中考数学第15讲三角形与全等三角形复习教案1新版北师大版20170802258

合集下载

全等三角的性质和判定教案

全等三角的性质和判定教案

全等三角形的性质与判定教案教学目标:1. 知识与技能:学生能够理解并掌握全等三角形的定义及基本性质。

学生能够识别并应用全等三角形的判定方法,包括SSS、SAS、ASA、AAS等。

2. 过程与方法:通过观察、操作、讨论等教学活动,培养学生的空间想象能力和逻辑推理能力。

引导学生通过合作学习,共同探讨和解决问题,提升团队协作能力。

3. 情感态度与价值观:激发学生对数学的兴趣和好奇心,培养严谨的数学思维。

培养学生勇于探索、敢于质疑的科学精神。

教学重点:全等三角形的定义和基本性质。

全等三角形的判定方法(SSS、SAS、ASA、AAS)。

教学难点:正确理解和应用全等三角形的判定方法。

在实际问题中准确识别和应用全等三角形的性质。

教学准备:多媒体课件、教学用具(如直尺、圆规、三角形纸片)、学生练习册。

教学过程:一、导入新课1. 生活实例引入:展示生活中常见的全等现象,如书本封面、地砖等,引导学生观察并思考。

2. 提问:这些图形有什么共同点?引出全等三角形的概念。

二、讲授新课1. 全等三角形的定义:两个能够完全重合的三角形称为全等三角形。

2. 全等三角形的性质:对应边相等。

对应角相等。

对应边上的高、中线、角平分线、垂直平分线等对应相等。

3. 全等三角形的判定方法:SSS(边边边):三边对应相等的两个三角形全等。

SAS(边角边):两边及它们之间的夹角对应相等的两个三角形全等。

ASA(角边角):两角及它们的夹边对应相等的两个三角形全等。

AAS(角角边):两角及其中一角的对边对应相等的两个三角形全等。

4. 例题讲解:通过例题演示如何应用全等三角形的判定方法。

三、巩固练习1. 基础练习:学生独立完成一些简单的判定题,检验对全等三角形判定方法的理解。

2. 小组合作:分组讨论一些稍复杂的实际问题,引导学生利用全等三角形的性质解决问题。

四、课堂小结1. 回顾知识点:总结全等三角形的定义、性质和判定方法。

2. 强调难点:强调在判定全等三角形时需要注意的细节和易错点。

[实用参考]北师大版数学七年级下册《全等三角形》教学设计=教案.doc

[实用参考]北师大版数学七年级下册《全等三角形》教学设计=教案.doc

《全等三角形》教学设计
设计者:金堂县云合镇中学肖敏
教学目标:1、借助具体的情景和图形,了解全等三角形的概念,明确全等三角形的性质,并能应用性质进行简单的合情推理和计算。

2、能根据对应角或对应边的线索、按全等变换,找出其它的对应顶点、对应边、对应角。

3、借助符号语言表示三角形全等,丰富学生的符号感;通过对全等变换过程的体验,提高学生的识图能力。

4、通过做数学的过程,培养学生热爱并乐于研究数学的积极情感。

教学重难点:重点是全等三角形的概念和性质,难点是全等三角形的对应元素的确定,突破难点的方法是动手操作、全等变换。

教学方法:自主学习、合作学习、多媒体辅助演示。

20PP年4月。

北师大版数学九年级学考一轮复习全等三角形复习课学案

北师大版数学九年级学考一轮复习全等三角形复习课学案

全等三角形复习课教学设计(预习学案与课堂学案)课堂学案一、考情分析考点考点解读年份及题号考查角度考频全等三角形的性质和判定掌握判定三角形全等的四种方法及判定直角三角形全等的方法,并灵活运用三角形全等的性质2017.13题全等三角形的性质和判定五年八考2017.27(1)题2018.25(3)题全等三角形的性质和判定2018.21(1)题全等三角形的性质和判定2017.23题(1)2016.23题(1)2015.23(1)题2014.23(1)题命题趋势预计2019年学考全等三角形的性质和判定仍将考查,属于必争分题二、小试身手1、(2018安顺变式)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,(1)若∠B=∠C,要使△ABE≌△ACD,需要添加一个条件是(2)若BE=CD,要使△ABE≌△ACD,需要添加一个条件是(3)若AB=AC,要使△ABE≌△ACD,需要添加一个条件是小结:①没有边时,只能②有了边时,优先三、全等三角形的基本模型类型一平移型1、如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.2、(2013济南)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.类型二轴对称型3、如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:△ABC≌△ADC;4、(2011济南)如图2,点M为正方形ABCD对角线BD上一点,分别连接AM、CM.求证:AM=CM.类型三中心对称型5、(2018菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.6、(2009济南)已知,如图①,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE=CF;类型四旋转型7、如图,已知AB=AC,AD=AE,∠BAC=∠DAE=50°,B、D、E在同一直线上,则∠A EC的度数为.8、如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC =.9、如图,△ABC和△CDE都是等边三角形,且点B、C、D、都在一条直线上。

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

全等三角形复习教案(全)

全等三角形复习教案(全)

全等三角形一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)基本概念 1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质 (1)全等三角形对应边相等; (2)全等三角形对应角相等; (3)全等三角形周长、面积相等。

3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。

运用定理证明三角形全等时要注意以下几点。

1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找: ①夹边相等(ASA )②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS) (三)疑点、易错点 1、对全等三角形书写的错误在书写全等三角形时一定要把表示对应顶点的字母写在对应的位置上。

全等三角形教案(5篇)

全等三角形教案(5篇)

全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。

2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。

3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。

(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。

(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。

3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。

至于D,由于AD 和BC是对应边,因此AD=BC。

C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

(北师大版)初中数学《探索三角形全等的条件》教案(1)

画好后小组交流,比较画出的三角形是否全等2.活动2 :将两角和它们的夹边的数据改换成另一组,再与同学一起按新数据画三角形.通过对所画三角形的比较,你能得出什么结论?3.先任意画出一个△ABC。

再画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B(即使两角和它们的夹边对应相等)。

把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B1.画A′B′=AB;2.在A′B′的同旁画∠DA′B′=∠A,∠EB′A′=∠B,A′D,B′E交于点C′.4.角边角定理:如果两个三角形的两个角和它们的夹边对应相等,那么这两个三角形全等.这个事实可以简写为“角边角”或“ASA”(三)探究6在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC =EF(图13.2—9),△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?提示:如果两个三角形的两个角对应相等,那么它们的第三个角是什么关系?总结出结论:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).(四)例题例3如图13.2—10,D在AB上,E在AC上,AB =AC,∠B=∠C.求证AD=AE.分析:如果能证明△ACD≌△ABE,就可以得出AD =AE.证明:在△ACD与△ABE中,A A()AC=ABC=B∠=∠⎧⎪⎨⎪∠∠⎩公共角∴△ACD≌△ABE(ASA)。

∴AD=AE。

(五)讨论三角对应相等的两个三角形全等吗?(六)练习1.如图,要测量河两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使BC=CD,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得DE的长就是AB的长.为什么?2.如图,AB⊥BC,AD⊥DC,∠1=∠2.求证AB=AD.(七)小结三角形全等的判定方法做一个小结.作业练习册上的相关练习。

【精品】北师大版七年级下册数学 三角形全等全章复习(基础)教案

《三角形》全章复习与巩固(基础)【学习目标】1. 理解三角形有关的概念,掌握三角形内角和定理的证明,能应用内角和定理进行相关的计算及证明问题.2. 理解并会应用三角形三边关系定理;3.了解三角形中三条重要的线段并能正确的作图.4.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式,而且要用利用图形全等的解决实际生活中存在的问题.5. 掌握常见的尺规作图方法,并根据三角形全等判定定理利用尺规作一个三角形与已知三角形全等.【知识网络】【要点梳理】要点一、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点二、三角形的分类1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.要点三、三角形的三边关系1.定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.2.三角形的重要线段:一个三角形有三条中线,它们交于三角形内一点,这点称为三角形的重心.一个三角形有三条角平分线,它们交于三角形内一点.三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.要点四、全等三角形的性质与判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”). “全等三角形判定2——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).全等三角形判定3——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)全等三角形判定4—— “边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.要点五、用尺规作三角形1.基本作图利用尺规作图作一条线段等于已知线段、作一个角等于已知角,并利用全等三角形的知识作一个三角形与已知三角形全等;要点诠释:要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.【典型例题】类型一、三角形的内角和1.在△ABC中,∠B=20°+∠A,∠C=∠B-10°,求∠A的度数.【思路点拨】由三角形的内角和,建立方程解决.【答案与解析】∵∠C=∠B-10°=∠A+10°,由三角形的内角和定理,得∠A+∠B+∠C=∠A+∠A+20°+∠A+10°=180°,∴∠A=50°.【总结升华】本题根据三角形的内角和定理列出以∠A为未知数的方程,解方程即可求得∠A.建立方程求解,是本章求解角度数的常用方法.举一反三【变式】若∠C=50°,∠B-∠A=10°,那么∠A=________,∠B=_______【答案】60°,70°.类型二、三角形的三边关系及分类2.一个若三角形的两边长分别是2和7,则第三边长c的取值范围是_______.【思路点拨】三角形的两边a、b,那么第三边c的取值范围是│a-b│<c<a+b.【答案与解析】三角形的两边长分别是2和7, 则第三边长c的取值范围是│2-7│<c<2+7,即5<c<9.【总结升华】三角形任意两边之差小于第三边,若这两边之差是负数时需加绝对值.举一反三【变式】(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值() A.11 B. 5 C. 2 D. 1【答案】B.解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5.3.一个三角形的三个内角分别是75°、30°、75°,这个三角形是()A 锐角三角形B 等腰三角形C 等腰锐角三角形【答案】C举一反三【变式】一个三角形中,一个内角的度数等于另外两个内角的和的2倍,这个三角形是()三角形A 锐角B 直角C 钝角 D无法判断【答案】C【解析】利用三角形内角和是180°以及已知条件,可以得到其中较大内角的度数为120°,所以三角形为钝角三角形.类型三、三角形的重要线段4. (2015•常德)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.【思路点拨】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【答案】70°.【解析】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【总结升华】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.举一反三【变式】在△ABC中,∠B=60°,∠C=40°,AD、AE分别是△ABC的高线和角平分线, 则∠DAE 的度数为_________.【答案】10°.类型四、全等三角形的性质和判定5.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE .【思路点拨】△ABE与△ACD中,已经有两边,夹角可以通过等量代换找到,从而证明△ABE ≌△ACD;通过全等三角形的性质,通过倒角可证垂直.【答案与解析】解:(1)△ABE≌△ACD证明:∠BAC=∠EAD=90°∠BAC +∠CAE=∠EAD +∠CAE即∠BAE=∠CAD又AB=AC,AE=AD,△ABE≌△ACD(SAS)(2)由(1)得∠BEA=∠CDA,又∠COE=∠AOD∠BEA+∠COE =∠CDA+∠AOD=90°则有∠DCE=180°- 90°=90°,所以DC⊥BE.【总结升华】我们可以试着从变换的角度看待△ABE与△ACD,后一个三角形是前一个三角形绕着A点逆时针旋转90°得到的,对应边的夹角等于旋转的角度90°,即DC⊥BE.举一反三【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB与△EAC中,DAB EACAB ACB C∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB≌△EAC (ASA)∴BD=CE.6.己知:在ΔABC中,AD为中线.求证:AD<()12AB AC+【答案与解析】证明:延长AD至E,使DE=AD,∵AD为中线,∴BD=CD在△ADC与△EDB中DC DBADC BDEAD ED=⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△EDB(SAS)∴AC=BE在△ABE中,AB+BE>AE,即AB+AC>2AD∴AD<()12AB AC+.【总结升华】用倍长中线法可将线段AC,2AD,AB转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D旋转180°.举一反三【变式】若三角形的两边长分别为5和7, 则第三边的中线长x的取值范围是( )A.1 <x< 6B.5 <x< 7C.2 <x< 12D.无法确定【答案】A ;提示:倍长中线构造全等三角形,7-5<2x<7+5,所以选A选项.类型五、全等三角形判定的实际应用7.如图,小叶和小丽两家分别位于A、B两处隔河相望,要测得两家之间的距离,请你设计出测量方案.【答案与解析】本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,是一个三角形在河岸的同一边,通过测量这个三角形中与AB相等的线段的长,从而得知两家的距离.解:在点B所在的河岸上取点C,连结BC,使CD=CB,利用测角仪器使得∠B=∠D,且A、C、E三点在同一直线上,测量出DE的长,就是AB的长.在△ABC和△ECD中B DCD CBACB ECD∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABC≌△ECD(ASA)∴AB=DE.【总结升华】对于实际应用问题,首先要能将它化成数学模型,再根据数学知识去解决.由已知易证△ABC≌△ECD,可得AB=DE,所以测得DE的长也就知道两家的距离是多少.类型六、用尺规作三角形8.(2016•蓝田县一模)如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)【思路点拨】先作线段AC=b,再过点C作AC的垂线,接着以点A为圆心,a为半径画弧交此垂线于B,则△ABC为所求.【答案与解析】解:如图,△ABC为所求作的直角三角形.【总结升华】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.举一反三【变式】作图题:(要求:用直尺、圆规作图,保留作图痕迹,不写作法.)已知:线段a与线段b.求作:线段AB,使AB=2a﹣b.【答案】解:如图所示:作线段AB即为所求.【巩固练习】一.选择题1.(2015•百色)下列图形中具有稳定性的是()A.正三角形B.正方形C.正五边形D.正六边形2.已知三角形两边长分别为 4 cm和9 cm,则下列长度的四条线段中能作为第三边的是( )A.13 cm B.6 cm C.5 cm D.4 cm3.(2016•白云区校级二模)下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部4. 在下列结论中, 正确的是( )A.全等三角形的高相等B.顶角相等的两个等腰三角形全等C. 一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等5. 图中的尺规作图是作()A.线段的垂直平分线B.一条线段等于已知线段C.一个角等于已知角D.角的平分线6.如图,AC=AD,BC=BD,则有()A. AB垂直平分CDB. CD垂直平分ABC. AB与CD互相垂直平分D. CD平分∠ACB7. 如图,△ABC中∠ACB=90°,CD是AB边上的高,∠BAC的角平分线AF交CD于E,则△CEF必为()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形8. 若△ABC的∠A=60°,且∠B:∠C=2:1,那么∠B的度数为 ( )A.40° B.80° C.60° D.120°二.填空题9.(2015•邵阳)如图,在▱ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:.10. △ABC和△ADC中,下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:__________.11. 如图,在△ABC中, ED垂直平分BC,EB=3.则CE长为.12. 若三角形三个外角的度数比为2∶3∶4,则此三角形内角分别为____ ____.13. 如右图,在△ABC中,∠C=90°,BD平分∠CBA交AC于点D.若AB=a,CD=b,则△ADB的面积为______________ .14.在△ABC中,∠B=60°,∠C=40°,AD、AE分别是△ABC的高线和角平分线,则∠DAE的度数为_________.15. 如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.16. 如图,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,则ΔOMN的周长=______cm.- 11 -三.解答题17.(2015•福州)如图,∠1=∠2,∠3=∠4,求证:AC=AD .18.作图题(不写作图步骤,保留作图痕迹).已知:在下面的△ABC 中,用尺规作出AB 边上的高(不写作法,保留作图痕迹)19.(2016春•甘肃校级月考)有一座小山,现要在小山A 、B 的两端开一条隧道,施工队要知道A 、B 两端的距离,于是先在平地上取一个可以直接到达A 和B 的点C ,连接AC并延长到D ,使CD=CA ,连接BC 并延长到E ,使CE=CB ,连接DE ,那么量出DE 的长,就是A 、B 的距离,你能说说其中的道理吗?20.已知:如图,ABC △中,45ACB ∠=︒,AD⊥BC 于D ,CF 交AD 于点F ,连接BF并延长交AC 于点E ,BAD FCD ∠=∠.求证:(1)△ABD≌△CFD;(2)BE⊥AC.【答案与解析】一.选择题1. 【答案】A2. 【答案】B;【解析】根据三角形的三边关系进行判定.3. 【答案】C;【解析】解:A、三角形的中线在三角形的内部正确,故本选项错误;B、三角形的角平分线在三角形的内部正确,故本选项错误;C、只有锐角三角形的三条高在三角形的内部,故本选项正确;D、三角形必有一高线在三角形的内部正确,故本选项错误.故选C.4. 【答案】D;【解析】A项应为全等三角形对应边上的高相等;B项如果腰不相等不能证明全等;C 项直角三角形至少要有一边相等.5. 【答案】A;【解析】根据图象是一条线段,它是以线段的两端点为圆心,作弧,进而作出垂直平分线,故做的是:线段的垂直平分线.6. 【答案】A;【解析】∵AC=AD,BC=BD,∴点A,B在线段CD的垂直平分线上.∴AB垂直平分CD.故选A.7. 【答案】A;【解析】∠CFA=∠B+∠BAF,∠CEF=∠ECA+∠EAC,而∠B=∠ECA,∠BAF=∠EAC,故△CEF为等腰三角形.8. 【答案】B;【解析】根据三角形内角和180°,以及已知条件可以计算得出∠B的度数为120°.二.填空题9.【答案】△ADF≌△BEC.【解析】∵四边形ABCD是平行四边形,∴AD=BC,∠DAC=∠BCA,∵BE∥DF,∴∠DFC=∠BEA,∴∠AFD=∠BEC,在△ADF与△CEB中,,∴△ADF≌△BEC(AAS).10.【答案】①②③;11. 【答案】3;【解析】∵ED垂直平分BC,∴可得△BED≌△CED(SAS)∴CE=BE=3.12. 【答案】100°,60°,20°.- 13 -E AF 13.【答案】ab 21; 【解析】由三角形全等知D 点到AB 的距离等于CD =b ,所以△ADB 的面积为ab 21. 14. 【答案】10°.15.【答案】45°;【解析】Rt △BDH ≌Rt △ADC ,BD =AD.16. 【答案】10;【解析】OM =BM ,ON =CN ,∴△OMN 的周长等于BC.三.解答题17.【解析】证明:∵∠3=∠4,∴∠ABC=∠ABD,在△ABC 和△ABD 中,,∴△ABC≌△ABD(ASA ),∴AC=AD.18.【解析】解:19.【解析】解:在△ABC 和△CED 中,AC=CD ,∠ACB=∠ECD (对顶角),EC=BC ,∴△ABC ≌△DEC ,∴AB=ED ,即量出DE 的长,就是A 、B 的距离.20.【解析】证明:(1) ∵ AD⊥BC,∴ ∠ADC=∠FDB=90°.∵ 45ACB ∠=︒,∴ 45ACB DAC ∠=∠=︒∴ AD=CD∵ BAD FCD ∠=∠,∴ △ABD≌△CFD(2)∵△ABD≌△CFD- 15 -∴ BD=FD.∵ ∠FDB=90°,∴ 45FBD BFD ∠=∠=︒. ∵ 45ACB ∠=︒, ∴ 90BEC ∠=︒. ∴ BE⊥AC.。

全等三角形复习教案

全等三角形复习教案(共7页) -本页仅作为预览文档封面,使用时请删除本页-全等三角形复习教案全等三角形复习教案教材分析:《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。

本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。

本章中三角形全等的识别方法的给出都通过同学们画图、讨论、交流、比较得出,注重同学们实际操作能力,为培养同学们参与意识和创新意识提供了机会。

设计理念:针对教材内容和初三同学们的实际情况,组织同学们通过摆拼全等三角形和探求全等三角形的活动,让同学们感悟到图形全等与平移、旋转、对称之间的关系,并通过同学们动手操作,让同学们掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。

然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。

教学目标:1、通过全等三角形的概念和识别方法的复习,让同学们体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。

2、培养同学们观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。

3、在同学们操作过程中,激发同学们学习的兴趣,培养同学们主动探索,敢于实践的精神,培养同学们之间合作交流的习惯。

教学的重点和难点:重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。

难点:运用全等三角形知识来解决实际问题。

教学过程设计:一、创设问题情境:某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块(教师用多媒体)师:请同学们先独立思考,然后小组交流意见生:…………师:上述问题实质是判断三角形全等需要什么条件的问题。

北师大版数学九年级中考复习第15讲 三角形与全等三角形课件 教案


2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2012017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:第15讲三角形与全等三角形
教学目标:
1.了解三角形的:内角、外角、角平分线、中线和高线;了解三角形的三边关系、三角形的稳定性.
2. 掌握三角形的中位线的性质,会用中位线性质解决问题.
3.熟练应用全等三角形的性质及判定定理证明线段相等、角相等,能识别两个三角形全等或通过识别两个三角形全等来进一步解决问题;
4.了解角平分线、线段垂直平分线及其性质,会用尺规作角的平分线、.线段的垂直平分线,会利用基本作图解决与全等有关的尺规作图问题.
教学重、难点:
重点:角的平分线与线段的垂直平分线的性质定理及其逆定理,并会应用它们进行有关的计算和证明.
难点:构造三角形全等,灵活“转化”问题.
教学准备:多媒体课件
教学过程:
一、开门见山,明确要求
活动内容:展示本节课内容中考要求
处理方式:学生诵读,多媒体展示
设计意图:站在中考的高度,让学生明确本考点的考试要求,这样既引起了学生的重视,又能给学生起到很好的导航作用,使本节课的复习就有了明确的目标. 学生阅读考试要求,明确了本课的复习方向.心中或多或少的对本考点的知识点及在以前的学习中容易出错的地方进行回忆.
二、基础梳理,考点透视
活动内容:考点统计
(导学案提前下发,学生在导学案中填空.)
知识点1:三角形三边关系定理:.知识点2:三角形的内角和等于,一个外角等于之和.
知识点3:三角形的中位线第三边,并且等于.
知识点4:角平分线上的点到这个角两边的距离;在一个角的内部,到角的两边的点,在这个角的平分线上.
知识点5:线段垂直平分线上的点到相等;到一条线段的点,在这条线段的垂直平分线上.
知识点6:全等形的概念:__________________________________.
全等三角形的概念:_________________.用符号“≌”表示,读作:全等.知识点:7:全等三角形的性质
(1)全等三角形的_________相等;全等三角形的____________相等.
(2)全等三角形的__________、______________相等.
(3)全等三角形的对应边上的高________.
(4)全等三角形的对应边上的中线________.
(5)全等三角形的对应角平分线________.
知识点8:全等三角形的判定
1、_________________________________(简记为SSS)
2、__________________________________(简记为ASA)
3、__________________________________(简记为AAS)
4、___________________________________(简记为SAS)
5、___________________________________(简记为HL)
【全等三角形中常见的基本图形】
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素.
平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素.
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
处理方式:一生用展台展示自己的导学案,其余学生互查并纠正错误.
设计意图:在学生展示及其相互纠错的过程中,让学生进一步巩固本节学习的知识点,把握复习重点,如有遗忘,借用课本或同学间交流进行补充.这样做既可以节省课上时间,也能加深学生对知识网络的理解.
三、基础训练,互查反馈
活动内容:针对基础梳理进行基础训练
1.如图,已知OC平分∠AOB,CD∥OB,若OD=3 cm,则CD等于( )
A、3 cm
B、4 cm
C、1.5 cm
D、2 cm
2.如图△ABC中,AB=A C,∠A=36°,BD平分∠ABC,DE⊥AB于E,则∠C=,∠BDE=,AE=;若△BDC周长为24,CD=4,则BC=,△ABD的周长为,△ABC的周长为 .
3.如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数?
4.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确
...的是()
A.△ABD≌△CBD B.△ABC≌△ADC C.△AOB≌△COB D.△AOD≌△COD
5.如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()
A. AB=AC
B. ∠BAC=90°
C. BD=AC
D. ∠B=45°
6.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()
A.PO B.PQ C.MO D.MQ
处理方式:小组按题号依次完成,然后代表发言,先说考查知识点,再说答案必要时可到黑板上板演.有余力的小组或个人可多做.教师参与小组活动,引导学生;发现典型,暴露学生的弱点..
设计意图:利用基础性的中考试题,查缺补漏,暴露学生的易错点,让学生自己发现解决问题的办法,同位之间、小组之间互相校对答案,达到生生为师;在合作、交流中共同提高.
四、典例探究,总结方法
活动内容:典型例题分析
例1如图,△ABC与△CDE都是等边三角形,且点B、C、D在同一条直线上,在不添加新点的情况下,作出两条相等的线段,并说明理由.
处理方式:师生共析,因为两个三角形都是等边三角形,提供了相等的角和相等的线段,为证明三角形全等提供了条件,连接AD 、BE ,可证明△ACD ≌△BCE .学生板书步骤.
教师强调:如果把△CDE 绕着点C 旋转一定的角度,这个结论依然成立.
如果把两个等边三角形都换成等腰直角三角形也有相同的结论,如图,如果连接AE 、BD ,则有AE =BD .
例2 如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12
EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .
(1)若∠ACD =114°,求∠MAB 的度数;
(2)若CN ⊥AM ,垂足为N ,求证:△ACN ≌△MCN .
处理方式:师生共析,(1)由作法知,AM 是∠ACB 的平分线,由AB ∥CD ,根据两直线平行同旁内角互补的性质,得∠CAB =66°,从而求得∠MAB 的度数.
(2)要证△ACN ≌△MCN ,由已知,CN ⊥AM 即
∠ANC =∠MNC =90°;又CN 是公共边,故只要再有一边或
一角相等即可,考虑到AB ∥CD 和AM 是∠ACB 的平分线,
有∠CAN =∠MAB =∠CMN .
一名学生板书其他学生在学案中进一步完善解题步骤.
例3 如图,已知矩形ABCD中,E是AD上的点,F是AB上的点,EF⊥EC,且EF=EC, DE=4cm,矩形ABCD的周长是32cm,求AE的长.
处理方式:师生共析,矩形的周长是长和宽和的2倍,设AE的长可以表示出AD、CD的长,可以证明△AEF≌△DCE得到AE=DC.学生板书步骤.
例4 如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC,弦DF⊥AB于点G.
(1)求证:点E是BD的中点
(2)求证:CD是⊙O的切线.
(3)若sin ∠BAD=4
5
,⊙O的半径是5,求DF的长
设计意图:通过典型例题学习,让学生亲身体会中考热点和命题趋势,进一步把握复习重点.
五、回声嘹亮,课堂小结
活动内容:总结本节课所学内容
1、本机可你有哪些收获,对三角形全等又有了哪些新的认识?
2、还有哪些内容需要你刻下加强的?
设计意图:培养学生知识归纳与整理的习惯与能力,通过师生共同总结,增强学生认识,加深学生印象,强化学生记忆.
六、课堂检测,挑战自我
活动内容:课堂检测题
1.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC点E,垂足为点D,连接BE,则∠EBC的度数为____°.
2.如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()
A、12cm
B、16 cm
C、20 cm
D、28 cm
3.如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF 与△ABE不一定全等的条件是 ( )
A、DF=BE
B、AF=CE
C、CF=AE
D、CF∥AE
4.如图,在等腰梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,下列结论不一定正确的是()
A、AC=BD
B、OB=OC
C、∠BCD=∠BDC
D、∠ABD=∠ACD
5.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=
设计意图:通过学生独立对随堂练习的解答,及时发现问题、解决问题,让学生熟练解决二次根式的相关问题.
七、分层作业,强化目标
必做题:中考复习丛书P78例3、P80 第11题.
选做题:中考复习丛书P81 第12题.
设计意图:作业的设计突出层次性,满足不同层次学生的需要,另一方面巩固了本课所学的知识,同时也了解了学生对本课知识的掌握情况.以便为下一节课的教学做准备.
板书设计:。

相关文档
最新文档