运动生理学
运动生理学ppt课件全完整版

理学的理论体系。
运动生理学的研究方法
动物实验法
人体实验法
通过动物实验模拟人体运动过程,研究运动 对机体的影响及其机制。
通过人体实验观察运动过程中的生理反应和 适应变化,探讨运动对人体机能的影响。
调查法
数学建模法
通过问卷调查、访谈等方式收集运动员或普 通人群的运动经历、身体状况等信息,分析 运动与健康的关系。
合理营养补充
运动后及时补充蛋白质、糖、维生素 和矿物质等营养素,促进身体恢复。
按摩与理疗
通过按摩、热敷、冷敷等理疗手段缓 解肌肉紧张和疼痛,促进血液循环和 淋巴循环。
心理调适
采用心理暗示、放松训练等方法缓解 运动性心理疲劳,提高运动员自信心 和斗志。
07 运动处方及营养补充策 略
运动处方的制定与实施
关节结构
关节功能
关节疾病与损伤
纤维关节、软骨关节、 滑膜关节
关节面、关节囊、关节 腔
连接骨骼、提供运动范 围、吸收冲击
关节炎、关节脱位、韧 带损伤等
肌肉结构与功能
肌肉结构
肌纤维、肌膜、肌 束膜、肌外膜
肌肉收缩与舒张
兴奋-收缩耦联机制、 肌丝滑行理论
肌肉类型
骨骼肌、心肌、平 滑肌
肌肉功能
产生运动、维持姿 势、保护内脏器官
有氧氧化系统概述 介绍有氧氧化系统的基本概念、代谢途径及其在运动中的 供能作用。
脂肪酸的氧化与利用 详细阐述脂肪酸在体内的氧化代谢过程,包括脂肪酸的活 化、转运和氧化等步骤,以及脂肪酸在运动中的利用情况。
碳水化合物的有氧氧化 探讨碳水化合物在体内有氧氧化代谢的过程,包括葡萄糖 的摄取、转运和氧化磷酸化等步骤,以及碳水化合物在运 动中的供能作用。
运动生理学

运动生理学一、名词解释1、射血分数:每搏输出量占心室舒张末期的容积百分比,称为射血心数2、主动重吸收:肾小管上皮细胞能逆着浓度差,将滤液中的溶质转运到血液内。
转运是依靠管膜的载体和酶组成的“泵”而进行的。
在转动过程中需消耗一定的能量。
这种重吸收过程称为主动重吸收3、前庭反射:指前庭器官受到刺激产生兴奋后,除引起一定位置觉改变以外,还引起骨骼肌紧张性改变、眼震颤及植物性功能改变4、运动性疲劳:在运动过程中,当机体生理过程不能继续保持在特定水平上进行和/或不能维持预定的运动强度时,即称之为运动性疲劳5、极点:在进行强度较大、持续时间较长的剧烈运动中,由于运动开始阶段内脏器官的活动不能满足运动器官的需要,练习者常常产生一些非常难受的生理反应,如呼吸困难、胸闷、头晕、心率剧增、肌肉酸软无力、动作迟缓不协调,甚至产生停止运动的念头等,这种机能状态称为“极点”(extreme)。
6、最大摄氧量:最大摄氧量是指人体在进行有大量肌肉群参加的长时间剧烈运动中,当心肺功能和肌肉利用氧的能力达到本人极限水平时,单位时间内(通常以每分钟为计算单位)所能摄取的氧量称为最大摄氧量。
最大摄氧量也称为最大吸氧量或最大耗氧量7、运动后过量痒耗:运动结束后,肌肉活动虽然停止,但机体的摄氧量并不能立即恢复到运动前相对安静的水平。
将运动后恢复期处于高水平代谢的机体恢复到安静水平消耗的氧量称为运动后过量氧耗。
8、运动处方:根据参加活动者的体适能水平和健康状况以处方形式确定其活动强度、时间、频率和活动方式,这如同临床医生根据病人的病情开出不同的药物和不同的用量的处方一样,故称运动处方9、体适能:在应付日常工作之余,身体不会感到过度疲倦,还有余力去享受休闲及应付突发事件的能力。
10、超量恢复:在运动中消耗的能源物质在运动后一段时间恢复到原来水平,甚至超过原来的水平的现象二、填空1、引起兴奋的条件为刺激强度、刺激的作用时间、刺激强度变化率。
2、细肌丝主要由肌动蛋白、原肌球蛋白和肌钙蛋白组成。
运动生理学

运动生理学
运动生理学是研究人体在运动过程中的生理变化和适应机制的学科。
它主要关注以下几个方面:
1. 能量代谢:运动时,人体需要能量来支持肌肉运动和维持各种生理功能。
运动生理学研究能量的产生、储存和利用等过程。
2. 心血管系统:运动时,心脏会加快跳动,血液循环也有所改变。
运动生理学研究心血管系统在运动中的适应和调节。
3. 呼吸系统:运动时,呼吸速度和深度都会增加,以提供更多的氧气供给肌肉。
运动生理学研究呼吸系统在运动中的适应和调节。
4. 肌肉系统:运动时,肌肉会产生力,以完成各种动作。
运动生理学研究肌肉运动的机制和肌肉在运动中的适应。
5. 神经系统:运动时,神经系统会传递指令给肌肉,以完成各种动作。
运动生理学研究神经系统在运动中的适应和调节。
6. 内分泌系统:运动时,内分泌系统会分泌激素来调节身体的各种功能。
运动生理学研究激素在运动中的作用和调节。
通过研究运动生理学,我们可以了解人体在运动中的生理反应和调节机制,从而更好地指导运动训练和健康管理。
运动生理学

①最高水平:大脑新皮层的联合皮质和大脑基底神经节为代表,负责运动的战略,即确定运动的目标和达到目标的最佳运动策略。②中间水平:运动皮质和小脑为代表,负责运动的战术,即肌肉收缩的顺序、运动的空间和时间安排以及如何使运动协调而准确地达到预定的目标。③最低水平:脑干和脊髓为代表,负责运动的执行,即激活那些发起目标定向运动的运动神经元和中间神经元池,一对姿势进行必要的调整。
②慢性运动可导致运动或能量节省化。即当机体在同等负荷运动下能达到更大的功率输出或更高的摄氧量水平,表明机体的运动节省化程度提高。运动的节省化较最大摄氧量具有更高的可训练性。
③大强度运动中,各能量代谢系统对能量供应的参与并非以顺序出现,而是相互整合、协调,共同满足机体的能量需求。
第二章
1、兴奋性:生物体具有对刺激发生反应的能力称为兴奋性。
大强度运动中,各能量代谢系统对能量供应的参与并非以顺序出现,而是相互整合、协调,共同满足体力活动的基本器官肌肉对能量的需求。一般来讲,依运动模式、运动持续时间和强度不同,三种供能系统都参与能量供应,只不过各自占据的比例不同。
7、试述能量代谢对慢性运动的适应?P27
①慢性运动可上调其主要能量代谢功能系统的酶活性,使急性运动对神经激素的调节更加敏感,内环境变化使器官功能更加协调,同时加速能源物质以及各代谢调节系统的恢复,促进疲劳消除,从而提高运动能力。
6、视觉、听觉、位觉、本体感觉的感受装置是什么?其感受何种刺激?P63-P68视觉:视网膜受眼刺激
听觉:螺旋器受耳刺激
位觉:囊斑,半规管壶腹峭身体各种变速运动和重力不平衡时产生的感受刺激本体:肌梭和腱器官肌肉长度变化,肌肉张力刺激
第四章
1、糖皮质急速的生理作用?P86
运动生理学!

1、运动生理学:(是人体生理学的分支),是专门研究人体的运动能力和运动的反应与适应过程的科学,是体育科学中一门重要的应用基础理论科学,也是一门实验性科学。
2、深吸气量:补吸气量与潮气量之和为深吸气量。
3、心力储备:心力储备是指心输出量随机体代谢需要而增加的能力。
4、通气/血流比值:每分肺泡通气量和肺血流量(心输出量)的比值称通气/血流比值。
5、有氧氧化系统:是指糖、脂肪和蛋白质在细胞内(主要是线立体内)彻底氧化成H2O和CO2的过程中,再合成ATP的能量系统。
6、乳酸能系统:是指糖原或葡萄糖在细胞浆内无氧分解生成乳酸的过程中(又称糖酵解),再合成ATP的能量系统。
7、血压:是指血内流动的血液对血管壁的侧压力。
8、视野:单眼不动注视前方一点时,该眼所能看到的范围,称为视野。
9、时间肺活量:最大吸气后单位时间(秒)内最快呼出的气体量占总呼出气体量的百分数。
10、渗透压:高浓度溶液所具有的吸引和保留水分子的能力。
11、无氧耐力:是指机体在无氧代谢的情况下较长时间进行肌肉活动的能力。
12、最大摄氧量:是指人体在进行有大量肌肉参加的长时间激烈运动中,心肺功能和肌肉利用氧的能力达到本人极限水平时,单位时间(每分钟)所能摄取的最大氧量。
13、前庭功能稳定性:刺激前庭感受器而引起机体各种前庭反应的程度,称为前庭功能稳定性。
14、运动性疲劳:机体的生理过程不能持续其机能在一特点水平或不能维持预定的运动强度的状态。
15、进入工作状态:在进行体育练习时,运动开始后的一段时间内,人的机体工作能力不可能立刻达到高水平,而是有一个逐步提高的过程,这一提高过程称为进入工作状态。
16、极点:在进行剧烈运动开始阶段,内脏器官的活动满足不了运动器官的需要,出现一系列暂时性生理机能低下综合症。
17、超等长练习:肌肉在离心收缩之后紧接着进行向心收缩的力量训练方法。
如多极跳、深跳等。
18、速度:是指人体进行快速运动的能力或用最短时间完成某种运动的能力。
运动生理学

1.运动生理学:是人体生理学的分支,是专门研究人体的运动能力和对运动的反应与适应过程的科学,是体育科学中一门重要的应用基础理论学科。
2.动作电位:可兴奋细胞兴奋时,细胞内产生的可扩布的电位变化称为动作电位。
3.运动单位:一个a-运动神经元和受其支配的纤维所组成的最基本的肌肉收缩单位称为运动单位。
4.肌电图:用适当的方法将骨骼肌兴奋时发生的电位变化引导、放大并记录所得到的图形,称为肌电图。
5.运动单位动员:参与活动的运动单位数目与兴奋频率的结合,称为运动单位动员。
6.生物体的生命现象的基本特征:新城代谢、兴奋性、应激性、适应性和生殖。
7.细肌丝的组成:肌动蛋白、原肌球蛋白和肌钙蛋白。
8.训练对肌纤维的影响:肌纤维选择性肥大、酶活性改变。
9.骨骼肌的物理特性:伸展性、弹性和粘滞性。
10.人体生理机能的调节:神经调节、体液调节、自身调节和生物节律。
11.为什么在最大用力收缩时离心收缩产生的张力比向心收缩大?答:首先是牵张反射,肌肉受到外力的牵张时会反射性的引起肌肉强烈收缩。
其次离心收缩时肌肉的弹性成分被拉长而产生阻力;而向心收缩时,肌肉收缩产生的张力有一部分是用来克服弹性阻力的。
12.细胞压积:红细胞在全血中所占的容积百分比,男子约0.4-0.5,女子约0.37-0.48。
13.碱贮备:每100毫升血浆的碳酸氢钠含量。
14.运动员血液:经过良好训练的运动员,由于运动训练使血液的性状发生了一系列适应性变化,如纤维蛋白溶解作用增加、血容量增加、红细胞变形能力增加、血粘度下降等;这种变化在运动训练停止后是可以恢复的。
具有这种特征的血液称为运动员血液。
15.肾糖阀:尿中不出现葡萄糖的最高血糖浓度;正常人的为160-180mg%。
16.运动性蛋白尿:正常人在运动后出现的一过性蛋白尿。
17.正常成年人的血量占体重的7%-8%。
正常人全血的比重约为1.050-1.060之间,取决于红细胞和血浆蛋白的含量。
尿中含有淡黄色的尿胆素;尿的PH值一般介于5.0-7.0之间;尿的形成部位是肾单位和集合管。
运动生理学

绪论运动生理学:是从人体运动的角度研究人体在体育运动的影响下机能活动变化的科学。
第一章运动的能量代谢1、生命活动能量的来源:糖类、脂肪、蛋白质。
2、机内活动时能量供应的三个系统及各自的特点:(1)、磷酸原系统:供能总量少,持续时间短,功率输出最快,不需要氧,不产生乳酸之类的中介产物。
主要供高功率的运动项目如:短跑、投掷、跳跃、举重等项目;(2)、乳酸能系统:功能总量教磷酸原系统多、短功率输出次之、不需要氧,物质—乳酸,主要供应的运动项目1分钟高输出项目如:400米、100米游泳等;(3)、有氧氧化系统:ATP生成总量很大,但速率很低需要氧的参与。
3、基础代谢:是指人体在基础状态下得能量代谢。
单位时间内的基础代谢称为基础代谢率。
4、对急性运动种能量代谢的一个误区是认为有氧代谢系统对运2动能量需求的反应相对较慢,因而在短时大强度运动运动时并不扮演重要的角色。
(判断)第二章肌肉活动1、肌肉的物理特性:伸展性、弹性、黏滞性。
2、准备活动的意义:肌肉的物理特性受温度的影响。
当肌肉温度升高时,肌肉的黏滞性下降,伸展性和弹性增强。
反之~~~,做好充分的准备活动使肌肉的温度升高能降低肌肉的黏滞性,提高肌肉的伸展性和弹性,从而有利于提高运动成绩。
3、骨骼肌的生理特性及兴奋条件:(1)、兴奋性和收缩性;(2)、a、一定的刺激强度;b、持续一定的时间;c、一定强度时间的变化率。
4、动作电位:当细胞膜受到有效刺激时,膜两侧电位极性即暂时迅速的倒转称为动作电位。
5、神经纤维传导兴奋的特点:(1)、生理完整性;(2)、双向传导性;(3)、不衰减性和相对疲劳性;(4)、绝缘性。
6、肌小节:两相邻Z线间的一段肌原纤维称为肌小节。
是肌肉细胞收缩的基本结构和功能单位。
肌小节=1/2明带+暗带+1/2明带。
7、肌肉的兴奋—收缩偶联:把以肌膜的电变化特征的兴奋过程和以肌纤维的机械变化为基础的收缩过程之间联系起来,这一中介过程称为肌肉的兴奋—收缩偶联。
运动生理学(人体生理学分支名)

引言概述:运动生理学是人体生理学的一个重要分支,研究人体在运动和锻炼条件下各种生理功能的变化。
它关注的是人体在运动中的呼吸、心脏、血液循环、肌肉、能量代谢等方面的生理机制。
通过深入研究运动生理学,我们可以更好地理解人体在运动中的变化和适应过程,并为运动训练和康复提供科学依据。
正文内容:一、运动对呼吸系统的影响:1.呼吸频率和深度的增加:运动时,肺部需要更多氧气供应给身体,在运动过程中,呼吸频率和呼吸深度会随着运动强度的增加而增加,以满足身体的氧气需求。
2.肺活量的增加:长期运动会增加肺部功能,提高肺活量,使肺部更能有效地吸入和排出气体。
二、运动对心血管系统的影响:1.心脏收缩力的增加:长期有氧运动会增加心脏的收缩力,提高心脏泵血效率,使心脏能更好地将血液输送到全身各个器官和组织。
2.血管弹性的增加:运动可以增加血管内皮细胞的产生一氧化氮,促进血管扩张,增加血管弹性和血流量。
三、运动对肌肉系统的影响:1.肌肉力量的增加:通过力量训练,肌肉纤维数量和大小会增加,使肌肉更有力量,提高运动能力和抗疲劳能力。
2.肌肉耐力的增加:长期有氧运动可以增加肌肉中线粒体的数量,并提高线粒体的功能,使肌肉更具耐力和持久力。
四、运动对代谢系统的影响:1.脂肪代谢的增强:运动有助于提高机体的脂肪氧化能力,利用脂肪作为能量供应源,促进脂肪的分解和减少体脂肪含量。
2.糖代谢的调节:运动可以增加肌肉对葡萄糖的摄取和利用,降低血糖水平,预防糖尿病的发生。
五、运动对神经系统的影响:1.神经传导速度的提高:运动可以增加神经系统中神经元的髓鞘化程度,提高神经传导速度,使身体反应更敏捷。
2.大脑功能的改善:运动可以促进大脑皮层神经元的增长和连接,改善注意力、记忆力和学习能力。
总结:运动生理学研究了人体在运动中的各种生理变化和适应过程。
通过对运动对呼吸系统、心血管系统、肌肉系统、代谢系统和神经系统的影响的深入研究,我们可以了解到运动对人体的益处,为运动训练和康复提供科学依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动生理学
运动生理学是一门关注人体在运动环境中的生理反应和行为的
科学。
它探讨人体运动时的生理过程,特别关注运动对人体的影响,可以帮助解释和预测运动的行为、功能及潜在的健康问题。
运动生理学的目的在于研究运动对人体的影响,主要包括肌肉组织、血液循环、肺活量、氧合、消化和内分泌系统等。
这些生理系统密切相关,并且在进行体育运动时,可能会出现不利于运动员运动能力提高和身体健康的情况。
运动生理学多由心理因素、营养因素和环境条件等综合叠加影响而产生,因此,借助运动生理学可以更准确地把握运动的现象、机制及发挥适当的调节作用。
运动生理学研究主要关注以下几个方面:首先,研究遗传因素如何影响运动的能力和表现;其次,研究运动如何影响人体的健康、发育和发展;最后,研究如何通过营养、训练和其他环境因素改善运动员的运动表现。
运动生理学还研究如何通过可控输出系统来改善运动员的训练
效果,如使用三分钟小跑训练系统和高强度间歇训练系统等。
此外,运动生理学还开展了很多研究,以探索在运动中,为何有些人优于别人,其中还涉及到遗传因素、训练方式、人际关系、营养状况等。
研究显示,营养是提高运动能力和表现的重要因素,对运动员而言,营养也是一种潜在的竞争力,因为它影响人体机能和恢复力。
此外,运动生理学还研究高强度运动对运动员的潜在健康问题,如心血管疾病、肌肉应激、关节炎和运动伤害等。
借助运动生理学的研究,可以改善运动员的健康状况,提高运动能力,最终达到提高运动表现的目的。
因此,运动生理学是一门非常重要的科学,它不仅可以深入探索人体在运动中的生理反应和行为,还可以为运动员及其他运动爱好者提供相关的建议,改善运动表现,提高运动能力。