基坑边坡土钉支护计算
基坑支护结构——土钉支护

• 设计步骤: (1)初拟土钉墙参数 (2)土钉墙内部稳定性分析 (3)土钉墙整体稳定性分析 (4)构造及排水系统设计 (5)现场检测和质量控制设计
1.3《铁路路基支挡结构设计规范》方 法 1. 潜在破裂面的确定
hi≤1/2H时 l=(0.3~0.35)H hi>1/2H时 l=(0.3~0.35)(H- hi) l--潜在破裂面距墙面的距离 H--土钉墙墙高 hi--墙顶距第i层土钉的高度
2. 土压力计算
hi≤1/3H Ϭi=2λaγhicos(—α) hi>1/3H时 Ϭi=2/3λaγHcos(— α) Ϭi--水平土压应力 α--墙背与竖直面间夹角 γ--边坡岩土体容重 --墙背摩擦角 λa--库仑主动土压力系数
3.土钉拉力计算 式中:
Ei
iSxS y cos
Fi 2 d g lei g
式中:ɤ--钉材与砂浆间的粘结力按砂浆标准抗压强度fck地10%取值 db--土钉抗拔力Fi取Fi1和Fi2中的小值验算 土钉抗拔力Fi取FI1和FI2最小值
(3)土钉抗拔稳定性验算按下式计算
Fi K2 Ei
K2--土钉抗拔安全系数取1.5~1.8永久工程取大值 5. 土钉墙整体稳定性检算 (1) 内部整体稳定检算 采用简单条分法
φi--岩土的内摩擦角 Wi--分条(块)重量性 βi--土钉轴线与破裂面的夹角 Sx--土钉水平间距
(2)土钉墙外部稳定性验算 将土钉及其加固体视为重力式挡土墙,按重力式挡土墙的稳定性验算方 法,进行抗倾覆,抗滑稳定性及基底承载力验算。 (3)圆弧稳定性验算 对于土质边坡,碎石土状软岩表坡,还应进行圆弧稳定性验算。
1.1土钉墙的概念
土钉支护亦称锚喷支护,就是逐层开挖基坑,逐 层布置排列较密的土钉(钢筋),强化边坡土体,并 在坡面铺设钢筋网,喷射混凝土。相应的支护体称为 土钉墙,它由被加固的土体、放置在土体中的土钉与 喷射混凝土面板三个紧密结合的部分组成。土钉是其 最主要的构件,英文名叫Soil Nailing,它的设置有打 入法,旋入法,以及先钻孔、后置入、再灌浆三种法。
基坑(土壁)土钉支护施工

挖深度的0.5-1.2倍,应按各层土钉受力均
匀、各土钉拉力与相应土钉极限承载力的比
值近于相等的原则确定。
④成孔注浆型钢筋土钉的构造应符合 下列要求:
1)成孔直径宜取70mm~120mm; 2)土钉钢筋宜采用HRB400、HRB335级 钢筋,钢筋直径应根据土钉抗拔承载力设计 要求确定,且宜取16mm~32mm; 3)应沿土钉全长设臵对中定位支架, 其间距宜取1.5m~2.5m,土钉钢筋保护层厚 度不宜小于20mm; 4)土钉孔注浆材料可采用水泥浆或水 泥砂浆,其强度不宜低于20MPa。
③施工机具简单、易于推广 设臵土钉采用的钻孔机具及喷射混凝土 设备都属可移动的小型机械,移动灵活,振 动小、噪音低,在城市地区施工具有明显的
优越性。钻孔、压力灌浆和面层喷射混凝土
是土层锚杆、喷锚等支护体系成熟的工艺,
易于掌握,普及性强。
④经济效益较好
土钉墙的材料用量大大低于桩排挡墙等
支护体系的材料用量,比人工挖孔桩使用的 机械少,人工配备与人工挖孔桩大致相当,
谢谢您关闭手机! 至少应把手机调成静音状态!!
土壁土钉支护施工
胡应华
成都农业科技职业学院 城乡建设分院
学习提示
1.掌握土钉支护的构造要求; 2.掌握土钉支护的施工技术; 3.掌握土钉支护的质量检测和验收。
1.基坑土钉墙支护施工
土钉墙支护施工 13:39min
土钉墙是采用土钉加固的基坑侧壁土体 与护面等组成的结构。它是将拉筋插入土体 内部全长度与土粘结,并在坡面上喷射混凝 土,从而形成加筋土体加固区带,用以提高 整个原位土体的强度并限制其位移,同时增 强基坑边坡坡体的自身稳定性。土钉墙适用 于开挖支护和天然边坡加固,是一项实用的 原位土体加固技术。
基坑支护方案(土钉墙-详细计算)

第一章基坑边坡计算一、工程概况(一)土质分布情况①1杂填土(Q4ml):由粉质粘土混较多的碎砖、碎石子等建筑垃圾及生活垃圾组成.层厚0。
50~4.80米.①2素填土(Q4ml):主要由软~可塑状粉质粘土夹少量小碎石子、碎砖组成。
层厚0.40~2。
90米.①3淤泥质填土(Q4ml):。
主要为原场地塘沟底部的淤泥,后经翻填。
分布无规律,局部分布。
层厚0。
80~2.30米。
②1粉质粘土(Q4al):可塑,局部偏软塑,中压缩性,切面稍有光泽,干强度中等,韧性中等,土质不均匀,该层分布不均,局部缺失。
层顶标高5。
00~13.85米,层厚0。
50~8。
20米。
②2粉土夹粉砂(Q4al):中压缩性,干强度及韧性低。
夹薄层粉砂,具水平状沉积层理,单层厚1。
0~5.0cm,局部富集.该层分布不均匀,局部缺失.层顶标高1。
30~10。
93米,层厚0。
80~4.50米。
②3含淤泥质粉质粘土(Q4al):软~流塑,高压缩性,干强度、韧性中等偏低。
局部夹少量薄层状粉土及粉砂,层顶标高1.87~10.03米,层厚1。
00~13。
50米。
②4粉质粘土(Q4al):饱和,可塑,局部软塑,中压缩性,层顶标高-8.30~7.27米,层厚1.10~14.60米。
③1粉质粘土(Q3al):可~硬塑,中压缩性.干强度高,韧性高。
含少量铁质浸染斑点及较多的铁锰质结核。
该层顶标高—11.83~13。
23米,层厚1.40~14。
00米。
③2粉质粘土(Q3al)可塑,局部软塑,中压缩性.该层顶标高—18。
83~6。
83米,层厚2。
20~23.70米。
④粉质粘土混砂砾石(Q3al):可塑,局部软塑,中偏低压缩性,干强度中等,韧性中等。
该层顶标高—26。
73~—10。
64米,层厚0.50~6。
50米.(二)支护方案的选择根据本工程现场实际情况,基坑各部位确定采取如下支护措施1、3#楼与4#楼地下室相邻处,地下室间距4。
8m,基坑底高差5.0m,土质分布为○,21、○,22、错误!1土层,采取土钉墙支护的方式.2、2#楼与C型地下坡道相邻处距离为4。
基坑支护方案(土钉墙,详细计算)

第一章基坑边坡计算一、工程概况(一)土质分布情况①1杂填土(Q4ml):由粉质粘土混较多的碎砖、碎石子等建筑垃圾及生活垃圾组成。
层厚0.50~4.80米。
①2素填土(Q4ml):主要由软~可塑状粉质粘土夹少量小碎石子、碎砖组成。
层厚0.40~2.90米。
①3淤泥质填土(Q4ml):。
主要为原场地塘沟底部的淤泥,后经翻填。
分布无规律,局部分布。
层厚0.80~2.30米。
②1粉质粘土(Q4al):可塑,局部偏软塑,中压缩性,切面稍有光泽,干强度中等,韧性中等,土质不均匀,该层分布不均,局部缺失。
层顶标高5.00~13.85米,层厚0.50~8.20米。
②2粉土夹粉砂(Q4al):中压缩性,干强度及韧性低。
夹薄层粉砂,具水平状沉积层理,单层厚1.0~5.0cm,局部富集。
该层分布不均匀,局部缺失。
层顶标高1.30~10.93米,层厚0.80~4.50米。
②3含淤泥质粉质粘土(Q4al):软~流塑,高压缩性,干强度、韧性中等偏低。
局部夹少量薄层状粉土及粉砂,层顶标高1.87~10.03米,层厚1.00~13.50米。
②4粉质粘土(Q4al):饱和,可塑,局部软塑,中压缩性,层顶标高-8.30~7.27米,层厚1.10~14.60米。
③1粉质粘土(Q3al):可~硬塑,中压缩性。
干强度高,韧性高。
含少量铁质浸染斑点及较多的铁锰质结核。
该层顶标高-11.83~13.23米,层厚1.40~14.00米。
③2粉质粘土(Q3al)可塑,局部软塑,中压缩性。
该层顶标高-18.83~6.83米,层厚2.20~23.70米。
④粉质粘土混砂砾石(Q3al):可塑,局部软塑,中偏低压缩性,干强度中等,韧性中等。
该层顶标高-26.73~-10.64米,层厚0.50~6.50米。
(二)支护方案的选择根据本工程现场实际情况,基坑各部位确定采取如下支护措施1、3#楼与4#楼地下室相邻处,地下室间距4.8m,基坑底高差5.0m,土质分布为○21、○22、○31土层,采取土钉墙支护的方式。
基坑支护结构——土钉支护精选全文完整版

φi--岩土的内摩擦角 Wi--分条(块)重量性 βi--土钉轴线与破裂面的夹角 Sx--土钉水平间距
(2)土钉墙外部稳定性验算 将土钉及其加固体视为重力式挡土墙,按重力式挡土墙的稳定性验算方
法,进行抗倾覆,抗滑稳定性及基底承载力验算。
(3)圆弧稳定性验算 对于土质边坡,碎石土状软岩表坡,还应进行圆弧稳定性验算。
式中:
Ei
iSxSy cos
Ei--距墙顶度第i层土钉的计算拉力
Sx,Sy--水平和垂直间距
β--土钉与水平面的夹角
4. 抗拉验算
(1)土钉抗拉断验算:
Ti
1 4
db
2
fy
式中: Ti--钉材抗拉力
db--钉材直径
yf--钉材抗拉强度设计
土钉抗拉断验算按下式计算:
Fi Ti
K1
K1--土钉抗拉断安全系数取1.5~1.8永久工程取大值
土中的抗拔力低,需要很长很密的土钉。 3.土钉支护如果作为永久支护性结构,需要考虑腐蚀耐久等问题。
二、适用范围
• 土钉支护适用于地下水位以上或经人工降水措施后 的杂填土、普通粘土或弱胶结的砂土的基坑支护或 边坡加固。一般认为可用于标准贯入击数N值在5 以上的砂质土与N值在3以上的粘性土。
• 单独的土钉墙宜用于深度不大于12m的基坑支护或 边坡维护,当土钉墙与放坡开挖、土层锚杆联合使 用时,深度可以进一步加大。
5. 土钉墙整体稳定性检算
(1) 内部整体稳定检算 采用简单条分法
K ci LiSx Wi • cos ai • tan i • Sx Pi • cos i Pi • sin i • tani Wi • sin ai • Sx
Ci--岩地的聚力 LI--分条(块)的潜在破裂面长度 αi--破裂面与水平面夹角 Pi--土钉的抗拔能力取Fi和Ti中的小值 n--实设土钉排数 K-施工阶段及使用阶段整体稳定系数&施工阶段K≥1.3使用阶段K≥1
土钉墙支护方式计算说明

第2章土钉墙支护计算土钉支护技术2.1.1土钉支护的概念土钉支护亦称锚喷支护,就是逐层开挖基坑,逐层布置排列较密的土钉(钢筋),强化边坡土体,并在坡面铺设钢筋网,喷射混凝土。
相应的支护体称为土钉墙,它由被加固的土体、放置在土体中的土钉与喷射混凝土面板三个紧密结合的部分组成。
土钉是其最主要的构件,英文名叫Soil Nailing,它的设置有打入法,旋入法,以及先钻孔、后置入、再灌浆三种方法。
2.1.2土钉支护的特点与其它支护类型相比,土钉支护具有以下一些特点或优点:1.土钉与土体共同形成了一个复合体,土体是支护结构不可分割的部分。
从而合理的利用了土体的自承能力。
2.结构轻柔,有良好的延性和抗震性。
3.施工设备简单。
土钉的制作与成孔、喷射混凝土面层都不需要复杂的技术和大型机具。
4.施工占用场地少。
需要堆放的材料设备少。
5.对周围环境的干扰小。
没有打桩或钻孔机械的轰隆声,也没有地下连续墙施工时污浊的泥浆。
6.土钉支护是边开挖边支护,流水作业,不占独立工期,施工快捷。
7.工程造价低,经济效益好,国内外资料表明,土钉支护的工程造价能够比其它支护低1/2~1/3。
8.容易实现动态设计和信息化施工。
2.1.3土钉支护的适用范围土钉支护适用于:地下水位以上或经人工降水措施后的杂填土、普通粘土或弱胶结的砂土的基坑支护或边坡加固。
一般可用于标准贯入基数N值在5以上的砂质土与N值在3以上的粘性土。
单独的土钉墙宜用于深度不大于12m的基坑支护或边坡维护,当土钉墙与放坡开挖、土层锚杆联合使用时,深度可以进一步加大。
土钉支护不宜用于含水丰富的粉细砂岩、砂砾卵石层和淤泥质土。
不得用于没有自稳能力的淤泥和饱和软弱土层。
2.1.4土钉的作用机理土钉在复合土体中有个整体以下几种作用机理:1.箍束骨架作用:该作用是由于土钉本身的刚度和强度,以及它在土体内分布的空间所决定的。
它在复合土体中起骨架作用,使复合土体构成一个整体,从而约束土体的变形和破坏。
土钉施工受力计算

太原市汾东商务区人民路工程土钉支护计算书一、工程概况本标段为汾东商务区人民路工程,工程起终点桩号为K0+000-K3+840段,全长3.84公里,路中设计为雨水方涵,最大开挖深度为12米,平均开挖深度为7米,设计采用明挖施工方法,本工程开挖支护拟采用土钉支护。
二、场地岩土构成与工程特性1、K0+000~K0+550段①层,填土(ml Q 24):黄褐色。
以粉土为主,局部夹有粉质粘土透镜体,含有砖屑、灰渣、煤屑、砖块以及植物根等。
K6、K7钻孔揭露的为现状80cm 左右的路面结构层。
该层成份较杂乱,不均匀,结构松散。
该层层厚介于0.80~0.90m 之间,层底埋深介于0.80~0.90m 之间,层底标高介于772.53~772.71m 之间。
②层,粉质粘土(plal Q 14):黄褐色。
含云母、煤屑及氧化铁铝等。
可塑。
中等压缩性。
稍显光滑,摇震反应较慢,干强度中等,韧性中等。
该层天然孔隙比平均值为0.759,液性指数平均值为0.34,标准贯入试验原始锤击数平均值为3.0击,修正锤击数平均值为2.9击。
该层层厚介于2.30~3.00m 之间,层底埋深介于3.10~3.80m 之间,层底标高介于769.71~770.29m 之间。
③层,粉土(plal Q +14):黄褐色。
含云母、煤屑及氧化铁铝等。
中密。
中等压缩性。
无光泽反应,摇震反应较快,干强度较低,韧性较差。
该层天然孔隙比平均值为0.749,天然含水量平均值为27.5%,标准贯入试验原始锤击数平均值为6.3击,修正锤击数平均值为5.4击。
该层未揭穿,揭露层厚介于8.20~8.90m 之间。
该层在K5钻孔中夹有5.30m 厚的粉质粘土层,定为③1层。
2、K0+550~K1+363①层,填土(ml Q 24):黄褐色。
以粉土为主,含有大量的砖屑、灰渣、煤屑、砖块以及植物根等。
该层成份杂乱,不均匀,结构松散。
该层层厚介于0.70~2.60m 之间,层底埋深介于0.70~2.60m 之间,层底标高介于771.22~772.85m 之间。
对采用放坡和土钉墙相结合的深基坑支护设计的简单计算

1、基坑支护方案的设计1.1考虑局部基坑断面为素填土为最不利基坑开挖工况,进行土钉墙支护方案设计,支护深度7m 。
依据《建筑基坑支护技术规程》(JGJ120-2012)第3.1.3条,基坑四周空旷、无建筑物。
支护结构失效,对基坑周边环境或主体结构施工安全的影响不严重,确定该支护结构的安全等级为三级。
1.2本工程为临时性工程,设计使用期限为3个月,自支护结构施工结束起算,为保证基坑四壁的安全稳定性,考虑基坑较深,局部为素填土、性质不均匀,四周具备放坡条件,基坑四周采用放坡和土钉墙结合的处理方案,按1:1.4进行放坡,配合设置土钉墙进行基坑四壁的加强处理。
沿坑壁均匀设置三排土钉,土钉的垂直间距2m ,自自然地坪算起每2m 设置一排土钉,水平间距2m ,均匀放置,采用自钻式锚杆(土钉)(型号为HRB300,2Ø16),错杆成孔直径130mm ,与水平向夹角为15°,锚杆钻进过程中可以使用水泥作为眼进浆液一起钻进,严格控制塌孔、流土现象。
采用压力注浆注纯水泥浆,注浆压力为0.2~3MPa ,水灰比为0.4~0.5,必要时可加入一定量的外加剂。
1.3单根土钉的轴向拉力标准值计算N kj =j z j x ak j s s a j j,,,cos 1ρξη(5.2.2) 式中:N kj ——第j 层土 钉的轴向拉力标准值(KN )a j ——第j 层钉倾角(15°)ξ——墙面倾斜时的主动土压力折减系数,可按本规程第 5.2.3条确定j η——第j 层土 钉轴向拉力调整系数,可按本规程公式5.2.4-1计算j ak,ρ——第j 层土钉处的主动土压力强度标准值(KP a ),应按本规程第3.4.2条确定S x,j ——土钉的水平间距(m )S x,j =2mS z,j ——土钉的垂直间距(m )S z,j =2m1.3.1坡面倾斜时的土压力折减系数)245(2tan /]12tan [2tan m mmtan β1ϕϕβϕβξ-︒-+-=式 (5.2.3) 式中:β-土钉墙坡面与水平面的夹角β=35°mϕ—基坑底面以上各土层按厚度加权的等效内摩擦角平均值(10°)mϕ=10° 计算得:ξ=0.311.3.2±钉轴向拉力调整系数h z j b a a j )(ηηηη--= (5.2.4-1) aj j aj j b a E Z h E z h )()(-∑-∑=ηη (5.2.4-2)式中Z j ——第j 层土钉至基坑顶面的垂直距离(m )h —基坑深度(m )h=7m△E aj —作用在以s x,j 、s z,j 为边长的面积内的主动土压力标准值(KN ) -a η计算系数 -b η经验系数,取0.6n —土钉层数计算得:11=η 93.02=η 785.03=η 1.3.3单根土钉各层的轴向拉力标准值计算得:kN N K 65.291=KN N K 8.462= KN N K 5.633= 1.4单根土钉的极限抗拔承载力计算t K N R KJ KJ ≥ (5.2.1)式中K t 一一土钉抗拔安全系数;安全等级为三级的土钉墙,K t 不应小于1.4;N k,j ---第j 层土钉的轴向拉力标准值(kN),应按本规程第5.2.2条的规定计算;R k,j ——第j 层土钉的极限抗拔承载力标准值(kN),应按本规程第5.2.5条的规定确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基坑边坡土钉支护计算
基坑边坡是指在土方工程中,为了开挖地下空间而需要在地表上形成的坡面。
由于基坑边坡的高度较大,土体的自重和周围土体的压力会对边坡产生较大的水平力和垂直力,从而导致边坡的稳定性问题。
为了确保基坑边坡的稳定性,常常需要采用土钉支护技术。
土钉支护技术是一种通过在土体中预埋钢筋或钢管,并与土体通过摩擦力和粘结力相互作用,来增加土体的抗拉强度和抗剪强度的方法。
通过在基坑边坡中设置合理的土钉支护体系,可以有效地增加边坡的稳定性。
土钉支护的计算需要考虑多个因素,包括土钉的数量、间距、长度、直径等。
首先,需要根据边坡的高度和土体的力学参数,确定土钉的受力情况和受力点的位置。
然后,根据土钉的抗拉能力和土体的抗剪强度,计算土钉的数量和间距。
最后,根据土钉的受力特点和土体的力学参数,计算土钉的长度和直径。
在进行土钉支护计算时,需要考虑以下几个方面:
1. 边坡的稳定性分析:通过对边坡的受力情况进行分析,确定边坡
的稳定性指标,如剪切强度、滑动稳定性和倾覆稳定性等。
2. 土钉的布置方案:根据边坡的稳定性要求和土体的力学特性,确定土钉的布置方案,包括土钉的位置、间距和排列方式等。
3. 土钉的受力分析:通过分析土钉的受力特点,确定土钉在边坡中的受力情况,包括拉力、抗剪力和粘结力等。
4. 土钉的尺寸确定:通过分析土钉的受力特点和土体的力学参数,确定土钉的长度和直径,以满足边坡的稳定性要求。
5. 土钉支护的施工要求:根据土钉的布置方案和尺寸确定土钉的施工要求,包括土钉的埋设深度、固结材料的选择和施工方法等。
综上所述,基坑边坡土钉支护计算是一项复杂的工程计算,需要综合考虑土体的力学特性、边坡的稳定性要求和土钉的受力特点等因素。
只有通过准确的计算和合理的设计,才能确保基坑边坡的安全稳定。