天津市河东区七中片2015-2016学年七年级数学上学期期中(精)

合集下载

河东区七中片2015-2016年七年级上期中数学试卷及答案解析

河东区七中片2015-2016年七年级上期中数学试卷及答案解析

)
A.1.30×108 B.1.3×109 C.0.13×1010 D.1.3×1010
3.下列代数式中单项式共有(
)
,﹣ x2y ,﹣ 0.5, , ,ax2+bx+c,a2b3, .
A.2 个 B.3 个 C.4 个 D.5 个
4.若﹣ 5x2n+1y4 与
能够合并,则 2n﹣ 1 的值是( )
月用水量
不超过 12 吨的部 超过 12 吨不超过 18 吨的部 超过 18 吨的部



收费标准(元/吨)2.00
2.50
3.00
某户 5 月份用水 x(x>18)吨,则水费为多少元?若用水 28 吨,则水费多少元?
2015-2016 学年天津市河东区七中片七年级(上)期中 数学试卷
一、选择题(每小题 3 分,共 30 分) 1.﹣ |﹣ |的相反数是( )
2【考点】有理数的乘方;相反数.
【分析】首先根据乘方的意义计算各个数,或根据乘方的性质,即可判断.
【解答】解:A、32=9,﹣ 23=﹣ 8,不是相反数,故 A 选项错误; B、32=(﹣ 3)2,不 是相反数,故 B 选项错误;
C、32 的相反数是﹣ 32,故 C 选项正确;
D、﹣ 32=﹣ (﹣ 3)2=﹣ 9,不是相反数,故 D 选项错误.
2015-2016 学年天津市河东区七中片七年级(上)期中数学试卷
一、选择题(每小题 3 分,共 30 分) 1.﹣ |﹣ |的相反数是( ) A. B.﹣ C. D.﹣
2.“全民行动,共同节约”,我国 13 亿人口如果都响应国家号召每人每年节约 1 度电,一
年可节约电 1 300 000 000 度,1 300 000 000 用科学记数法表示为(

天津市 七年级(上)期中数学试卷-(含答案)

天津市 七年级(上)期中数学试卷-(含答案)

七年级(上)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.其中温差最大的一天是()A. 1月1日B. 1月2日C. 1月3日D. 1月4日2.据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()A. 0.227×lO7B. 2.27×106C. 22.7×l05D. 227×1043.下列说法正确的是()A. 不是负数的数是正数B. 正数和负数构成有理数C. 整数和分数构成有理数D. 正整数和负整数构成整数4.在数轴上,与表示数-1的点的距离是2的点表示的数是()A. 1B. 3C. ±2D. 1或−35.已知单项式-5a m-1b6与12ab2n的和仍是单项式,则m-n的值是()A. 1B. −1C. −2D. −36.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A. a2−3a+4B. a2−3a+2C. a2−7a+2D. a2−7a+47.下列结论正确的是()A. 3x2−x+1的一次项系数是1B. xyz的系数是0C. a2b3c是五次单项式D. x5+3x2y4−27是六次三项式8.多项式12x|m|y-(m-3)xy+7是关于x、y的四次三项式,则m的值是()A. 3或−3B. −3C. 4或−4D. 39.小玉想找一个解为x=-6的方程,那么他可以选择下面哪一个方程()A. 2x−1=x+7B. 12x=13x−1 C. 2(x+5)=−4−x D. 23x=x−210.小敏去一家超市买洗衣粉和肥皂,恰好赶上某种品牌的洗涤用品正在该超市搞促销活动:买一袋洗衣粉赠送一块肥皂.小敏决定购买该产品,已知洗衣粉的价格为x 元/袋,肥皂的价格为y元/块,小敏一共买回3袋洗衣粉,10块肥皂,共花销()A. (3x+13y)元B. (3x+10y)元C. (3x+7y)元D. (3x−3y)元11.一个小虫在数轴上先向右爬2个单位,再向左爬6个单位,所在位置正好距离数轴原点2个单位,则小虫的起始位置所表示的数是()A. 6B. −2C. 2或6D. −2或412.如图,用火柴棍拼成一排由三角形组成的图形,按此规律,如果图形中含有41根火柴棍,则可以拼成的三角形的个数为()A. 20个B. 21个C. 22个D. 3个二、填空题(本大题共6小题,共18.0分)13. 比较大小:−12______−13(用“>或=或<”填空).14. 若关于x 的方程3x =2x +m 与3x +2m =6x +1的解相同,则方程的解为______ . 15. 已知代数式x +2y +1的值是3,则代数式2x +4y +1值是______ .(写过程) 16. 已知|x |=3,|y |=4,且x >y ,则2x -y 的值为______ .17. 若关于a ,b 的多项式2(a 2−2ab −b 2)−(a 2+mab +2b 2)不含ab 项,则m = ______ .18. 根据图提供的信息,可知一个杯子的价格是______ 元.三、计算题(本大题共2小题,共24.0分) 19. 计算:(1)(-212)-(-56)+(-0.5)-(-116) (2)-4÷23-(-23)×(-30) (3)-24×(-12+34-13) (4)-22+|5-8|+24÷(-3)×13.20. (1)解方程:4(x -1)=1-x(2)解方程:x+12−2−3x 3=1.四、解答题(本大题共5小题,共42.0分)21.化简:(1)-3x+2y-5x-7y(2)-5m2n+4mn2-2mn+6m2n+3mn(3)(4x2y-3xy2)-(1+4x2y-3xy2)(4)4y2-[3y-(3-2y)+2y2].22.化简求值:已知|a-4|+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]+4a2b的值.23.某检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,()求收工时距地多远?(2)在第______ 次纪录时距A地最远.(3)若每千米耗油0.3升,每升汽油需7.2元,问检修小组工作一天需汽油费多少元?24.(列方程解应用题)把一批图书分给七年级(12)班的同学阅读,若每人分3本,则剩余17本,若每人分4本,则缺25本,这个班有多少学生?25.下图为魔术师在小美面前表演的经过:根据图中所述,我们无法知道小美所写数字是多少,那么魔术师一定能做到吗?如果能,请利用所学知识推导出魔术师猜出的结果.如果不能,请说明理由.答案和解析1.【答案】C【解析】解:1月1日的温差:4-(-4)=8(℃),1月2日的温差:7-(-2)=9(℃),1月3日的温差:7-(-3)=10(℃),1月4日的温差:7-1=6(℃),所以温差最大的是1月3日的温差10℃.故选:C.首先用每天的最高气温减去最低气温,求出每天的温差各是多少;然后根据有理数大小比较的方法,判断出温差最大的一天是哪天即可.此题主要考查了正、负数的运算方法的运用.解决问题的关键是掌握有理数减法的运算法则.2.【答案】B【解析】解:将2270000用科学记数法表示为2.27×106.故选B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:A、不是负数的数是非负数,不一定是正数,故本选项错误;B、整数和分数构成有理数,故本选项错误;C、整数和分数构成有理数,故本选项正确;D、正整数和负整数和0构成整数,故本选项错误;故选C.根据正数、负数、整数及有理数的概念,结合选项即可作出判断.本题考查了实数的意义,解答此题要明确有理数和无理数的概念和分类,有理数包括正整数,零,负整数,正分数,负分数,无限不循环小数是无理数.4.【答案】D【解析】解:在数轴上,与表示数-1的点的距离是2的点表示的数有两个:-1-2=-3;-1+2=1.故选:D.此题可借助数轴用数形结合的方法求解.在数轴上,与表示数-1的点的距离是2的点有两个,分别位于与表示数-1的点的左右两边.注意此类题应有两种情况,再根据“左减右加”的规律计算.5.【答案】B【解析】解:根据题意得m-1=1,2n=6,解得m=2,n=3.则m-n=2-3=-1.故选B.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.6.【答案】D【解析】【分析】每个多项式应作为一个整体,用括号括起来,再去掉括号,合并同类项,化简.注意括号前面是负号时,括号里的各项注意要变号.能够熟练正确合并同类项.【解答】(6a2-5a+3 )-(5a2+2a-1)=6a2-5a+3-5a2-2a+1=a2-7a+4.故选D.7.【答案】D【解析】解:A、3x2-x+1的一次项是-x,所以一次项系数是-1,故本选项错误;B、xyz的系数是1,故本选项错误;C、a2b3c是六次单项式,故本选项错误;D、x5+3x2y4-27是六次三项式,故本选项正确.故选D.根据单项式的系数与次数,多项式的项数与次数的定义,对各选项分析判断后利用排除法求解.本题考查了单项式的系数与次数,多项式的项数与次数的定义,是基础题,熟记定义是解题的关键.8.【答案】B【解析】解:∵多项式x|m|y-(m-3)x+7是关于x的四次三项式,∴|m|=3且-(m-3)≠0,∴m=-3.故选:B.根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.本题考查了与多项式有关的概念,解题的关键是理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.9.【答案】B【解析】【分析】本题的关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=-6分别代入四个选项进行检验即可.【解答】解:A.把x=-6代入方程的左边=-13≠右边,不是方程的解;B.把x=-6代入方程的左边=-3=右边,所以是方程的解;C.把x=-6代入方程的左边=-2≠右边,不是方程的解;D.把x=-6代入方程的左边=-4≠右边,不是方程的解.故选B.10.【答案】C【解析】解:需花费钱数为:3x+(10-3)y=3x+7y(元),故选C.需花费钱数=3袋洗衣粉钱数+(10-3)块肥皂钱数.解决问题的关键是读懂题意,找到所求的量的等量关系.注意只需再付7块肥皂的价钱.11.【答案】C【解析】解:设小虫的起始位置所表示的数是a,则根据题意知,x+2-6=-2或x+2-6=2,解得,x=2或x=6.故选C.根据数轴的相关知识解题.本题考查了数轴.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B 点坐标为A的坐标减|a|.12.【答案】A【解析】解:∵1个三角形所需火柴棍的根数=3,2个三角形所需火柴棍的根数=3+2,3个三角形所需火柴棍的根数=3+2×2,…设41根火柴棍能拼成n个三角形,∴3+2×(n-1)=41.解得n=20.故选A.观察图形得到1个三角形所需火柴棍的根数=3,2个三角形所需火柴棍的根数=3+2,3个三角形所需火柴棍的根数=3+2×2,…,设41根火柴棍能拼成n 个三角形,于是得到41=3+2×(n-1),解得n即可.本题考查了图形的变化,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况是解答此题的关键.13.【答案】<【解析】解:∵>,∴<;故答案为:<.根据两个负数比较大小,绝对值大的反而小,即可得出答案.此题考查了有理数的大小比较,掌握两个负数比较大小,绝对值大的反而小是解题的关键.14.【答案】x=-1【解析】解:由方程3x=2x+m可得x=m,将x=m代入3x+2m=6x+1,得:3m+2m=6m+1,解得:m=-1,∴x=m=-1,故答案为:x=-1.由方程3x=2x+m可得x=m,代入方程3x+2m=6x+1,解之得出m的值,即可知答案.本题主要考查方程的解,熟练掌握方程的解的定义是解题的关键.15.【答案】5【解析】解:∵x+2y+1=3,即x+2y=2,∴原式=2(x+2y)+1=4+1=5,故答案为:5原式前两项提取2变形后,将x+2y的值代入计算即可求出值.此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.16.【答案】10或-2【解析】解:∵|x|=3,|y|=4,且x>y,∴x=3,y=-4;x=-3,y=-4,则2x-y=10或-2,故答案为:10或-2.根据题意,利用绝对值的代数意义求出x与y的值,即可求出2x-y的值.此题考查了代数式求值,绝对值,熟练掌握运算法则是解本题的关键.17.【答案】-4【解析】解:,又∵不含ab项,故4+m=0,m=-4.故填:-4.先整理整式,不含ab项及ab项的系数为0,由此可得出m的值.本题考查整式的加减,关键是对整式的整理,难度不大.18.【答案】8【解析】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.解题关键是弄清题意,找到合适的等量关系,列出方程组.19.【答案】解:(1)原式=-212-0.5+56+116=-3+2=-1;(2)原式=-4×32-23×30=-6-20=-26; (3)原式=12-18+8=2;(4)原式=-4+3-83=-113.【解析】(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)去括号,得4x -4=1-x ,移项,得4x +x =1+4,合并同类项,得5x =5,系数化为1,得x =1;(2)去分母,得3(x +1)-2(2-3x )=6,去括号,得3x +3-4+6x =6,移项,得3x +6x =6-3+4,合并同类项,得9x =7,系数化为1,得x =79.【解析】(1)先去括号,再移项,合并同类项,系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,系数化为1即可.本题考查了一元一次方程的解法.解题步骤:去分母,去括号,移项,合并同类项,系数化为1.21.【答案】解:(1)-3x+2y-5x-7y=-8x-5y;(2)-5m2n+4mn2-2mn+6m2n+3mn=m2n+4mn2+mn;(3)(4x2y-3xy2)-(1+4x2y-3xy2)=4x2y-3xy2-1-4x2y+3xy2=-1;(4)4y2-[3y-(3-2y)+2y2]=4y2-[3y-3+2y+2y2]=4y2-3y+3-2y-2y2=2y2-5y+3.【解析】(1)(2)直接合并多项式中的同类项即可;(3)(4)先去括号,再合并同类项即可.本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.22.【答案】解:∵|a-4|+(b+1)2=0,∴a=4,b=-1;原式=5ab2-(2a2b-4ab2+2a2b)+4a2b=5ab2-4a2b+4ab2+4a2b=9ab2=36.【解析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.注意非负数的性质的应用.23.【答案】解:(1)-3+8-9+10+4-6-2=2(千米).故收工时距A地2千米.(2)由题意得,第一次距A地3千米;第二次距A地-3+8=5千米;第三次距A地|-3+8-9|=4千米;第四次距A地|-3+8-9+10|=6千米;第五次距A地|-3+8-9+10+4|=10千米;第六次距A地|-3+8-9+10+4-6|=4千米;第七次距A地|-3+8-9+10+4-6-2|=2千米,所以在第五次纪录时距A地最远;(3)(3+8+9+10+4+6+2)×0.3×7.2=42×0.3×7.2=90.72(元)答:检修小组工作一天需汽油费90.72元.【解析】解:(1)-3+8-9+10+4-6-2=2(千米).故收工时距A地2千米.(2)由题意得,第一次距A地3千米;第二次距A地-3+8=5千米;第三次距A地|-3+8-9|=4千米;第四次距A地|-3+8-9+10|=6千米;第五次距A地|-3+8-9+10+4|=10千米;第六次距A地|-3+8-9+10+4-6|=4千米;第七次距A地|-3+8-9+10+4-6-2|=2千米,所以在第五次纪录时距A地最远;(3)(3+8+9+10+4+6+2)×0.3×7.2=42×0.3×7.2=90.72(元)答:检修小组工作一天需汽油费90.72元.故答案为:五.(1)收工时距A地的距离等于所有记录数字的和的绝对值;(2)分别计算每次距A地的距离,进行比较即可;(3)所有记录数的绝对值的和×0.3升,就是共耗油数,再根据总价=单价×数量计算即可求解.此题主查考查正负数在实际生活中的应用及有理数的加减混合运算,学生在学这一部分时一定要联系实际,不能死学.24.【答案】解:设这个班有x个学生,根据题意得:3x+17=4x-25,解得:x=42.答:这个班有42个学生.【解析】根据实际书的数量可得相应的等量关系:3×学生数量+17=4×学生数量-25,把相关数值代入即可求解.此题考查用一元一次方程解决实际问题,得到书的总数量的等量关系是解决本题的关键.25.【答案】解:设小美所写数字是x,则由题意得:魔术师要求小妹算出的数字=(3x+6)÷3-x=x+2-x=2.因此无论小美写哪一个数字,魔术师都可以猜中小美得出的答案,答案总是为2.【解析】根据题意列出算式,去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.。

2015-2016学年度第一学期期中考试七年级数学附答案

2015-2016学年度第一学期期中考试七年级数学附答案

2015-2016学年度第一学期期中考试七年级数学(总分:150分 时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的)。

1.用代数式表示“比m 的相反数大1的数”是:A .m+1B .m-1C .-m-1D .-m+1 2. -21的倒数是: A .2 B .21 C .-2 D .-21 3.若43=-x ax 的解为x=-4,则a 的值是:A .4B .-4C .2D .-24. 下列说法,正确的是: A .5-、a 不是单项式B .2abc-的系数是2- C .223x y -的系数是13-,次数是4D .2x y 的系数是0,次数是25. 方程17.0123.01=--+x x 可变形为( ) A.17102031010=--+x x B.171203110=--+x x C.1071203110=--+x x D.107102031010=--+x x 6. 实数a ,b 在数轴上的位置如图所示,以下说法正确的是:A. a+b=0B. b <aC. ab >0D. |b|<|a| 7. 现有几种说法:①3的平方等于9 ②平方后等于9的数是3 ③倒数等于本身的数有0,1,-l ; ④平方后等于本身的数是0,1,-1; ⑤如果A 和B 都是四次多项式,则A +B 一定是四次多项式. 其中正确的说法有:A .1个B .2个C .3个D .4个 8. 已知4433xyz xyz -=,则x z y x y z++值为多少:A .1或-1B .1或-3C .-1或3D .3或-3二、填空题(本大题共10题,每题3分,共30分)。

9.如果将盈利2万元记作2万元,那么-4万元表示_________________。

10. 绝对值等于6的数是___________。

11. 2ab+b 2+( )=3ab-b 2。

12. 用“>”连接:-2, 4,-0.5,-(-2),这几个数:___________________________。

2015-2016年七年级上学期期中考试数学试卷及答案

2015-2016年七年级上学期期中考试数学试卷及答案

其中温差最大的一天是
A.12月21日 B.12月22日
C.12月23日
D.
12月24日
( ) 2.下列各对数中,互为相反数的是:
A.和2 B. C. D.
( ) 3 下列式子:中,整式的个数是:
A. 6
B. 5
C. 4
D. 3
( ) 4 一个数的平方和它的倒数相等,则这个数是:
A. 1
B. -1
C. ±1
13.若a、b互为相反数,c、d互为倒数,则2a+3cd+2b=___
___;
14.用科学记数法表示:2014应记为______;
15.单项式的系数是______,次数是______; 16. ______; 17.______;
18.如果5x+3与-2x+9是互为相反数,则x的值是_____
_;
19.每件a元的上衣先提价10%,再打九折以后出售的价格是__
2015-2016年七年级数学上学期期中试

班级: 姓名: 得分:
一 选择题 (每小题4分,共40分) ( ) 1.我市2013年12月21日至24日每天的最高气温与最低气温如 下表:
日期 12月21 12月22 12月23 12月24




最高 8℃
7℃
5℃
6℃
气温
最低 气温
-3℃
-5℃
-4℃ -2℃
(2)若休闲广场的长为500米,宽为200米,圆形花坛的半 径为20米,求广场空地的面积。(计算结果保留π)
28.
29.(列方程)把一批图书分给七年级(11)班的同学阅读,若每人 分3本,则剩余20本, 若每人分4本,则缺25本,这个班有多少学生?

2015~2016学年第一学期初一数学期中考试试卷及答案

2015~2016学年第一学期初一数学期中考试试卷及答案

2015~2016学年第一学期初一数学期中考试试卷(考试时间:90分钟 满分:100分) 一、细心选一选 (每小题3分,共24分)1.下面的计算正确的是 ( )A .6a -5a =1B .a + 2a 2 =3a 3C .-(a -b ) =-a + bD .2(a + b ) =2a + b 2.在(-1)3,(-1)2012,-22,(-3)2这四个数中,最大的数与最小的数的差等于 ( ) A .10 B .8 C .5 D .13 3.下列各组代数式中,是同类项的是 ( )A .5x 2 y 与15xy B .-522 y 与15yx 2 C .5ax 2与15yx 2 D .83与x 34.给出下列判断:①单项式5×103x 2的系数是5;②x -2xy + y 是二次三项式;③多项式-3a 2 b +7a 2b 2-2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是( )A .1个B .2个C .3个D .4个5.有理数a ,b ,c 在数轴上的位置如图所示, 则a c ++c b --b a += ( )A .-2bB .0C .2cD .2c -2b 6.若m =3,n =5且m -n >0,则m + n 的值是 ( )A .-2B .-8或-2C .-8或8D .8或-27.上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为 ( ) A .a b x y++ B .ax by ab+ C .ax by a b++ D .2x y +8.观察图中每一个正方形各顶点所标数字的规律,2 012应标在 ( )A .第502个正方形左上角顶点处B .第502个正方形右上角顶点处C .第503个正方形左上角顶点处D .第503个正方形右上角顶点处二、认真填一填 (每小题2分,共20分)9.-23的倒数为 ;绝对值等于3的数是 .10.钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4 384 000 m 2,将这个数据用科学记数法可表示为 m 2. 11.比较大小,用“<”“>”或“一”连接:(1) -34--(-23) (2) -3.14 -π-12.已知4x 2m y m+n 与3x 6 y 2是同类项,则m -n = .13.数轴上与表示-2的点距离3个长度单位的点所表示的数是 . 14.已知代数式x -2y 的值是12,则代数式-2x + 4y -1的值是 .15·若a ,b 互为相反数,c ,d 互为倒数,m 到原点的距离为2,则代数式m —cd +a b m+的值为 .16.定义新运算“⊗”,规定:a ⊗b =13a -4b ,则12⊗(-1) = .17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .18.观察表一,寻找规律.表二,表三,表四分别是从表一中截取的一部分,其中a + b + c的值为 .三、耐心解一解 (共56分)19.计算:(每小题3分,共12分)(1) -10-(-16)+(-24); (2) 5÷(-35)×53(3) -22×7-(-3)×6+5 (4) (113+18-2.75)×(-24)+(-1)2014+(-3)3.20.化简:(每小题3分,共6分)(1) 2x +(5x -3y )一(3x + y ); (2) 3(4x 2-3x +2)-2(1-4x 2-x ).21.(5分) 将-2.5,12,2,-2,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来.22.(5分) 已知多项式A,B,其中A=x2-2x + 1,小马在计算A+B时,由于粗心把A+B看成了A-B求得结果为-3x2-2x-1,请你帮小马算出A+B的正确结果.23.(本题满分8分)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如左下表:(1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?(3) 如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.8千米,下降2.9千米,再上升1.6千米.若要使飞机最终比起飞点高出1千米,问第4个动作是上升还是下降,上升或下降多少千米?24.(10分) 在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a格(当a 为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移b格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).例如,从A到B记为:A→B (+1,+3);从C到D记为:C→D (+1,-2).回答下列问题:(1) 如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.(2) 若点A运动的路线依次为:A→M(+2,+3),M→N (+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M,N,P,Q的位置.(3) 在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是;n与q满足的数量关系是.25.(10分) 如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,a +(c-7)2=0.且a,b满足2(1) a=,b=,c=.(2) 若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.2015~2016学年第一学期初一数学期中考试试卷参考答案1.C 2.D 3.B 4.A 5.B 6.B 7.C 8.C 9.-323或-310.4.384×10611.< > 12.4 13.-5,1 14.-2 15. 1 16.8 17.3018.76 19.(1) -18 (2) -1259 (3) -5 (4) 5 20.(1) 4x -4y (2) 20x 2-7x + 421.画图略,-2.5<-2-<0<12<2<-(-3) 22.B =4x 2 + 2 A +B =5x 2-2x + 323.解:(1) +4.4+(-3.2)+1.1+(-1.5) =0.8(km) 答:这架飞机比起飞点高了0.8千米 (2) 2×( 4.4++ 3.2-+ 1.1++ 1.5-=20.4(升),答:4个动作表演完,一共消耗20.5升燃油. (3) 3.8-2.9+1.6-1=1.5, 答:第4个动作下降1.5千米. 24.(1) 1+3+2+1+3+4=14 (2)(3) m + p =5,n + q =0 25.(1) a =2,b =1,c =7 (2) 4 (3) AB =3t + 3,AC =5t + 9,BC =2t + 6 (4) 不变,始终为12.。

天津市河东区七年级上学期期中阶段质量检测数学试题(图片版,)

天津市河东区七年级上学期期中阶段质量检测数学试题(图片版,)
语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?

2015-2016年人教版七年级上期中数学试卷含答案解析

2015-2016学年天津市津南区南片学区七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.|﹣3|的相反数是( )A.3 B.﹣3 C.D.﹣2.在﹣(﹣8),(﹣1)2007,﹣32,0,﹣|﹣1|,﹣中,负数的个数有( )A.2个 B.3个 C.4个 D.5个3.绝对值等于本身的数是( )A.正数 B.负数 C.正数或零 D.零4.下列计算正确的个数是( )(﹣1)2010=﹣1;0﹣(﹣1)=1;﹣.A.1 B.2 C.3 D.45.若a>1,则a,﹣a,从大到小排列正确的是( )A.a>﹣a>B.a>>﹣a C.>﹣a>a D.﹣a>a>6.若(a+3)2+|b﹣2|=0,则a b=( )A.9 B.﹣6 C.﹣9 D.67.下列说法中,正确的是( )A.单项式的系数为﹣2,次数为2B.单项式a的系数是0,次数是0C.是二次单项式D.单项式的系数是,次数是38.下列计算正确的是( )A.4x﹣7x=3x B.5a﹣3a=2 C.a2+a=a D.﹣2a﹣2a=﹣4a9.某天上午6:00柳江河水位为80.4米,到上午11:30水位上涨了5.3米,到下午6:00水位又跌了0.9米,下午6:00水位应为( )A.76米 B.84.8米 C.85.8米 D.86.6米10.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…那么32011的末尾数字应该是( )A.3 B.9 C.7 D.1二、填空题(每小题3分,共24分)11.如果﹣30表示逆时针旋转30圈,那么50表示 .12.﹣0.5的相反数是 ,倒数是 .13.是 次 项式,最高项的系数为 . 14.数轴上点A表示﹣3,则与点A相距3个单位长度的点所表示的数为 .15.用科学记数法表示256500= .16.0.0056的近似数为 (精确到百分位).17.一艘轮船在静水中的速度是50千米/时,水流速度是a千米/时,则该轮船在逆水中航行3小时的路程为 千米.18.绝对值不大于3的整数有 .三、解答题(共66分)19.求出下列各数的绝对值,并在数轴上表示下列各数.﹣2,﹣(﹣3),﹣,0,,+(﹣4),1,|﹣6|20.计算(1)|﹣5﹣4|﹣5×(﹣2)2+1÷(﹣3);(2)(3)(﹣1)10×2﹣(﹣2)3÷4;(4).21.已知a2=16,b2=9,且ab>0,求:(1)2a﹣3b的值;(2)a+b的值.22.某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以56元的价格作为标准卖出,超出的记为正数,不足的记为负数,记录如下:﹣3,+7,﹣8,+9,﹣2,0,﹣1,﹣6.当他卖完这8套儿童服装后是盈利还是亏损?23.化简求值:(1)5x2+6x﹣6﹣(﹣5x2+4x+1),其中;(2)2(3m+2n)+2[m+2n﹣(m﹣n)],其中m=﹣1,n=2.24.已知A=x3+3x2y﹣5xy2+6y3﹣1,B=﹣6y3+5xy2+x2y﹣2x3+2,C=x3﹣4x2y+3,试说明A+B+C的值与x,y无关.25.如图,阴影部分的面积是5平方厘米,以OA为直径的半圆的面积是多少平方厘米?2015-2016学年天津市津南区南片学区七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.|﹣3|的相反数是( )A.3 B.﹣3 C.D.﹣【考点】绝对值;相反数.【分析】根据相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:|﹣3|的相反数是﹣3.故选B.【点评】本题考查绝对值与相反数的意义,是一道基础题.可能会混淆倒数、相反数和绝对值的概念,错误地认为﹣3的绝对值等于,或认为﹣|﹣3|=3,把绝对值符号等同于括号.2.在﹣(﹣8),(﹣1)2007,﹣32,0,﹣|﹣1|,﹣中,负数的个数有( )A.2个 B.3个 C.4个 D.5个【考点】正数和负数.【分析】负数就是小于0的数,依据定义即可求解.【解答】解:﹣(﹣8)=8,(﹣1)2007=﹣1,﹣32=﹣9,﹣|﹣1|=﹣1,负数有:﹣(﹣8),(﹣1)2007,﹣32,﹣|﹣1|,﹣,负数的个数有5个,故选:D.【点评】本题考查了正数和负数,判断一个数是正数还是负数,要把它化简成最后形式再判断.3.绝对值等于本身的数是( )A.正数 B.负数 C.正数或零 D.零【考点】绝对值.【分析】根据0的绝对值等于0,正数的绝对值等于他本身,可得答案.【解答】解:绝对值等于本身的数是0和正数,故选:C.【点评】本题考查了绝对值,注意绝对值等于他本身的数是非负数. 4.下列计算正确的个数是( )(﹣1)2010=﹣1;0﹣(﹣1)=1;﹣.A.1 B.2 C.3 D.4【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式各项计算得到结果,即可做出判断.【解答】解:原式=1,错误;原式=0+1=1,正确;原式=﹣+=﹣,正确;原式=﹣,正确;则正确的个数是3.故选C.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.若a>1,则a,﹣a,从大到小排列正确的是( )A.a>﹣a>B.a>>﹣a C.>﹣a>a D.﹣a>a>【考点】有理数大小比较.【专题】推理填空题;实数.【分析】首先根据a>1,可得﹣a<0,0<<1;然后根据根据有理数大小比较的方法,把a,﹣a,从大到小排列即可.【解答】解:∵a>1,∴﹣a<0,0<<1,∴a>>﹣a.故选:B.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.6.若(a+3)2+|b﹣2|=0,则a b=( )A.9 B.﹣6 C.﹣9 D.6【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,所以,a b=9故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.下列说法中,正确的是( )A.单项式的系数为﹣2,次数为2B.单项式a的系数是0,次数是0C.是二次单项式D.单项式的系数是,次数是3【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:A、单项式的系数为﹣,次数为3,故本选项错误;B、单项式a的系数是1,次数是1,故本选项错误;C、是多项式,故本选项错误;D、单项式的系数是,次数是3是正确的,故本选项正确.故选D.【点评】考查了单项式的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.8.下列计算正确的是( )A.4x﹣7x=3x B.5a﹣3a=2 C.a2+a=a D.﹣2a﹣2a=﹣4a【考点】合并同类项.【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.【点评】本题考查了合并同类项,合并同类项系数相加字母及指数不变.9.某天上午6:00柳江河水位为80.4米,到上午11:30水位上涨了5.3米,到下午6:00水位又跌了0.9米,下午6:00水位应为( )A.76米 B.84.8米 C.85.8米 D.86.6米【考点】有理数的加减混合运算.【专题】应用题.【分析】水位上涨用加,下跌用减,列出算式求解即可.【解答】解:根据题意列算式得:80.4+5.3﹣0.9,=85.7﹣0.9,=84.8(米).故选B.【点评】本题考查了负数的意义和有理数的加减混合运算,熟练掌握概念和法则是解题的关键.10.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…那么32011的末尾数字应该是( )A.3 B.9 C.7 D.1【考点】尾数特征.【分析】观察不难发现,每4个数为一个循环组依次循环,用2011除以4,根据余数的情况确定末尾数字即可.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…;∴每4个数为一个循环组依次循环,2011÷4=502…3,∴32011的末位数字与33的末位数字相同,是7.故选:7.【点评】本题考查了有理数的乘方,仔细观察末位数字的变化规律,发现每4个数为一个循环组依次循环是解题的关键.二、填空题(每小题3分,共24分)11.如果﹣30表示逆时针旋转30圈,那么50表示 顺时针旋转50圈 .【考点】正数和负数.【分析】主要用正负数来表示具有意义相反的两种量:逆时针旋转记作“﹣”,那么顺时针旋转就记作“+”.据此解答.【解答】解:如果﹣30表示逆时针旋转30圈,那么50表示顺时针旋转50圈,故答案为:顺时针旋转50圈.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.﹣0.5的相反数是 0.5 ,倒数是 ﹣2 .【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣0.5的相反数是0.5,倒数是﹣2,故答案为:0.5,﹣2.【点评】本题考查了倒数,数的前面加负号就是这个数的相反数,先把小数化成分数,再把分子分母交换位置.13.是 三 次 三 项式,最高项的系数为 ﹣ .【考点】多项式.【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【解答】解:是三次三项式,最高项的系数为:﹣.故答案为:三,三,﹣.【点评】此题主要考查了多项式,正确把握多项式次数与项数的确定方法是解题关键.14.数轴上点A表示﹣3,则与点A相距3个单位长度的点所表示的数为 ﹣6或0 .【考点】数轴.【分析】与点A相距3个单位长度的点可能在点A的左边,也可能在点A 的右边,再根据“左减右加”进行计算.【解答】解:当要求的点在点A的左边时,则﹣3﹣3=﹣6;当要求的点在点A的右边时,则﹣3+3=0.故答案为﹣6或0.【点评】此题考查了数轴上的点和数之间的对应关系,同时注意“左减右加”.15.用科学记数法表示256500= 2.565×105 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:256500=2.565×105,故答案为:2.565×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.0.0056的近似数为 0.01 (精确到百分位).【考点】近似数和有效数字.【分析】把千分位上的数字5进行四舍五入即可得出答案.【解答】解:0.0056的近似数为0.01(精确到百分位);故答案为:0.01.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.17.一艘轮船在静水中的速度是50千米/时,水流速度是a千米/时,则该轮船在逆水中航行3小时的路程为 3(50﹣a) 千米.【考点】列代数式.【分析】根据题意先得轮船在逆水中航行的速度为“静水中的速度﹣水流速度”,再得3小时航行的路程.【解答】解:由题意得,该轮船在逆水中航行3小时的路程为3(50﹣a)千米.【点评】本题考查了代数式的列法,正确理解题意是解决这类题的关键.18.绝对值不大于3的整数有 0,±1,±2,±3 .【考点】绝对值.【专题】应用题.【分析】根据绝对值的意义,正数和0的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【解答】解:根据绝对值的意义,绝对值不大于3的整数有0,±1,±2,±3,故答案为0,±1,±2,±3.【点评】本题主要考查了绝对值的意义,注意“0”属于非负整数,比较简单.三、解答题(共66分)19.求出下列各数的绝对值,并在数轴上表示下列各数.﹣2,﹣(﹣3),﹣,0,,+(﹣4),1,|﹣6|【考点】数轴;绝对值.【分析】先根据正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,求出各数的绝对值,再画出数轴表示.【解答】解:|﹣2|=2,|﹣(﹣3)|=3,|﹣|=,|0|=0,||=,|+(﹣4)|=4,|1|=1,|﹣6|=6,如图,【点评】本题考查了数轴,解决本题的关键是熟记绝对值的性质.20.计算(1)|﹣5﹣4|﹣5×(﹣2)2+1÷(﹣3);(2)(3)(﹣1)10×2﹣(﹣2)3÷4;(4).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=9﹣20﹣=﹣11;(2)原式=﹣4×3×(﹣11)=132;(3)原式=2+2=4;(4)原式=﹣8+9+1=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.已知a2=16,b2=9,且ab>0,求:(1)2a﹣3b的值;(2)a+b的值.【考点】代数式求值.【分析】先求得a、b的值,然后根据ab>0可确定出a、b的取值情况,最后代入求值即可.【解答】解:∵a2=16,b2=9,∴a=±4,b=±3.∵ab>0,∴a=4,b=3或a=﹣4,b=﹣3.(1)当a=4,b=3时,2a﹣3b=2×4﹣3×3=﹣1;当a=﹣4,b=﹣3时,2a﹣3b=2×(﹣4)﹣3×(﹣3)=1.(2)当a=4,b=3时,a+b=4+3=7;当a=﹣4,b=﹣3时,a+b=(﹣4)+(﹣3)=﹣7.【点评】本题主要考查的是求代数式的值,求得a、b的值是解题的关键.22.某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以56元的价格作为标准卖出,超出的记为正数,不足的记为负数,记录如下:﹣3,+7,﹣8,+9,﹣2,0,﹣1,﹣6.当他卖完这8套儿童服装后是盈利还是亏损?【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】让所得的正负数相加,再加上预计销售的总价,减去总进价即可得到是盈利还是亏损.【解答】解:总售价为:56×8+(﹣3+7﹣8+9﹣2+0﹣1﹣6)=448﹣4=444元,444﹣400=44元.答:盈利44元.【点评】考查有理数的混合运算;得到总售价是解决本题的突破点. 23.化简求值:(1)5x2+6x﹣6﹣(﹣5x2+4x+1),其中;(2)2(3m+2n)+2[m+2n﹣(m﹣n)],其中m=﹣1,n=2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把m与n的值代入计算即可求出值.【解答】解:(1)原式=5x2+6x﹣6+5x2﹣4x﹣1=10x2+2x﹣7,当x=﹣时,原式=﹣1﹣7=﹣;(2)原式=6m+4n+2m+4n﹣2m+2n=6m+10n,当m=﹣1,n=2时,原式=﹣6+20=14.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.已知A=x3+3x2y﹣5xy2+6y3﹣1,B=﹣6y3+5xy2+x2y﹣2x3+2,C=x3﹣4x2y+3,试说明A+B+C的值与x,y无关.【考点】整式的加减.【分析】先列出A+B+C的表达式,再去括号,合并同类项即可.【解答】解:∵A=x3+3x2y﹣5xy2+6y3﹣1,B=﹣6y3+5xy2+x2y﹣2x3+2,C=x3﹣4x2y+3,∴A+B+C=(x3+3x2y﹣5xy2+6y3﹣1)+(﹣6y3+5xy2+x2y﹣2x3+2)+(x3﹣4x2y+3)=x3+3x2y﹣5xy2+6y3﹣1﹣6y3+5xy2+x2y﹣2x3+2+x3﹣4x2y+3=(1﹣2+1)x3+(3+1﹣4)x2y﹣(5﹣5)xy2+(6﹣6)y3﹣(1﹣3﹣2)=4,∴A+B+C的值与x,y无关.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.25.如图,阴影部分的面积是5平方厘米,以OA为直径的半圆的面积是多少平方厘米?【考点】有理数的混合运算.【分析】设OA的长为2r厘米,根据题意可得:圆的面积﹣半圆的面积=5平方厘米,由此列方程整理得出πr2=5,然后根据圆的面积公式即可求出以OA为直径的半圆的面积.【解答】解:设OA的长为2r厘米,根据题意可得:×π×(2r)2﹣×π×(2r÷2)2=5,πr2﹣πr2=5,即πr2=5,半圆的面积:×π×(2r÷2)2=πr2=5(平方厘米).答:以OA为直径的半圆的面积是5平方厘米.【点评】本题考查了有理数的混合运算,组合图形的面积,解答此题的关键是根据阴影部分的面积是5平方厘米列出方程.。

新人教版2015-2016学年七年级数学(上)期中数学试卷及答案

2015-2016学年七年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分,每小题只有一个选项是符合题意的)1.﹣的倒数是()A.B.﹣C.﹣D.2.如果一个物体向东移动8m记为+8m,那么向西移动3m记为()A.+3m B.﹣3m C.+5m D.﹣5m3.多项式x2﹣4xy2+y2的次数为()A.2 B. 3 C. 4 D.﹣44.在有理数0,1,﹣4,﹣2.5中,属于负整数的是()A.0 B. 1 C.﹣4 D.﹣2.55.今年由于降水明显偏少,气温持续偏高,河库水量锐减,据统计,某市造成直接经济损失达560 000 000元,该数据用科学记数法表示为()A.5.6×107元B. 5.6×108元C.56×107元D.56×108元6.下列选项中,是同类项的是()A.3ab和3b B.﹣2pq和npq C.b2和2b D.4xy和xy7.比较﹣,5,﹣0.5的大小,下列选项正确的是()A.﹣B.﹣C.﹣0.5D.5<﹣<﹣0.58.一个两位数,个位数是x,十位数是y,如果个位数字与十位数字对调,所得的两位数与原来的两位数的和是()A.10x+y B.10y+x C.2x+2y D.11x+11y9.观察一列单项式:2x3,﹣4x3,8x3,﹣16x3,32x3,﹣64x3,…则第2014个单项式是()A.﹣22014x3 B.22014x3 C.﹣24018x3 D.24018x310.按照如图所示的操作步骤,若输入的值为﹣4,则输出的值为()A.44 B.4 C.﹣D.﹣84二、填空题(共6小题,每小题3分,共18分)11.﹣(﹣3.5)的相反数为.12.(﹣7)8的底数是.13.用计算器计算:7.783+(﹣0.32)2=(精确到百分位)14.求图中阴影部分的面积.15.若a在数轴上所对应的点到数轴上表示﹣3的点和数轴上表示7的点之间的距离相等,则a=.16.小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于3张,且各堆牌现有的张数相同;第二步从左边一堆拿出3张,放入中间一堆;第三步从右边一堆拿出2张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是.三、解答题(共6小题,计72分.解答应写出过程)17.计算:(﹣1)98×()﹣(﹣2)4÷4.18.先化简,再求值:+2(x﹣)﹣(﹣3x2+2y2)﹣x,其中x=2,y=3.19.某村棉花的种植面积是a公顷,玉米的种植面积比棉花的种植面积的2倍多5公顷,蔬菜的种植面积比玉米的种植面积的3倍少2公顷,求棉花、玉米和蔬菜的种植面积和.20.周助平时骑自行车的速度为a km/h.今天风速为16km/h,他顺骑4个小时的路程是多少千米?逆风骑2个小时的路程是多少千米?两个路程相差多少千米?21.(10分)(2014秋•旬阳县期中)某儿童服装店老板以25元的价格买进30件连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表所示:售出件数7 6 3 5 4 5售价/元+3 +2 +1 0 ﹣1 ﹣1问该服装店在售完这30件连衣裙后,赚了多少钱?22.(12分)(2014秋•旬阳县期中)某商场为了促销,推出两种促销方式:方式①:一次性购物超过100元,所有商品打七折;方式②:一次性购物超过100元,超过的部分减半.(1)若单老师一下性购买的商品的标价总额为a(a>100)元,按照方式①付款,单老师实际应付多少钱?按照方式②付款,单老板实际应付多少钱?(2)夏目帮叔叔一次性购买的商品的标价总额为170元,参加促销活动,哪种方式更划算?为什么?若一次性购买的商品的标价总额为370元呢?2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分,每小题只有一个选项是符合题意的)1.﹣的倒数是()A.B.﹣C.﹣D.考点:倒数.分析:根据倒数的定义,即可解答.解答:解:﹣的倒数是﹣,故选:B.点评:本题考查了倒数的定义,解决本题的关键是熟记倒数的定义.2.如果一个物体向东移动8m记为+8m,那么向西移动3m记为()A.+3m B.﹣3m C.+5m D.﹣5m考点:正数和负数.分析:认真审题,根据向东移动记为正数则向西移动记为负数,据此即可得到本题的答案.解答:解:向东移动记为8m记为+8,则向西移动3m记为﹣3m.故选B.点评:本题主要考查了正数与负数的意义,用正数与负数可以表示相反意义的量,是经常考查的题目,注意总结.3.多项式x2﹣4xy2+y2的次数为()A.2 B. 3 C. 4 D.﹣4考点:多项式.专题:计算题.分析:利用多项式次数的定义判断即可.解答:解:多项式x2﹣4xy2+y2的次数为3.故选B.点评:此题考查了多项式,熟练掌握多项式次数的定义是解本题的关键.4.在有理数0,1,﹣4,﹣2.5中,属于负整数的是()A.0 B. 1 C.﹣4 D.﹣2.5考点:有理数.分析:根据负整数是小于0的整数,判断出在有理数0,1,﹣4,﹣2.5中,属于负整数的有哪些即可.解答:解:在有理数0,1,﹣4,﹣2.5中,属于负整数的是﹣4.故选:C.点评:此题主要考查了有理数的分类,要熟练掌握,解答此题的关键是要明确:负整数是小于0的整数.5.今年由于降水明显偏少,气温持续偏高,河库水量锐减,据统计,某市造成直接经济损失达560 000 000元,该数据用科学记数法表示为()A.5.6×107元B. 5.6×108元C.56×107元D.56×108元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将560 000 000用科学记数法表示为:5.6×108.故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.下列选项中,是同类项的是()A.3ab和3b B.﹣2pq和npq C.b2和2b D.4xy和xy考点:同类项.分析:根据同类项的定义(所含字母相同,相同字母的指数相同),即可作出判断.解答:解:A、所含字母不同,则不是同类项,B、所含字母不同,则不是同类项,C、相同的字母的指数不同,故不是同类项.D、正确.故选D.点评:本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.7.比较﹣,5,﹣0.5的大小,下列选项正确的是()A.﹣B.﹣C.﹣0.5D.5<﹣<﹣0.5考点:有理数大小比较.分析:有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解答:解:根据有理数比较大小的方法,可得﹣0.5.故选:C.点评:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.8.一个两位数,个位数是x,十位数是y,如果个位数字与十位数字对调,所得的两位数与原来的两位数的和是()A.10x+y B.10y+x C.2x+2y D.11x+11y考点:列代数式.分析:分别表示出两数,然后相加即可得到正确的选项.解答:解:∵两位数的个位数是x,十位数是y,∴两位数为10y+x,个位数字与十位数字对调的两位数为10x+y,∴两位数的和为10y+x+10x+y=11x+11y,故选D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.9.观察一列单项式:2x3,﹣4x3,8x3,﹣16x3,32x3,﹣64x3,…则第2014个单项式是()A.﹣22014x3 B.22014x3 C.﹣24018x3 D.24018x3考点:单项式.专题:规律型.分析:根据已知得出单项式变化规律进而得出即可.解答:解:∵2x3,﹣4x3,8x3,﹣16x3,32x3,﹣64x3,…∴系数为(﹣1)n+12n,次数都为3,∴第2014个单项式是:(﹣1)2014+122014x3=﹣22014x3.故选A.点评:此题主要考查了单项式,正确利用已知得出变化规律是解题关键.10.按照如图所示的操作步骤,若输入的值为﹣4,则输出的值为()A.44 B.4 C.﹣D.﹣84考点:有理数的混合运算.专题:图表型.分析:把﹣4代入程序框图中计算,判断结果与15大小,即可得到输出的值.解答:解:根据题意得:(﹣4)2=16>15,可得﹣4×(16+5)=﹣84,故选D点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,每小题3分,共18分)11.﹣(﹣3.5)的相反数为﹣3.5.考点:相反数.分析:先化简,再求相反数.解答:解:﹣(﹣3.5)=3.5,3.5的相反数是﹣3.5,故答案为:﹣3.5.点评:本题考查了相反数,解决本题的关键是熟记相反数的定义.12.(﹣7)8的底数是﹣7.考点:有理数的乘方.分析:根据有理数的乘方,即可解答.解答:解:(﹣7)8的底数是﹣7.故答案为:﹣7.点评:本题考查了有理数的乘方,解决本题的关键是熟记有理数乘方的定义.13.用计算器计算:7.783+(﹣0.32)2=471.01(精确到百分位)考点:计算器—有理数.分析:首先用计算器分别求出7.783、(﹣0.32)2的值各是多少;然后把它们求和,并应用四舍五入法,求出算式7.783+(﹣0.32)2精确度百分位的结果是多少即可.解答:解:7.783+(﹣0.32)2=470.910952+0.1024=471.013352≈471.01.故答案为:471.01.点评:此题主要考查了计算器的使用方法,以及四舍五入法求近似值问题的应用,要熟练掌握.14.求图中阴影部分的面积2ab﹣2b2.考点:列代数式.分析:图中两个阴影部分的面积都是长为b,宽为(a﹣b)的矩形.根据矩形的面积公式得:阴影部分的面积是2b(a﹣b).解答:解:阴影部分的面积=b(a﹣b)×2=2ab﹣2b2.点评:正确表示阴影矩形的宽,运用矩形的面积公式列式计算.15.若a在数轴上所对应的点到数轴上表示﹣3的点和数轴上表示7的点之间的距离相等,则a=2.考点:数轴.分析:画出数轴,找出表示﹣3与7的两点中点表示的数即为a的值.解答:解:作图如下:则a=2.故答案为:2.点评:此题考查了数轴的认识,作出相应的图形是解本题的关键.16.小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于3张,且各堆牌现有的张数相同;第二步从左边一堆拿出3张,放入中间一堆;第三步从右边一堆拿出2张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是8.考点:整式的加减.专题:压轴题.分析:把每堆牌的数量用相应的字母表示出来,列式表示变化情况即可找出最后答案.解答:解:设第一步时候,每堆牌的数量都是x(x≥3);第二步时候:左边x﹣3,中间x+3,右边x;第三步时候:左边x﹣3,中间x+3+2,右边x﹣2;第四步开始时候,左边有(x﹣3)张牌,则从中间拿走(x﹣3)张,则中间所剩牌数为(x+5)﹣(x﹣3)=x+5﹣x+3=8.所以中间一堆牌此时有8张牌.故答案为8点评:本题考查了整式的加减运算,解决此题,根据题目中所给的数量关系,建立数学模型.根据运算提示,找出相应的等量关系.三、解答题(共6小题,计72分.解答应写出过程)17.计算:(﹣1)98×()﹣(﹣2)4÷4.考点:有理数的混合运算.专题:计算题.分析:原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:原式=1×(﹣)﹣16×=﹣4=﹣.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:+2(x﹣)﹣(﹣3x2+2y2)﹣x,其中x=2,y=3.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=x2+2x﹣y2+x2﹣y2﹣x=x2+x﹣2y2,当x=2,y=3时,原式=5+3﹣18=﹣10.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.某村棉花的种植面积是a公顷,玉米的种植面积比棉花的种植面积的2倍多5公顷,蔬菜的种植面积比玉米的种植面积的3倍少2公顷,求棉花、玉米和蔬菜的种植面积和.考点:整式的加减.分析:根据题意得出玉米及蔬菜的种植面积,再把两式相加即可.解答:解:由题意得:玉米的种植面积是(2a+5)公顷,蔬菜的种植面积是[3(2a+5)﹣2]公顷,a+(2a+5)+[3(2a+5)﹣2]=a+2a+5+6a+13=(9a+18)(公顷).答:棉花、玉米和蔬菜的种植面积和为=(9a+18)公顷.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.周助平时骑自行车的速度为a km/h.今天风速为16km/h,他顺骑4个小时的路程是多少千米?逆风骑2个小时的路程是多少千米?两个路程相差多少千米?考点:整式的加减.分析:先根据顺风骑的路程=(a+16)×4,逆风骑的路程=(a﹣16)×2,再作查差比较其大小即可.解答:解:∵周助平时骑自行车的速度为a km/h.今天风速为16km/h,∴顺风骑的路程=(a+16)×4=(4a+64)千米,逆风骑的路程=(a﹣16)×2=(2a﹣32)千米,∴(4a+64)﹣(2a﹣32)=4a+64﹣2a+32=(2a+96)(千米).答:周助顺骑4个小时的路程是(4a+64)千米,逆风骑2个小时的路程是(2a﹣32)千米,两个路程相差(2a+96)千米.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.21.(10分)(2014秋•旬阳县期中)某儿童服装店老板以25元的价格买进30件连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表所示:售出件数7 6 3 5 4 5售价/元+3 +2 +1 0 ﹣1 ﹣1问该服装店在售完这30件连衣裙后,赚了多少钱?考点:正数和负数.分析:认真审题,首先求出总售价的变化,再求出按标准售价进行出售所赚的钱数,加在一起就是最后赚的钱数.解答:解:7×3+6×2+3×1+5×0+4×(﹣1)+5×(﹣2)=21+12+3+0﹣4﹣10=22(元),(45﹣25)×30+22=20×30+22=622(元).答:赚了622元.点评:本题主要考查了正数与负数的意义,让学生理解正数与负数只是一种“记法”,理解“记法”与原数之间的关系是解题的关键,注意认真总结.22.(12分)(2014秋•旬阳县期中)某商场为了促销,推出两种促销方式:方式①:一次性购物超过100元,所有商品打七折;方式②:一次性购物超过100元,超过的部分减半.(1)若单老师一下性购买的商品的标价总额为a(a>100)元,按照方式①付款,单老师实际应付多少钱?按照方式②付款,单老板实际应付多少钱?(2)夏目帮叔叔一次性购买的商品的标价总额为170元,参加促销活动,哪种方式更划算?为什么?若一次性购买的商品的标价总额为370元呢?考点:列代数式;代数式求值.分析:(1)按照两种方式直接列出代数式即可;(2)分别代入数值计算,比较得出答案即可.解答:解:(1)方式①付款:0.7a(元)方式②付款:100+0.5(a﹣100)=0.5a+50(元);(2)商品的标价总额为170元,参加促销活动,方式①更划算;方式①:170×0.7=119(元)方式②:0.7×170+50=135(元)119<135所以方式①更划算;商品的标价总额为370元,参加促销活动,方式②更划算;方式①:370×0.7=259(元)方式②:0.7×370+50=235(元)259>235所以方式②更划算.点评:此题考查列代数式以及代数式求值,理解优惠方法,列出代数式是解决问题的前提.。

河东区2015-2016年度七年级第一学期期末数学期末含答案


21.(6 分)已知满足下列条件: ⑴ x −5 + m = 0 ⑵ −2ab
y +1
与 4ab 是同类项
2
3
求式子 2 x − 3 xy + 6 y − m(3 x − xy + 9 y ) 的值
2
22. (4 分) 如图, ∠AOB= 120°, ∠COD= 20°, OE 平分 ∠AOC ,OF 平分 ∠BOD , 求 ∠EOF 的度数
25.(8 分)探索性问题: 已知:b 是最小的正整数,且 a, b, c 满足 (c − 5) 2 + a + b = 0 请回答问题 (1)请直接写出 a, b, c 的值 (2) a, b, c 所对应的点分别为 A, B, C ,点 P 为动点,其对应的数为 x ,点 P 在 0 和 2 之 间运动时(即 0 ≤ x ≤ 2 时),请化简式子: x + 1 − x − 1 + 2 x + 3 (请写出化简过程) (3)在(1)(2)的条件下,点 A, B, C 开始在数轴上运动,若点 A 以每秒 1 个单位长度 的速度向左运动,同时,点 B 和点 C 分别以每秒 2 个单位长度和 5 个单位长度的速度向右 运动,假设 t 秒钟过后,若点 B 与点 C 之间的距离表示为 BC ,点 A 与点 B 之间的距离表 示为 AB .请问: BC − AB 的值是否随着时间 t 的变化而改变?若变化,请说明理由;若 不变,请求其值.
(19)⑴ 36°30 '54" ⑵
(20)⑴ x = −
(21) (1) x = 5 ; m = 0 (2) 2 x 2 − 3 xy + 6 y 2 = 44 (22)证明: ∵OE 平分∠AOC ∴∠AOE=∠EOC ∵OF 平分∠BOD ∴∠DOF=∠BOF ∵∠AOB=120°,∠COD=20° ∴2∠EOC+∠COD+2∠DOF=120° ∴∠EOF=∠EOC+∠COD+∠DOF=70° (23)⑴∵E 是 BC 中点 ∴BE=EC ∵AC=BD

2015-2016学年上期中7数试题(2)

2015—2016七年级数学一、精心选一选(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内. 1. -2的相反数的倒数是 【 】 (A )2 (B )21 (C )-2 (D )21- 2. 检验工件时,将超过标准质量的克数记作正数,不足标准质量的克数记作负数. 下列4个工件中,最接近标准的工件是 【 】(A )-2 (B )-3 (C )3 (D )53.有理数a 、b 在数轴上表示的点的位置如下图,则下列结论:①0<+b a ;②0<-b a ;③0<ab ;④0<ba.其中正确的个数是 【 】(A )1个 (B )2个 (C )3个 (D )4个4. 已知5=a ,3=b ,且0<+b a ,则ab 的值是 【 】 (A )15 (B )-15 (C )15或-15 (D )-2或-85.若m ,n 都是有理数,且()0232=++-n m ,则n m 2+的值为 【 】(A )-1 (B )1 (C )4 (D )76. 为庆祝抗日战争胜利70周年,我县某楼盘让利于民,决定将原价a 元/米2的商品房降价10%销售,降价后的销售价为 【 】(A )%10-a (B )%10⋅a (C )%)101(-a (D )%)101(+a 7. 已知21<<-m ,则化简31-++m m 的结果是 【 】 (A )-4 (B )4 (C )m 22- (D )22-m8. 对于有理数a ,b ,规定一种运算:a ※()b a b -=1,下面给出的关于这种运算的四个结论中正确的是 【 】(A )2※(-2)=-4 (B )a ※b b =※a (C )(-2)※2=2 (D )若a ※0=b ,则0=a 二、细心填一填(每小题3分,共21分)9. 由中国发起创立的亚洲基础设施投资银行(简称“亚投行”)总部设在北京,其法定资本为100 000 000 000美元,用科学记数法表示为 美元.10. 一只蚂蚁沿数轴从点A 向右直爬10个单位到达点B ,已知点B 表示的有理数为-3,则点A 表示的有理数是 .11.单项式322yx -的系数与次数之积是 .12.按照如下图所示的计算机程序计算,若开始输入1-=x ,则输出的值为 .13.若单项式1331+n ba 与3122b am -是同类项,则n m +3的值是 .14.已知a 与b 是互为倒数,c 与d 互为相反数,m 是最大的负整数,则代数式22m d c ab ---的值为 .15. 观察下列图形,按照这样的规律,第n 个图形有 个★.三、专心做一做(本大题8个小题,共75分) 16.(16分)计算:(1)()()()()28351736--+--+- (2)()3212312139-+⨯⎪⎭⎫ ⎝⎛-+÷-(3)()()()b a b a b a 23322-+--+ (4)()()()xy y x xy y xy x -+---+-22222332217.(7分)长方形的长是x 3cm ,宽是4cm ,梯形的上底是x cm ,下底是上底长的3倍,高是5cm.试通过计算说明哪个图形的面积大?大多少?第1个图形第2个图形第3个图形第4个图形★ ★★ ★ ★ ★ ★ ★ ★★ ★ ★★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ……★ ★ ★ ★ ★ ★ ★ ★ ★★18.(9分)先化简,再求值:(1)()()22222222y x x y y x +--+,其中1=x ,21-=y .(2)()()22222342b a b a +---,其中a 、b 满足()0212=++-b a .19.(8分)一个多项式加上2352-+x x 的2倍得到x x +-231,求这个多项式,并指出其次数和项数.20.(9分)粮库3天内进出库的记录如下(进库的吨数记为正数,出库的吨数记为负数): +26,-32,-25,+34,-38,+10.(1)经过这3天,库里的粮食是增多了还是减少了?(2)经过这3天,仓库管理员结算发现库存粮食480吨,那么3天前的库存是多少吨? (3)如果进出的装卸费都是5元/吨,求这3天的装卸费.21.(8分)马小虎同学做这样一道数学题:“计算代数式()()()32332322332232y y x x y xy x xy y x x-+-++----的值,其中21=x ,1-=y .”他误将“21=x ”看成“21-=x ”,但计算的最后结果竟然也和正确答案一样,试说明理由,并求出正确答案.22.(7分)下表给出了某班6名同学身高的情况(单位cm):(2)这6名同学中,身高最高与最矮的相差 cm.(3)求这6名同学的平均身高.23.(11分)某公司计划组织部分员工到上海旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,并且都对10人以上的团体推出了优惠举措:甲旅行社对每位员工的费用打七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工打八折优惠.(1)①如果设参加旅游的员工共有a人(a>10),则甲旅行社的费用为元,乙旅行社的费用为元(用含a的代数式表示,并化简);②假如这个公司要组织包括管理员工在内的共20名员工到北京旅游,选择哪一家旅行社比较优惠?请说明理由.(2)如果公司计划在7月份外出旅游七天:①设最中间一天的日期为m,则这七天的日期之和为.(用含m的代数式表示,并化简)②假如这七天的日期之和为63的倍数,则他们可能于7月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年天津市河东区七中片七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.﹣|﹣|的相反数是( )A.B.﹣C.D.﹣2.“全民行动,共同节约”,我国13亿人口如果都响应国家号召每人每年节约1度电,一年可节约电1 300 000 000度,1 300 000 000用科学记数法表示为( )A.1.30×108B.1.3×109C.0.13×1010D.1.3×10103.下列代数式中单项式共有( ),﹣xy2,﹣0.5,,,ax2+bx+c,a2b3,.A.2个B.3个C.4个D.5个4.若﹣5x2n+1y4与能够合并,则2n﹣1的值是( )A.5 B.6 C.7 D.85.下列各数互为相反数的是( )A.32与﹣23B.32与(﹣3)2C.32与﹣32D.﹣32与﹣(﹣3)26.若m,n为自然数,多项式x m+y n+4m+n的次数应是( )A.m B.nC.m,n中的较大数D.m+n7.下列各题去括号所得结果正确的是( )A.x2﹣(x﹣y+2z)=x2﹣x+y+2z B.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1C.3x﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1 D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣28.若a<b,则3|b﹣a+1|﹣2|a﹣b|等于( )A.1 B.a+b C.﹣a+b+1 D.b﹣a+39.如果a>0,b<0,a+b<0,那么下列各式中大小关系正确的是( )A.﹣b<﹣a<b<a B.﹣a<b<a<﹣b C.b<﹣a<﹣b<a D.b<﹣a<a<﹣b10.已知x=3时,代数式ax3+bx+1的值是﹣2009,则当x=﹣3时代数式的值为( ) A.2009 B.2010 C.2011 D.2012二、填空题(每小题3分)11.满足3.5<|x|≤9的x的整数值是__________.12.已知|x|=2,|y|=5,且x>y,则x+y=__________.13.5x3﹣3x4﹣0.1x+25是__________次多项式,最高次项的系数是__________,常数项是__________.14.当a=2.7,b=﹣3.2,c=﹣1.8时,则﹣a﹣b﹣c=__________.15.比较大小﹣|﹣3.5|__________﹣[﹣(﹣3.5)];﹣|﹣2.7|__________﹣2;﹣__________﹣.16.A、B数轴上的两个点,且两点之间的距离是5,若点A表示的数是3,则点B表示的数是__________.17.一种商品每件成本a元,原来按成本增加22%定出价格,每件售价__________元,现在由于库存积压减价,按原价的85%出售,现在售价是__________元,每件盈利__________元.18.如果m、n为整数,且|m﹣2|+|m﹣n|=1,那么m+n的值为__________.三、计算题19.(16分)计算(1)6+24+4﹣16﹣6.8﹣3.2(2)[﹣]+[1+(﹣)×](3)[1]2+[(1﹣)×]3(4)[(2)(2)+(2)2]÷(3)20.化简求值:(1)4(2x2﹣3x+1)﹣2(4x2﹣2x+3)(2)(2x2y﹣2xy2)﹣[(﹣3x2y2+3x2y)+(3x2y2﹣3xy2)],其中x=﹣1,y=﹣2.(3)若xy=4,x﹣y=,求3(xy﹣)﹣(2x+4xy)﹣2(﹣2x+y)四、解答题21.若x与y互为相反数,m与n互为倒数,|a|=1,求a2﹣(x+y+mn)的值.22.若关于x,y的多项式x2+ax﹣y+6和bx2﹣3x+6y﹣3的差的值与字母x的取值无关,求a和b的值.2015-2016学年天津市河东区七中片七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.﹣|﹣|的相反数是( )A.B.﹣C.D.﹣【考点】绝对值;相反数.【分析】先算出﹣|﹣|,再求其相反数即可.【解答】解:﹣|﹣|=﹣,﹣的相反数为,故选:C.【点评】用到的知识点为:a的相反数是﹣a;负数的绝对值是正数;负数的相反数是正数.2.“全民行动,共同节约”,我国13亿人口如果都响应国家号召每人每年节约1度电,一年可节约电1 300 000 000度,1 300 000 000用科学记数法表示为( )A.1.30×108B.1.3×109C.0.13×1010D.1.3×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 300 000 000有10位,所以可以确定n=10﹣1=9.【解答】解:1 300 000 000=1.3×109.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.下列代数式中单项式共有( ),﹣xy2,﹣0.5,,,ax2+bx+c,a2b3,.A.2个B.3个C.4个D.5个【考点】单项式.【分析】根据数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.【解答】解:根据单项式的定义可得:﹣xy2,﹣0.5,,a2b3,是单项式,共有5个.故选:D.【点评】本题主要考查了单项式的定义,正确把握单项式的定义是解题关键.4.若﹣5x2n+1y4与能够合并,则2n﹣1的值是( )A.5 B.6 C.7 D.8【考点】同类项.【分析】根据两单项式能够合并,可判断这两个单项式为同类项,再由同类项的定义,可得n的值,继而得出2n﹣1的值.【解答】解:∵﹣5x2n+1y4与能够合并,∴﹣5x2n+1y4与是同类项,∴2n+1=8,∴2n=7,∴2n﹣1=6.故选B.【点评】本题考查了同类项的知识,解答本题的关键是熟练掌握合并同类项的法则及同类项的定义.5.下列各数互为相反数的是( )A.32与﹣23B.32与(﹣3)2C.32与﹣32D.﹣32与﹣(﹣3)2【考点】有理数的乘方;相反数.【分析】首先根据乘方的意义计算各个数,或根据乘方的性质,即可判断.【解答】解:A、32=9,﹣23=﹣8,不是相反数,故A选项错误;B、32=(﹣3)2,不是相反数,故B选项错误;C、32的相反数是﹣32,故C选项正确;D、﹣32=﹣(﹣3)2=﹣9,不是相反数,故D选项错误.故选:C.【点评】本题主要考查了相反数的定义,关键是理解乘方的意义以性质.6.若m,n为自然数,多项式x m+y n+4m+n的次数应是( )A.m B.nC.m,n中的较大数D.m+n【考点】多项式.【分析】直接利用多项式的次数的定义分析得出答案.【解答】解:∵m,n为自然数,∴多项式x m+y n+4m+n的次数应是:m,n中的较大数.故选:C.【点评】此题主要考查了多项式,正确把握相关定义是解题关键.7.下列各题去括号所得结果正确的是( )A.x2﹣(x﹣y+2z)=x2﹣x+y+2z B.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1C.3x﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1 D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣2【考点】去括号与添括号.【分析】根据去括号的方法逐一验证即可.【解答】解:根据去括号的方法可知,x2﹣(x﹣y+2z)=x2﹣x+y﹣2z,故A错误;x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1,故B正确;3x﹣[5x﹣(x﹣1)]=3x﹣(5x﹣x+1)=3x﹣5x+x﹣1,故C错误;(x﹣1)﹣(x2﹣2)=x﹣1﹣x2+2,故D错误.故选B.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号.8.若a<b,则3|b﹣a+1|﹣2|a﹣b|等于( )A.1 B.a+b C.﹣a+b+1 D.b﹣a+3【考点】整式的加减;绝对值.【专题】计算题.【分析】根据题意确定出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:∵a<b,∴a﹣b<0,b﹣a+1>0,则原式=3b﹣3a+3+2a﹣2b=b﹣a+3,故选D【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.如果a>0,b<0,a+b<0,那么下列各式中大小关系正确的是( )A.﹣b<﹣a<b<a B.﹣a<b<a<﹣b C.b<﹣a<﹣b<a D.b<﹣a<a<﹣b 【考点】有理数大小比较.【分析】首先根据题目所跟的条件确定a、b的正负,以及绝对值的大小,再根据分析画出数轴标出a、b、﹣a、﹣b在数轴上的位置,根据数轴上的数左边的总比右边的小即可选出答案.【解答】解:∵a>0,b<0,∴a为正数,b为负数,∵a+b<0,∴负数b的绝对值较大,则a、b、﹣a、﹣b在数轴上的位置如图所示:,由数轴可得:b<﹣a<a<﹣b,故选:D.【点评】此题主要考查了有理数的比较大小,关键是利用数轴表示出a、b、﹣a、﹣b在数轴上的位置.10.已知x=3时,代数式ax3+bx+1的值是﹣2009,则当x=﹣3时代数式的值为( ) A.2009 B.2010 C.2011 D.2012【考点】代数式求值.【分析】把x=3代入代数式,求出27a+3b+1的值,再把x=﹣3代入代数式并整体代入求解即可.【解答】解:将x=3代入得:原式=27a+3b+1=﹣2009.∴27a+3b=﹣2009﹣1=﹣2010.∴﹣27a﹣3b=2010.将x=﹣3代入得:原式=﹣27a﹣3b+1=2010+1=2011.故选:C.【点评】本题主要考查的是求代数式的值,整体代入是解题的关键.二、填空题(每小题3分)11.满足3.5<|x|≤9的x的整数值是﹣9、﹣8、﹣7、﹣6、﹣5、﹣4、4、5、6、7、8、9.【考点】有理数大小比较;绝对值.【分析】根据3.5<|x|≤9,可得|x|=4、5、6、7、8、9,据此求出满足3.5<|x|≤9的x 的整数值是多少即可.【解答】解:∵3.5<|x|≤9,∴|x|=4、5、6、7、8、9,∴满足3.5<|x|≤9的x的整数值是:﹣9、﹣8、﹣7、﹣6、﹣5、﹣4、4、5、6、7、8、9.故答案为:﹣9、﹣8、﹣7、﹣6、﹣5、﹣4、4、5、6、7、8、9.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.12.已知|x|=2,|y|=5,且x>y,则x+y=﹣3或﹣7.【考点】有理数的加法;绝对值.【专题】分类讨论.【分析】先求得x、y的值,然后根据x>y分类计算即可.【解答】解:∵|x|=2,|y|=5,∴x=±2,y=±5.∵x>y,∴x=2,y=﹣5或x=﹣2,y=﹣5.∴x+y=2+(﹣5)=﹣3或x+y=﹣2+(﹣5)=﹣7.故答案为:﹣3或﹣7.【点评】本题主要考查的是有理数的加法、绝对值的性质,分类讨论是解题的关键.13.5x3﹣3x4﹣0.1x+25是四次多项式,最高次项的系数是﹣3,常数项是25.【考点】多项式.【分析】直接利用多项式的次数以及最高项的定义、常数项定义分别分析得出答案.【解答】解:5x3﹣3x4﹣0.1x+25是四次多项式,最高次项的系数是:﹣3,常数项是:25.故答案为:四,﹣3,25.【点评】此题主要考查了多项式,正确把握相关定义是解题关键.14.当a=2.7,b=﹣3.2,c=﹣1.8时,则﹣a﹣b﹣c=2.3.【考点】代数式求值.【分析】将a=2.7,b=﹣3.2,c=﹣1.8代入计算即可.【解答】解:原式=﹣2.7﹣(﹣3.2)﹣(﹣1.8)=﹣2.7+3.2+1.8=﹣2.7+5=2.3.故答案为:2.3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.比较大小﹣|﹣3.5|=﹣[﹣(﹣3.5)];﹣|﹣2.7|<﹣2;﹣>﹣.【考点】有理数大小比较.【分析】(1)首先分别求出左右两边的值各是多少,然后根据有理数大小比较的方法判断即可.(2)首先求出左边的值是多少,然后根据两个负数,绝对值大的其值反而小,比较出它们的大小关系即可.(3)两个负数,绝对值大的其值反而小,据此比较出它们的大小关系即可.【解答】解:根据分析,可得(1)﹣|﹣3.5|=﹣[﹣(﹣3.5)];(2)﹣|﹣2.7|<﹣2;(3)﹣>﹣.故答案为:=、<、>.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.16.A、B数轴上的两个点,且两点之间的距离是5,若点A表示的数是3,则点B表示的数是8或﹣2.【考点】数轴.【分析】根据题意得出两种情况,当点B在点A的右边时,当点B在点A的左边时,分别求出即可.【解答】解:当点B在点A的右边时,3+5=8;当点B在点A的左边时,3﹣5=﹣2.故点B表示的数是8或﹣2.故答案为:8或﹣2.【点评】本题考查了数轴的应用,关键是能求出符合条件的所有情况.17.一种商品每件成本a元,原来按成本增加22%定出价格,每件售价1.22a元,现在由于库存积压减价,按原价的85%出售,现在售价是1.037a元,每件盈利0.037a元.【考点】列代数式.【分析】根据每件成本a元,原来按成本增加22%定出价格,列出代数式,再进行整理即可;用原价的85%减去成本a元,列出代数式,即可得出答案.【解答】解:∵每件成本a元,原来按成本增加22%定出价格,∴每件售价为(1+22%)a=1.22a(元);现在售价:1.22a×85%=1.037a(元);每件还能盈利1.037a﹣a=0.037a(元);故答案为:1.22a;1.037a;0.037a.【点评】此题考查了列代数式,利用销售问题中的基本等量关系,把列出的式子进行整理.18.如果m、n为整数,且|m﹣2|+|m﹣n|=1,那么m+n的值为3,或5,或6,或2.【考点】一元二次方程的整数根与有理根;绝对值;二元一次方程的解.【专题】计算题;分类讨论.【分析】根据条件|m﹣2|+|m﹣n|=1,分情况讨论①|m﹣2|=0时,|m﹣n|=1;②|m﹣2|=1时,|m﹣n|=0;然后分别可以求出m的值,进而得到n的值,最后分别计算m+n的值.【解答】解:当|m﹣2|=0时,|m﹣n|=1,∴m=2,n=1或n=3,∴m+n=3或5.当|m﹣2|=1时,|m﹣n|=0,∴m=3或m=1,n=m,∴m+n=6或2.综上,m+n=3,或5,或6,或2.故答案为:3或5或6或2.【点评】此题主要考查了有理数的绝对值和数学中的分类讨论思想的运用,分类讨论时要考虑全面,此题比较简单,基础性较强.三、计算题19.(16分)计算(1)6+24+4﹣16﹣6.8﹣3.2(2)[﹣]+[1+(﹣)×](3)[1]2+[(1﹣)×]3(4)[(2)(2)+(2)2]÷(3)【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘法运算,再计算加减运算即可得到结果;(3)原式先计算括号中的运算,再计算乘方运算,最后算加减运算即可得到结果;(4)原式变形后,利用多项式除以单项式法则计算即可得到结果.【解答】解:(1)原式=(6+4)+(24﹣16)﹣(6.8+3.2)=11+8﹣10=9;(2)原式=﹣1+1+=;(3)原式=﹣=;(4)原式=﹣[(2+3)(2﹣3)+(2﹣3)2]÷(2﹣3)=﹣(2+3)﹣(2﹣3)=﹣5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.化简求值:(1)4(2x2﹣3x+1)﹣2(4x2﹣2x+3)(2)(2x2y﹣2xy2)﹣[(﹣3x2y2+3x2y)+(3x2y2﹣3xy2)],其中x=﹣1,y=﹣2.(3)若xy=4,x﹣y=,求3(xy﹣)﹣(2x+4xy)﹣2(﹣2x+y)【考点】整式的加减—化简求值;整式的加减.【专题】计算题.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(3)原式去括号合并整理后,将已知等式代入计算即可求出值.【解答】解:(1)原式=8x2﹣12x+4﹣8x2+4x﹣6=﹣8x﹣2;(2)原式=2x2y﹣2xy2+3x2y2﹣x2y﹣3x2y2+3xy2=﹣x2y+xy2,当x=﹣1,y=﹣2时,原式=2﹣4=﹣2;(3)原式=3xy﹣y﹣x﹣2xy+4x﹣2y=xy+3x﹣3y=xy+3(x﹣y),当xy=4,x﹣y=时,原式=4+1=5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.四、解答题21.若x与y互为相反数,m与n互为倒数,|a|=1,求a2﹣(x+y+mn)的值.【考点】代数式求值;相反数;绝对值;倒数.【分析】根据题意得:x+y=0,mn=1,a2=1,然后代入数值进行计算即可.【解答】解:∵x与y互为相反数,m与n互为倒数,|a|=1,∴x+y=0,mn=1,a2=1.∴原式=1﹣(0+1)=1﹣1=0.【点评】此题考查了代数式求值,求得x+y=0,mn=1,a2=1是解本题的关键.22.若关于x,y的多项式x2+ax﹣y+6和bx2﹣3x+6y﹣3的差的值与字母x的取值无关,求a和b的值.【考点】整式的加减.【专题】计算题.【分析】根据题意列出关系式,去括号合并后,由结果与x的取值无关求出a与b的值即可.【解答】解:根据题意得:x2+ax﹣y+6﹣(bx2﹣3x+6y﹣3)=x2+ax﹣y+6﹣bx2+3x﹣6y+3=(1﹣b)x2+(a+3)x﹣7y+9,由结果与x取值无关,得到1﹣b=0,a+3=0,解得:a=﹣3,b=1.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.某户5月份用水x(x>18)吨,则水费为多少元?若用水28吨,则水费多少元?【考点】列代数式;代数式求值.【分析】利用水费是12吨的收费,加上超过12吨不超过18吨的部分的6吨收费,再加上超过18吨的部分的收费列出代数式,进一步代入求得数值即可.【解答】解:当x>18时,水费=12×2+(18﹣12)×2.5+(x﹣18)×3=3x﹣15,当x=28时,水费=3×28﹣15=69元.【点评】本题考查了列代数式,关键是看懂表格,理解收费标准的分段含义.11。

相关文档
最新文档