹣10x)﹣0.5×10x=2305,整理得出:x2﹣8x+16=0,解得:x1=x2=4.答:当每间店面房的年租金上涨4 万元时,该商业街的年收益(收益=租金﹣各种费用)为2305 万元.【点评】本题考查了一元二次方程的应用中增长率问题和升降价问题,关键看到2014 年的值以及经过两年变化后2016 年的值,可列出方程.。
沪教版八年级下册数学考试真题及答案
沪教版八年级下册数学考试真题及答案全文共2篇示例,供读者参考沪教版八年级下册数学考试真题及答案1第一章勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。
满足的三个正整数称为勾股数。
第二章实数1.平方根和算术平方根的概念及其性质:(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。
(2)性质:①当≥0时,≥0;当<0时,无意义;② = ;③ 。
2.立方根的概念及其性质:(1)概念:若,那么是的立方根,记作:;(2)性质:① ;② ;③ =3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的`一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
因此,数轴正好可以被实数填满。
5.算术平方根的运算律:( ≥0,≥0); ( ≥0,>0)。
第三章图形的平移与旋转1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
这点定点称为旋转中心,转动的角称为旋转角。
旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。
沪科版数学八年级下册综合训练50题(含答案)
沪科版数学八年级下册综合训练50题含答案(填空、解答题)一、填空题1=________=________.2.某地需要开辟一条隧道,隧道AB 的长度无法直接测量.如图所示,在地面上取一点C ,使点C 均可直接到达A ,B 两点,测量找到AC 和BC 的中点D ,E ,测得DE 的长为1200m ,则隧道AB 的长度为_________米.3==ab =_________4.关于x 的一元二次方程()22240x a x a -++-=的其中一个根是0,则=a _____.5.在式子 ③2x ,1)x ≤中,二次根式有_____________个.6.元旦晚会,全班同学互赠贺卡,若每两个同学都相互赠送一张贺卡,小明统计全班共送了1640张贺卡,那么全班有多少人?设全班有x 人,则根据题意可以列出方程______.7.如果▱ABCD 的周长为40cm ,▱ABC 的周长为25cm ,则对角线AC 的长是___. 8.平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AC =6,AB =4,则BD 长度的取值范围是_________.9.一个一元二次方程的二次项系数为1,其中一个根是﹣3,另一个根是2,则这个方程是_____.10a =____. 11.下列方程中,是关于x 的一元二次方程的有_______. (1)2y 2+y -1=0; (2)x (2x -1)=2x 2; (3)21x-2x=1;(4)ax 2+bx+c=0;(5)12x 2=0. 12. 13﹣_____. 14.设1x ,2x 是方程2240x x +-=的两个实数根,则()212x x -= _____.15.已知一组数据0,2,x ,3,5的平均数是y ,则y 关于x 的函数解析式是______. 16(20y =,则()2+=x y ______.17.已知a 是二次方程2350x x --=的根,则220213a a -+的值为______.18.如图,菱形ABCD 中,▱B =60°,ABAC 为边长的正方形ACEF 的面积为________.19.在一段时间内,小军骑自行车上学和乘坐公共汽车上学的次数基本相同,他随机记录了其中某些天上学所用的时间,整理如表:下面有四个推断:▱平均来说,乘坐公共汽车上学所需的时间较短 ▱骑自行车上学所需的时间比较容易预计▱如果小军想在上学路上花的时间更少,他应该更多地乘坐公共汽车 ▱如果小军一定要在16min 内到达学校,他应该乘坐公共汽车其中合理的是_____(填序号).20.某口罩生产厂2020年1月生产的口罩平均日产量为10000个,本月底爆发新冠肺炎疫情,口罩的需求量大增,为满足市场需求,工厂决定从2月起扩大产能,3月平均日产量达到12100个,若2,3月份口罩日产量的月平均增长率不变, (1)则2,3月份口罩日产量的月平均增长率是__________; (2)若按照这个增长率,则4月份平均日产量为_____________个21.圆锥的母线长为5,高为4,则该圆锥的侧面积是 _____.(结果保留π) 22.有一块长30m 、宽20m 的矩形基地,准备修筑同样宽的三条直路.如图,把基地分成六块,种植不同品种的蔬菜,并且种植硫菜面积为基地面积的34.设道路的宽度为m x ,所列方程为________.23.如图,将透明直尺叠放在正五边形ABCDE 上,若正五边形恰好有一个顶点E 在直尺的边上,且直尺一边与DE 垂直,与另一边AB 交于点F ,则▱AFE 等于______度.24.如图,在边长为1的正方形ABCD 中,CAD ∠的平分线交CD 于点E ,交BC 的延长线于点F ,则CE 的长为___________.25.已知12x x ,是关于x 的一元二次方程250x x a -+=的两个实数根,且221213x x +=,则=a _____.26.关于x 的一元二次方程2230x x m -+-=有两个实数根,则m 的取值范围是___________.27.菱形的对角线长分别为24和10,则此菱形的周长为_____,面积为_____.28.若|a |=4=2,且ab <0,则a +b___________________________________.29.图,在四边形ABCD 中,30ACB ABC ∠=∠=︒,60ADC ∠=︒,5AD =,3CD =,则BD 的长为______.二、解答题 30.如图,在8×8正方形网格中,每个小正方形的边长为1cm .(1)在正方形方格网中画出△ABC ,使,,BC=5cm ; (2)计算△ABC 的面积.31.计算:.32.解方程:(1)22(1)8x -= (2)214111x x x +-=--33.计算:)2134.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力,他们的成绩(百分制)如下表:(1)如果公司根据经营性质和岗位要求,以形体、口才、专业水平、创新能力按照5▱5▱4▱6的比确定成绩,请计算甲、乙两人各自的平均成绩,看看谁将被录取? (2)如果公司根据经营性质和岗位要求,以面试成绩中形体占5%,口才占30%,笔试成绩中专业水平占35%,创新能力占30%确定成绩,那么你认为该公司应该录取谁? 35.计算:(1);(2). 36.计算:(1)⎛ ⎝(2)-+÷ 37.解方程:2270x x --=. 38.解方程:23213x x x -+=.39.如图是边长为1的小正方形网格,每个小正方形的顶点叫做格点,点A 、C 均在格点上,且AC =5,请选择适当的格点,只用无刻度的直尺在网格中完成下列画图.(1)在图▱中过点A 画出线段AB ,使AB =AC (点B 在格点上),并且AB 在AC 上方. (2)在(1)的条件下,请在图▱中画出以AB 为一边的平行四边形ABMN ,满足2ABC ABMN S S =平行四边形△.40.阅读下面材料:在数学课上,老师提出如下问题:已知:如图,四边形ABCD 是平行四边形.求作:菱形AECF ,使点E ,F 分别在BC ,AD 上.小军的作法如下: (1)连接AC ;(2)作AC 的垂直平分线EF 分别交BC ,AD 于E ,F ; (3)连接AE ,CF , 所以四边形AECF 是菱形.老师说:“小军的作法正确.”以下是一种证明思路,请结合作图过程补全填空由作图和已知可以得到:AOF COE ≌△△ ▱AF CE =▱四边形ABCD 是平行四边形 ▱AF CE ∥▱四边形AECF 是平行四边形(依据:________________________________________________) ▱EF 垂直平分AC ▱________________▱四边形AECF 是菱形(依据:________________________________________________)41.如图,四边形ABCD 是正方形,M 是边BC 上一点,E 是CD 的中点,AE 平分DAM ∠.(1)判断AMB ∠与MAE ∠的数量关系,并说明理由; (2)求证:AM AD MC =+; (3)若4=AD ,求AM 的长.42.如图,在菱形ABCD 中,BE ▱CD 于点E ,DF ▱BC 于点F .(1)求证:BF =DE ;(2)分别延长BE 和AD ,交于点G ,若▱A =45°,时,求DGAD的值.43.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE AC ∥,CE BD ∥.(1)求证:四边形OCED 是菱形;(2)若6AB =,8AD =,则菱形OCED 的面积为________. 44.在由6个大小相同的小正方形组成的方格中:(1)如图(1),A ,B ,C 是三个格点(即小正方形的顶点),判断AB 与BC 的关系,并说明理由;(2)如图(2),连接三格和两格的对角线,求▱α+▱β的度数(要求:画出示意图并给出证明).45.请阅读下列材料:我们可以通过配方,利用平方的非负性来求出代数式的最值. 例如:▱请求出代数式241x x +-的最值.2241(2)5x x x +-=+-,且2(2)0x +≥,▱当2x =-时,代数式241x x +-有最小值5-. ▱请求出代数式221x x --+的最值.2221(1)2x x x --+=-++,且2(1)0x -+≤.▱当=1x -时,代数式221x x --+有最大值2. 请根据上述方法,解决下列问题:(1)当x = ,代数式2243x x +-有最 (填“大”,“小”)值为 (2)代数式226x kx ++有最小值2,求k 的值.(3)应用拓展:如图,现在有长度24m 的围栏,要利用一面墙(墙的最大可用长度为15m )来围成菜园,BC 的长度不大于墙的长度,要围成中间有一道围栏的矩形菜园,请问菜园的长BC 和宽AB 分别为多少时,菜园有最大面积?46.某商店销售一批保暖衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售增加盈利,商场采取适当的降价措施,经调查发现,在一定的范围内,保暖衬衫的单价每降10元,商店平均每天可多售出20件.如果商店通过销售这批保暖衬衫每天要盈利1200元,保暖衬衫的单价应降价多少元? 47.计算(1)2(248.如图,一次函数y kx b =+的图象与直线34y x =交于点()4,3A ,与y 轴交于点B ,且OA OB =.(1)求一次函数的表达式;(2)求两直线与y 轴围成的三角形的面积.(3)在x 轴上是否存在点C ,使AOC 是以OA 为腰的等腰三角形,若存在,直接写出C 的坐标;若不存在,说明理由. 49.已知,如图1,在ABCD 中,=60B ∠︒,将ABC 沿AC 翻折至AEC △,连接DE .(1)求证:AD CE =;(2)若点E 在直线AD 下方,如图2,2AB =,AE CD ⊥,求BC 的长; (3)在翻折过程中,若AED △为直角三角形,求ABBC的值.参考答案:1.23π-【分析】根据二次根式的性质化简.=2-2,=3π-=3π-,2,3π-.【点睛】本题考查了二次根式的性质,解题的关键是要灵活运用二次根式的性质进行化简.2.2400米【分析】根据中位线的性质即可求解.【详解】▱D,E分别是AC、BC中点,▱DE=12AB故AB=2400m【点睛】此题主要考查中位线的性质,解题的关键是熟知中位线的性质.3.2【分析】运用二次根式化简的法则先化简,再得出a,b的值即可.【详解】解:246-==2,1,a b∴==2.ab∴=故答案为:2.【点睛】本题考查了二次根式的化简求值,解题的关键是掌握二次根式运算法则.4.2-【分析】把0x=代入原方程得240a-=,再解关于a的方程,然后利用一元二次方程的定义确定a的值.【详解】解:把0x=代入方程()22240xa x a-++-=得240a-=,解得12a=,22a=-,因为20a-≠,答案第1页,共30页所以a的值为2-.故答案为:2-.【点睛】本题考查了解一元二次方程和一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5.3a0)≥的式子叫做二次根式.依次分析即可.a0)≥的式子叫做二次根式.是二次根式;是二次根式;▱2x不是二次根式;210x-+<,二次根式无意义,故▱不是二次根式;)1x≤,因为1x≤,所以1-x≥0,故▱是二次根式.二次根式有▱▱▱三个.故答案为3.【点睛】本题考查二次根式的定义.6.x(x﹣1)=1640【分析】设全班有x人.根据互赠贺年卡一张,则x人共赠贺卡x(x﹣1)张,列方程即可.【详解】解:设全班有x人.根据题意,得x(x﹣1)=1640,故答案是:x(x﹣1)=1640.【点睛】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.5cm.【分析】直接利用平行四边形的对边相等,进而得出AB+BC的值即可得出答案.【详解】解:如图所示:▱四边形ABCD是平行四边形,▱AB=DC ,AD=BC▱▱ABCD的周长为40cm,▱ABC 的周长为25cm ,▱AC =25﹣20=5(cm ).故答案为:5cm .【点睛】此题主要考查了平行四边形的性质,正确掌握平行四边形对边关系是解题关键. 8.214BD <<【分析】根据题意画出图形,根据平行四边形的对角线相互相平分,可得OA =OC ,OB =OD ;根据三角形的三边关系,可得BD 的取值范围.【详解】解:▱四边形ABCD 是平行四边形,AC =6,AB =4,▱OA =OC =12AC =3,▱1<OB <7,▱BD =2OB =2BD ,▱BD 的取值范围是2<BD <14.故答案为:2<BD <14.【点睛】此题考查了平行四边形的性质:平行四边形的对角线相互相平分.还考查了三角形的三边关系:三角形中任意两边之和大于第三边,三角形中任意两边之差小于第三边,掌握以上知识是解题的关键.9.x 2+x ﹣6=0【分析】设这个方程为ax 2+bx+c =0.,由二次项系数为1及方程的两根,利用根与系数的关系即可求出b ,c 的值,进而可得出这个方程.【详解】解:设这个方程为ax 2+bx+c =0.▱该方程的二次项系数为1,两根分别为﹣3和2,▱a =1,b a -=﹣3+2,c a=﹣3×2,▱这个方程为x 2+x ﹣6=0.故答案为:x 2+x ﹣6=0.【点睛】本题考查了一元二次方程根与系数的关系,熟知一元二次方程根与系数的关系是解题关键.10.1.案.▱3a +2=5,解得,a =1,故答案为:1.【点睛】考查了最简二次根式的化简,同类二次根式的概念,求解一元一次方程,熟记二次根式的概念是解题关键.11.(5)【详解】(1)2y 2+y -1=0是关于y 的一元二次方程,故错误;(2)x (2x -1)=2x 2化成一般式后不含二次项,故错误;(3)21x -2x=1不是整式方程,故错误; (4)ax 2+bx+c=0二次项系数可能为0,故错误;(5)12x 2=0符合一元二次方程的定义. 故是关于x 的一元二次方程的有(5).12;.点睛:化简分母是二次根式的式子,可把原分数的分子与分母都乘以分母,再化为最简分数即可.13【详解】解:原式=14.20【分析】利用一元二次方程根与系数的关系求出122x x +=-,124x x ⋅=-,再根据完全平方公式将()212x x -转化为()212124x x x x +-⋅,代值求解即可.【详解】解:▱1x ,2x 是方程2240x x +-=的两个实数根,▱122x x +=-,124x x ⋅=-,▱()()()()222121212424441620x x x x x x -=+-⋅=--⨯-=+=,故答案为:20.【点睛】本题考查了根与系数关系求一元二次方程两根差的平方.解题的关键是准确将所求代数式准确表示为两根之和与两根之积.15.125y x =+ 【分析】根据平均数的求法可直接进行求解. 【详解】解:由题意得:02351255x y x ++++==+; 故答案为125y x =+. 【点睛】本题主要考查平均数及函数,熟练掌握平均数的求法是解题的关键.16.9-【分析】由算术平方根及偶次幂的非负性可求得2x =,y = 【详解】解:由题得:200x y -=⎧⎪⎨=⎪⎩,▱2x =,y =▱()(222459x y +==-=-故答案为9-【点睛】本题主要考查算术平方根与偶次幂的非负性及二次根式的运算,熟练掌握算术平方根与偶次幂的非负性及二次根式的运算是解题的关键.17.2016【分析】根据方程的解的定义求出235a a -=,代入所求代数式即可求出结果.【详解】解:将a 代入方程,得2350a a --=,▱235a a -=,▱220213a a -+=()220213a a --=2021-5=2016,故答案为:2016.【点睛】此题考查了方程的解,已知式子的值求代数式的值,正确理解方程的解的定义是解题的关键.18.2【分析】由题意可知▱ABC 是等边三角形,可得AC =AB ,进而可求正方形ACEF 的面积.【详解】解:▱四边形ABCD 是菱形,=60B ∠︒,▱AB =BC ,▱▱ABC 是等边三角形▱AB =▱AC AB ==▱正方形ACEF 2故答案为:2.【点睛】本题考查了菱形的性质,正方形的性质,等边三角形的性质和判定,解题的关键在于求出AC 的长.19.▱▱▱【分析】算出骑自行车上学的平均时间和乘坐公共汽车上学的平均时间,然后对▱▱▱作出判断即可,根据两种方式的所有出现的情况可以判断出骑自行车一定能在16min 内到达,而乘坐公共汽车不一定.【详解】解:骑自行车上学的平均时间=115(14+14+14+15+15+15+15+15+15+15+15+15+15+15+15)=14.8(min ), 乘坐公共汽车上学的平均时间=115(10+10+11+11+11+12+12+12+12+13+15+16+17+17+19)=13.2(min ).▱▱▱▱正确,▱错误,故答案为:▱▱▱.【点睛】本题主要考查了平均数的意义,正确处理数据是解题的关键.20. 10% 13310个【分析】(1)设2,3月份口罩日产量的月平均增长率为x ,根据题意列出方程,解之即可;(2)利用(1)中平均增长率,结合3月平均日产量可得结果.【详解】解:(1)设2,3月份口罩日产量的月平均增长率为x ,由题意可得:10000(1+x )2=12100,解得:x =-2.1(舍)或0.1,▱2,3月份口罩日产量的月平均增长率是10%;(2)12100×(1+10%)=13310个,▱4月份平均日产量为13310个.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系.21.15π 【分析】勾股定理求出底面圆的半径,再求出底面周长,根据扇形面积公式12S lR =求出答案即可.3=,圆锥的底面周长是:236ππ⨯=, 则165152ππ⨯⨯=. 故答案为:15π.【点睛】此题考查了扇形的面积计算公式,勾股定理,圆的周长计算公式,熟记各计算公式并熟练应用是解题的关键.22.(30-2x )(20-x )=30×20×34. 【分析】设道路的宽度为xm ,则六块菜地可合成长为(30-2x )m ,宽为(20-x )m 的矩形,根据矩形的面积公式结合种植硫菜面积为基地面积的34,即可得出关于x 的一元二次方程,此题得解.【详解】设道路的宽度为xm ,则六块菜地可合成长为(30-2x )m ,宽为(20-x )m 的矩形,根据题意得:(30-2x )(20-x )=30×20×34. 故答案为:(30-2x )(20-x )=30×20×34. 【点睛】此题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.23.54【分析】先解出正五边形的内角,再解出AEF ∠ ,最后利用三角形内角和即可求出AFE ∠.【详解】解:正五边形的内角()521801085-⨯︒==︒,即108A AED ∠=∠=︒, 由题可知90FED ∠=︒, 1089018AEF AED FED ∴∠=∠-∠=︒-︒=︒,1801801081854AFE A AEF ∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:54.【点睛】本题主要考查正多边形的内角,三角形内角和定理,掌握三角形内角和定理是解题的关键.24.22【分析】设DE 的长为x ,过点E 作EG AC ⊥于点G ,根据角平分线上的点到角两边的距离相等可得EG ED x ==,再根据正方形的性质可得EGC 是等腰直角三角形,可得EC =,根据1DC DE EC x =+==,从而求出x 的值,从而可得答案.【详解】解:过点E 作EG AC ⊥于点G ,如图所示,设DE 的长为x ,▱四边形ABCD 是正方形,▱90,45,1D ACD CD ∠=︒∠=︒=.▱EG AC ⊥,且AE 平分CAD ∠,▱EG DE x ==.在EGC 中,90,45EGC ECG ∠=︒∠=︒.▱45CEG ECG ∠=∠=︒,▱CG EG x ==,▱EC .▱1DC DE CE x =+==.解得1x =.▱)12CE ===.故答案为:2【点睛】本题主要考查了正方形的性质、角平分线的性质,二次根式的混合运算等,利用角平分线的性质添加辅助线是解题的关键.25.6【分析】由一元二次方程根的判别式可求出a 的取值范围,再根据根与系数的关系可得出12125x x x x a =⋅+=,,最后将221213x x +=,变形为2121232()1x x x x -=+⋅,再整体代入,求出a 即可.【详解】解:根据题意得:2(5)40a ∆=--≥, 解得:254a ≤. ▱12125151x x x x a a -=-=⋅=+=,, ▱222121212()225213x x x a x x x ==-+⋅=+-,解得:6a =,符合题意.故答案为:6.【点睛】本题考查一元二次方程根的判别式,一元二次方程根与系数的关系.掌握一元二次方程20(0)ax bx c a ++=≠的根的判别式为24b ac ∆=-,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根.熟记一元二次方程根与系数的关系:12b x x a+=-和12c x x a ⋅=是解题关键. 26.4m ≤【分析】根据一元二次方程ax 2+bx+c=0(a≠0)的根的判别式▱=b 2-4ac 的意义得到▱≥0,即(-2)2-4×(m-3)×1≥0,然后解不等式组即可得到m 的取值范围.【详解】▱关于x 的一元二次方程2230x x m -+-=有实数根,▱▱≥0,即(-2)2-4×(m-3)×1≥0,解得m≤4,▱m 的取值范围是 m≤4.故答案为:m≤4.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式▱=b 2-4ac :当▱>0,方程有两个不相等的实数根;当▱=0,方程有两个相等的实数根;当▱<0,方程没有实数根.27. 52 120【分析】已知菱形的两条对角线的长,即可计算菱形的面积,菱形对角线互相垂直平分,根据勾股定理即可计算菱形的边长,即可解题.【详解】解:如图菱形对角线互相垂直平分,所以AO =5,BO =12,▱AB 13,故菱形的周长为4×13=52, 菱形的面积为12×24×10=120.故答案为52、120. 【点睛】本题考查了勾股定理在直角三角形中的运用,菱形对角线互相垂直平分的性质,菱形各边长相等的性质,本题中根据勾股定理求AB 的长是解题的关键. 28根据二次根式的意义,可得b 的值,再由 |a|=4 , ab<0 即a 、b 异号,可得a 与b 的值;将其值代入代数式可得答案.【详解】解:根据题意得 b=4ab<0 则a 和b 异号所以 a=−4故答案为.【点睛】本题考查了根式的意义,熟悉掌握相关知识是解答本题的关键.29.【分析】如图,作DE BC ⊥的延长线于E ,过A 作HG BC ⊥于G ,作DH HG ⊥于H ,作AF CD ⊥于F , 证明四边形DEGH 是平行四边形,则DE HG =,DH EG =,由60ADC ∠=︒,53AD CD ==,,可得1522DF AD ==,AF =12CF =,在Rt ACF中,由勾股定理得AC AC 12AG AC ==CG =BC =EC a =,DE b =,则AH b =DH a =Rt CDE △中,由勾股定理得222EC DE CD +=,即2223a b +=,在Rt ADH 中,由勾股定理得222AH DH AD +=,即2225b a ⎛⎛++= ⎝⎭⎝⎭,整理得30+=,则a =并代入2223ab +=,则229b +=⎝⎭t =,则原式为223252t t -=,求出满足要求的t 的值,在Rt BDE 中,由勾股定理得BD ==【详解】:如图,作DE BC ⊥的延长线于E ,过A 作HG BC ⊥于G ,作DH HG ⊥于H ,作AF CD ⊥于F ,由题意知,90E AGC DHG ∠=∠=∠=︒,▱DE HG ∥,DH EG ∥,▱四边形DEGH 是平行四边形,▱DE HG =,DH EG =,▱60ADC ∠=︒,53AD CD ==,,▱1522DF AD ==,AF = ▱12CF CD DF =-=,在Rt ACF 中,由勾股定理得AC ,▱30ACB ABC ∠=∠=︒,▱120CAB ∠=︒,AB AC ==▱30ACB ABC ∠=∠=︒,▱12AG AC ==CG =BC =设EC a =,DE b =,则AH b =DH a = 在Rt CDE △中,由勾股定理得222EC DE CD +=,即2223a b +=,在Rt ADH 中,由勾股定理得222AH DH AD +=,即2225b a ⎛⎛++= ⎝⎭⎝⎭,整理得30++=,则a =将a =2223a b +=得,229b +=⎝⎭,整理得2219252b ⨯-=,t =,则原式为223252t t -=,▱()()122210t t -+=,解得12t =或212t =-(不合题意,舍去)12=9=,在Rt BDE 中,由勾股定理得BD ===故答案为: 【点睛】本题考查了平行四边形的判定与性质,等腰三角形的性质,含30°的直角三角形,勾股定理等知识.解题的关键在于添加辅助线构造平行四边形.30.(1)如图,△ABC 即为所求.见解析;(2)S △ABC =5.【分析】(1)根据正方形方格的特点,利用勾股定理分别画出,,AB AC BC 即可得;(2)先根据勾股定理的逆定理可得ABC ∆是直角三角形,再根据直角三角形的面积公式即可得.【详解】(1)5AB AC BC ===,结合正方形方格的特点,分别画出,,AB AC BC ,如图,ABC ∆即为所求:(2)222(5)5+=,即222AB AC BC +=ABC ∆∴是直角三角形11522ABC S AB AC ∆∴=⋅==. 【点睛】本题考查了勾股定理和勾股定理的逆定理的应用,熟练掌握勾股定理是解题关键.312【分析】先化简各个二次根式,再按顺序计算.【详解】解:()2= )2)122=⨯=. 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.32.(1) x 1=3, x 2=-1 ;(2)无解.【分析】(1)利用直接开平方法求解即可;(2)方程两边都乘以最简公分母(x+1)(x-1),可把分式方程转化为整式方程求解.【详解】解:(1)22(1)8x -=2(1)4x -=,12x -=±,1=3x ,2=1-x(2)214111x x x +-=-- ()()()214=11x x x +-+-,2223=1x x x +--,2=2x=1x ,检验:将x=1代入()()11x x +-中,()()11=0x x +-x=1是增根,▱原方程无解.【点睛】本题考查解一元二次方程和解分式方程.注意:(1)利用直接开平方法;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定要验根.33.3-【分析】根据二次根式的运算法则即可求出答案.【详解】解:原式21=--21=--3=-【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握以上知识是解题的关键.34.(1)乙将被录取(2)甲将被录取【分析】(1)利用加权平均数的公式分别求出甲、乙两人各自的平均成绩,由此即可得;(2)利用加权平均数的公式分别求出甲、乙两人各自的平均成绩,由此即可得.【详解】(1)解:甲的平均成绩为86590596492690.85546⨯+⨯+⨯+⨯=+++(分),乙的平均成绩为92586595493691.45546⨯+⨯+⨯+⨯=+++(分),因为91.490.8>,所以乙将被录取.(2)解:甲的平均成绩为865%9030%9635%9230%92.5⨯+⨯+⨯+⨯=(分),乙的平均成绩为925%8630%9535%9330%91.55⨯+⨯+⨯+⨯=(分),因为92.591.55>,所以甲将被录取.【点睛】本题考查了加权平均数,熟记加权平均数的公式是解题关键.35.(1)1(2)【分析】(1)按照平方差公式进行二次根式的乘法运算即可;(2)先化简能够化简的二次根式,再合并同类二次根式即可.【详解】(1)解:22=-32=-1=.(2)==【点睛】本题考查的是二次根式的混合运算,掌握“二次根式的加减运算与乘法运算的运算法则”是解本题的关键.36.(1)(2)+2【分析】(1)利用分配律和二次根式的乘法法则,即可求解;(2)先算二次根式的除法,再合并同类二次根式,即可求解.【详解】(1)原式=====(2)原式==-+=-+=-+2018=+2【点睛】本题主要考查二次根式的混合运算,掌握二次根式的乘除法法则以及合并同类二次根式法则,是解题的关键.37.11x =+21x =-【分析】根据配方法解一元二次方程即可.【详解】解:2270x x --= 22171x x -+=+2(1)8x -=1x -=±▱1x =±即11x =+21x =-【点睛】本题主要考查了配方法解一元二次方程,解答本题的关键是掌握配方法.38.1x =2x =【分析】用公式法解一元二次方程即可【详解】▱23213x x x -+=,▱23510x x -+=.▱3a =,=5b -,1c =,▱()25431130∆=--⨯⨯=>.▱x =▱1x =2x = 【点睛】本题考查了公式法解一元二次方程,熟记求根公式是解题的关键39.(1)见解析(2)见解析【分析】(1)利用勾股定理结合网格特点作出线段AB =5即可;(2)利用平行四边形的性质作图即可.(1)解:如图▱,线段AB 即为所求.(2)如图▱,平行四边形ABMN即为所求.【点睛】本题考查了勾股定理,平行四边形的性质,熟练掌握勾股定理和平行四边形的性质是解题的关键.40.有一组对边平行且相等的四边形是平行四边形;AF=FC;有一组邻边相等的平行四边形是菱形.【分析】首先证明四边形AECF是平行四边形,然后根据线段垂直平分线的性质和菱形的判定定理填空即可.【详解】解:由作图和已知可以得到:△AOF▱▱COE,▱AF=CE,▱四边形ABCD 是平行四边形,▱AF ▱CE ,▱四边形AECF 是平行四边形,(依据:有一组对边平行且相等的四边形是平行四边形), ▱EF 垂直平分AC ,▱AF =FC ,▱四边形AECF 是菱形(依据:有一组邻边相等的平行四边形是菱形)故答案为:有一组对边平行且相等的四边形是平行四边形;AF =FC ;有一组邻边相等的平行四边形是菱形.【点睛】本题考查了平行四边形的判定与性质、线段垂直平分线的性质和菱形的判定,解决本题的关键是综合运用以上知识.41.(1)见解析;(2)见解析;(3)5AM =.【分析】(1)利用平行线的性质得出DAM AMB ∠∠=,再根据角平分线的性质即可解答; (2)过点E 作EF AM ⊥交AM 于点F ,连接EM ,利用HL 证明Rt EFM Rt ECM ∆∆≌,即可解答;(3)设MC a =,则44FM a AM AF FM a BM a ++=,==,=,再利用勾股定理求出a 即可解答.【详解】(1)如图所示:AMB ∠与MAE ∠的数量关系:2AMB MAE ∠∠=,理由如下://AD BC DAM AMB ∴∠∠,=,▱AE 平分DAM ∠,12MAE DAM ∴∠∠=, 2AMB MAE ∴∠∠=.(2)如图所示:过点E 作EF AM ⊥交AM 于点F ,连接EM .▱AE 平分DAM DE AD DF AM ∠⊥⊥,,,ED EF ∴=,又E ∴是CD 的中点,ED EC ∴=,EF EC AD AF ∴=,=,在Rt EFM ∆和Rt ECM ∆中,EF EC EM EM =⎧⎨=⎩, Rt EFM Rt ECM HL ∴∆∆≌()FM MC ∴=,又AM AF FM +=,AM AD MC ∴+=.(3)设MC a =,则44FM a AM AF FM a BM a ++=,==,=,在Rt ABM ∆中,由勾股定理得:222AM AB BM +=222444a a ∴+-+()=()解得:1a =,5AM ∴=.【点睛】此题考查全等三角形的判定与性质,勾股定理,角平分线的性质,平行线的性质,解题关键在于作辅助线.42.(1)证明见解析过程1【分析】(1)由“AAS ”可证≌BCE DCF ∆∆,可得BF =DE(2)由等腰直角三角形的性质可得BC DC ==,可求DE 的长,即可求解(1)解:▱四边形ABCD 是菱形,▱BC=CD ,在和BCE DCF ∆∆中,90C C BEC DFC BC CD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,▱()≌BCE DCF AAS ∆∆,▱BF =DE(2)解:▱四边形ABCD 是菱形,▱AB =AB CD ∥▱BE ▱CD▱BE ▱AB▱45A ︒∠=▱45G A ︒∠=∠=,▱AB=BG , ▱2AG ==, ▱2DG AG AD =-=▱1DG AD ,【点睛】本题考查了菱形的性质,全等三角形的判定和性质,等腰三角形的性质,灵活运用这些性质是解题关键43.(1)证明见详解(2)24【分析】(1)由DE AC ∥,CE BD ∥得四边形OCED 是平行四边形,再根据矩形的性质可得OC =OD ,即可求证结论.(2)连接OE ,根据矩形的性质结合勾股定理可求得BD 的长,进而可求得OD 的长,再根据菱形的性质结合勾股定理即可求得OH 的长,进而可求得OE ,根据菱形的面积等于对角线乘积的一半即可求解.(1)证明:▱DE AC ∥,CE BD ∥,▱四边形OCED 是平行四边形,▱矩形ABCD 的对角线AC ,BD 相交于点O ,▱OC =OD ,▱四边形OCED 是菱形.(2)连接OE 交CD 于H ,如图所示:▱四边形ABCD 是矩形,且6AB =,8AD =,10BD ∴=,152OD BD ∴==, 由(1)得四边形OCED 是菱形, ▱11322DH DC AB ===,4OH ∴,28OE OH ∴==,==242OCED OE DC S ⋅菱形, 故答案为:24.【点睛】本题考查了矩形的性质、菱形的判定及性质和勾股定理的应用,熟练掌握矩形的性质和菱形的判定及性质是解题的关键.44.(1)AB▱BC且AB=BC,理由见解析(2)▱α+▱β=45°,图跟证明见解析【分析】(1)如图(1),根据勾股定理,判断出222AB BC AC+=,即可推得△ABC是直角三角形,据此判断出AB与BC的关系,并说明理由即可.(2)如图(2),根据勾股定理,判断出222+=,即可推得△ABC是等腰直角三AB BC AC角形,据此求出▱α+▱β的度数是多少即可.(1)如图,连接AC,由勾股定理得,222125==,AB+222BC+==,125222==,1310AC+▱222+=,AB=BC,AB BC AC▱▱ABC是直角三角形,▱ABC=90°,▱AB▱BC,综上所述,AB与BC的关系为:AB▱BC且AB=BC;(2)▱α+▱β=45°.证明如下:如图,由勾股定理得,222==,AB+125222==,125BC+。
沪教版八年级下册数学全册综合检测试卷(一)含答案
八年级下册数学全册综合检测一姓名:__________ 班级:_________一、选择题(共12小题;每小题3分,共36分)1.下列性质中,正方形具有而菱形不一定具有的性质是()A. 四条边相等B. 对角线互相平分C. 对角线相等D. 对角线互相垂直2.一个凸n边形,其每个内角都是140°,则n的值为()A. 6B. 7C. 8D. 93.从一个n边形的某个顶点出发,分别连接这个点与其他顶点可以把这个n边形分割成三角形个数是()A. 3个B. (n﹣1)个C. 5个D. (n﹣2)个4.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B 向C移动而R不动时,那么下列结论成立的是()A. 线段EF的长逐渐增大B. 线段EF的长逐渐减小C. 线段EF的长不改变D. 线段EF的长不能确定5.如图所示,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC 上从点B向点C移动而点R不动时,那么下列结论成立的是()A. 线段EF的长逐渐增大B. 线段EF的长逐渐减少C. 线段EF的长不变D. 线段EF的长不能确定6.如图,两直线y2=﹣x+3与y1=2x相交于点A,下列错误的是()A. x<3时,y1﹣y2>3B. 当y1>y2时,x>1C. y1>0且y2>0时,0<x<3D. x<0时,y1<0且y2>37.如图,正方形ABCD的对角线BD长为2,若直线满足:(1)点D到直线的距离为1;(2)A、C两点到直线的距离相等,则符合题意的直线的条数为()A. 2B. 3C. 4D. 68.如图,已知在正方形ABCD中,连接BD并延长至点E,连接CE,F、G分别为BE,CE的中点,连接FG.若AB=6,则FG的长度为()A. 3B. 4C. 5D. 69.为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是( )A. B.C. D.10.如图,函数y=2x和y=ax+2b的图象相交于点A(m,2),则不等式2x≤ax+2b的解集为()A. x<1B. x>1C. x≥1D. x≤111.若关于x的分式方程−m=无解,则m的值为()A. m=3B. m=C. m=1D. m=1或12.如图,在正方形O ABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=2 ,若∠EOF =45°,则F点的纵坐标是()A. B. 1 C. D. -1二、填空题(共10题;共30分)13.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n 的大小关系是________ .14.新定义:[a,b,c]为函数y=ax2+bx+c (a,b,c为实数)的“关联数”.若“关联数”为[m﹣2,m,1]的函数为一次函数,则m的值为________ .15.从10边形的一个顶点画所有的对角线,一共能画________ .16.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为________ .17.已知,函数y=(k-1)x+k2-1,当k________时,它是一次函数.18.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= ________度.19. 如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件 ________(只添一个即可),使四边形ABCD是平行四边形.20.如图,已知直线y=ax+b和直线y=kx交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是________ .21.一次函数y=2x﹣5与y=3x+b的图象的交点为P(1,﹣3),方程组的解为________,b=________.22. 制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x个零件,则可列方程为 ________.三、解答题(共4题;共34分)23.用若干块边长为20cm的正三角形瓷砖和一块边长为20cm正六边形的瓷砖铺成一边长为1.2m的正六边形的地面,则需要这样的正三角形瓷砖多少块?24.已知一次函数y=(m﹣2)x+2m+3,(1)当m为何值时,y随x的增大而增大?(2)当m为何值时,图象经过第一、二、四象限?25.如图,在平行四边形ABCD中,E是BC边上的点,且BE=3EC,AE与DC的延长线交于点F.若CD=6,求CF的长.26.如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)点D在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时∠A 的度数.参考答案一、选择题C D D C C A C A B D D A二、填空题13.k>m>n14.215.35条16.17.≠118.24019.BO=DO20.21.;﹣622.三、解答题23.解:∵边长为1.2m的正六边形的地面的面积为:×1202×6=21600(cm2),一块边长为20cm正六边形的瓷砖的面积为:×202×6=600(cm2),一块边长为20cm的正三角形瓷砖的面积为:×202=100(cm2),∴需要这样的正三角形瓷砖(21600﹣600)÷100=210块.24.解:(1)依题意得:m﹣2>0,解得m>2,即当m>2时,y随x的增大而增大;(2)依题意得:m﹣2<0且2m+3>0,解得﹣<m<2.即当﹣<m<2时,图象经过第一、二、四象限.25.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△CEF∽△DAF,∴CF:DF=CE:AD,∵BE=3EC,∴CE:BC=CE:AD=1:4,∴CF:DF=1:4,∴CF:CD=1:3,∵CD=6,∴CF=2.26.(1)证明:∵BE⊥AD,∴∠AEB=90°,在Rt△AEB中,∵点C为线段BA的中点,∴CE= AB=CB,∴∠CEB=∠CBE.∵∠CEF=∠CBF=90°,∴∠BEF=∠EBF,∴EF=BF.∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°,∴∠FED=∠EDF,∵EF=FD.∴BF=FD(2)能.理由如下:若四边形ACFE为平行四边形,则AC∥EF,AC=EF,∴BC=BF,∴BA=BD,∠A=45°.∴当∠A=45°时四边形ACFE为平行四边形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪教版八年级下册数学全册综合检测卷(二)
一、选择题(共12小题;每小题3分,共36分)
1.已知一次函数y=x+b的图象经过一、二、三象限,则b的值可以是()
A. -2
B. -1
C. 0
D. 2
2.当ab>0时,y=ax2与y=ax+b的图象大致是()
A. B.
C. D.
3.下列关于矩形的说法中正确的是().
A. 矩形的对角线互相垂直且平
分 B. 矩形的对角线相等且互相平分
C. 对角线相等的四边形是矩
形 D. 对角线互相平分的四边形是矩形
4.如图,四边形ABCD中,AB与CD不平行,M,N分别是AD,BC的中点,AB=4,DC=2,则MN的长不可能是()
A. 3
B.
2.5 C.
2 D. 1.5
5.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()
A. 当AB=BC时,四边形ABCD是菱形
B. 当AC⊥BD时,四边形ABCD是菱形
C. 当∠ABC=90°时,四边形ABCD是矩形
D. 当AC=BD时,四边形ABCD是正方形
6.如图,已知四边形ABCD是菱形,过顶点D作DE⊥AD,交对角线AC于点E,若∠DAE=20°,则∠CDE的度数是()
A. 70°
B.
60° C. 5 0° D. 40°7.从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2013个三角形,则这个多边形的边数为()
A. 2 011
B. 2
015 C. 2
014 D. 2 016
8.在▱ABCD中,AB=6,AD=8,∠ABC=60°,点E是AB的中点,EF⊥AB交BC于F,连接DF,则DF的长为()
A. 2
B.
8 C. 5
D. 10
9.如图,菱形ABCD的边长为20,∠DAB=60,对角线为AC和BD,那么菱形的面积为()
A. 50
B. 100
C. 200
D. 400
10.有如下命题: 1)有两个角相等的梯形是等腰梯形;
2)有两条边相等的梯形是等腰梯形;
3)两条对角线相等的梯形是等腰梯形;
4)等腰梯形上,下底边中点的连线把等腰梯形分成面积相等的两部分.
其中正确的命题有()
A. 1
个 B. 2
个 C. 3
个 D. 4个11.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()
A. 150°
B. 130°
C. 120°
D. 100°
12.在四边形ABCD中,若有下列四个条件:
①AB∥CD;②AD=BC;③∠A=∠C;④AB=CD.
现以其中的两个条件为一组,能判定四边形ABCD是平行四边形的条件有()
A. 3
组 B. 4
组 C. 5
组 D. 6组
二、填空题(共10题;共30分)
13.如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买甲家的1件售价约为3元,其中正确的说法是(填序号)________
14.若关于有增根,则=________;
15.若分式方程=5+ 有增根,则a的值为________.
16.已知:如图所示,△ABC中,E、F、D分别是AB、AC、BC上的点,且DE∥AC,DF∥A B,要使四边形AEDF是菱形,在不改变图形的前提下,你需添加的一个条件是________,试证明:这个多边形是菱形.
17.以方程组的解为坐标的点(x,y)在平面直角坐标系中的第________象限.
18.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.
19.如图,在Rt△ABC中,∠B=90°,AB=10,BC>AB,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是________.
20.一个正六边形的内角和是________度,每一个外角是________度.
21.如图,在矩形ABCD中,AC,BD相交于点O,根据矩形的性质,AO=OB=OC=0D=AC=BD,由此我们得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的________ .
(1)在矩形ABCD中,AB=1,BC=2,则对角线AC的长等于________ .
(2)在矩形ABCD中,AB=1,BC=2,则Rt△ABC中,斜边AC边上的中线等于________ .
22.一个正多边形的内角和为720°,则这个正多边形的每一个外角等于________.
三、解答题(共4题;共34分)
23.已知从n边形的一个顶点出发共有4条对角线,其周长为56,且各边长是连续的自然数,求这个多边形的各边长.
24. 如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=AB,连接EF,判断四边形ADEF的形状,并加以证明.
25.如图,在平行四边形ABCD中,已知对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C 两点以相同的速度1cm/s向点O运动.
(1)当E与F不重合时,四边形DEBF是否是平行四边形?请说明理由;
(2)若AC=16cm,BD=12cm,点E,F在运动过程中,四边形DEBF能否为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由.
26.某通讯公司推出甲、乙两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.
(1)有月租费的收费方式是________(填甲或乙),月租费是________元;
(2)求出甲、乙两种收费方式中y与自变量x之间的函数关系式.
参考答案
一、选择题
D D B A D C C A C B C A
二、填空题
13. ①②③
14. 4
15. 4
16. AE=AF
17. 三
18. ≥2
19. 10
20. 720;6
21. 一半;;
22. 60°
三、解答题
23. 解:依题意有n﹣3=4,
解得n=7,
设最短边为x,则
7x+1+2+3+4+5+6=56,
解得x=5.
故这个多边形的各边长是5,6,7,8,9,10,11.
24. 答:四边形ADEF是平行四边形.
证明:∵点D,E分别是边BC,AC的中点,
∴DE∥BF,DE=AB,
∵AF=AB,
∴DE=AF,
∴四边形ADEF是平行四边形.
25. (1)解:当E与F不重合时,四边形DEBF是平行四边形理由:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD;
∵E、F两动点,分别从A、C两点以相同的速度向C、A运动,
∴AE=CF;
∴OE=OF;
∴BD、EF互相平分;
∴四边形DEBF是平行四边形
(2)解:∵四边形DEBF是平行四边形,∴当BD=EF时,四边形DEBF是矩形;
∵BD=12cm,
∴EF=12cm;
∴OE=OF=6cm;
∵AC=16cm;
∴OA=OC=8cm;
∴AE=2cm或AE=14cm;
由于动点的速度都是1cm/s,
所以t=2(s)或t=14(s);
故当运动时间t=2s或14s时,以D、E、B、F为顶点的四边形是矩形.
26. (1)甲;30
(2)解:由图象可知,甲图象过(0,30),(300,60)两点,
设y甲=kx+b,
得:,
解得:,
故y甲=0.1x+30;
根据图象可知,乙图象经过原点(0,0),(300,60),
设y乙=mx,
将(300,60)代入求得:m=0.2,
故y乙=0.2x。