人教版八年级数学下册第十六章导学案 第1课时 二次根式的加减
八年级数学下册16.3 二次根式的加减(第1课时)导学案(新版)新人教版

八年级数学下册16.3 二次根式的加减(第1课时)导学案(新版)新人教版16、3 二次根式的加减学习目标1、会进行二次根式的加减运算。
2、通过加减法运算解决生活实际问题。
教学重点:二次根式加减法运算。
教学难点::能准确进行二次根式加减法运算。
【学前准备:】1、计算下列各式、(1)2x+3x= (2)2x2-3x2+5x2= (3)x+2x+3y= (4)3a2-2a2+a3 = 归纳:上面题目的结果,实际上是我们以前所学的合并同类项、合并同类项就是不变,相加减、2、把下列二次根式化简(1)(2)(3)【导入:】【自主学习,合作交流】阅读课本12页问题问题:上述二次根式化简为最简二次根式,它们的被开数有什么特点?你能合并吗?3、小试牛刀:(1)观察下列各组式子,能进行合并的是()A B C 与、(2)若最简二次根式与可以合并,则= (二)二次根式的加减法运算1、自学课本13页例1,仿例完成下列练习(1);(2);(3)2、自学课本13页例2,仿例完成下列练习:(1);(2)【精讲点拔】【当堂检测】1、下列计算是否正确?为什么?(1);(2);(3); (4)、2、计算:(1)+ 纠错栏(3)3、如图,两个圆的圆心相同,它们的面积分别是12、56cm2和25、12cm2,求圆环的宽度d(π取3、14)、【课堂小结】XXXXX:二次根式加减法的步骤:(1)将每个二次根式化为最简二次根式;(2)找出被开方数相同的二次根式;(3)合并、(一化、二找、三合并、)【课后作业】必做题1、二次根式:①;②;③;④中,与能合并的二次根式的是()、A、①和②B、②和③C、①和④D、③和④2、计算:(1)(2)(3)(4)选做题若最简二次根式与的被开方数相同,则、的值为()A、 B 、C、或D、【评价】准确程度评价优良中差书写整洁程度评价优良中差【课后反思】。
人教版八年级数学下册导学案(全册)【最新】

第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。
理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。
(2)被开方数必须是 数。
判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。
巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。
2.若1213-+-x x 有意义,则x 的取值范围是 。
3.已知122+-+-=x x y ,则=yx4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。
八年级数学下册第十六章二次根式16.3二次根式的加减第1课时教案新新人教

16.3二次根式的加减第1课时【教学目标】知识与技能:1.理解二次根式合并的原理,能进行二次根式的合并.2.掌握二次根式加减的法则,会运用法则进行二次根式的加减.过程与方法:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导二次根式的计算和化简.培养学生较熟练的运算能力.情感态度与价值观:帮助学生正确对待学习,养成良好的学习习惯,寻找有效的学习方法.【重点难点】重点:理解二次根式合并的原理,掌握二次根式加减的法则,会运用法则进行二次根式的加减.难点:掌握二次根式加减的法则,能熟练运用法则进行二次根式的加减.【教学过程】一、创设情境,导入新课:[问题情境]如图,面积为48 cm2的正方形四个角是面积为3 cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体的底面边长和高分别是多少?解:原大正方形边长为=4(cm),小正方形边长为 cm.长方体的底面的边长为4-2.接下来怎样计算呢?这就是这节课我们要学习的二次根式的加减.二、探究归纳活动1:二次根式的合并的条件1.(1)什么是最简二次根式?(2)化简二次根式并找出被开方数相同的二次根式:①②③④⑤⑥⑦(3)上面二次根式哪些能合并?答案:①与⑥③与⑤④与⑦.2.归纳:二次根式的合并的条件把二次根式化成最简二次根式,被开方数相同的二次根式能合并.活动2:探索二次根式加减的法则1.填空:3+2=(3+2),其运算根据是______答案:分配律2.+=4+3①=(4+3)②=7.问题:(1)其中第①步是怎样运算的?______ ;答案:化成最简二次根式(2)第②步运算根据是________.答案:分配律3.思考:同类项可以合并,被开方数相同的最简二次根式能合并吗?提示:能.4.归纳:二次根式加减的法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.活动3:例题讲解【例1】确定下列哪组二次根式能合并.(1),(2),(3),(4),分析:化成最简二次根式后,被开方数相同的二次根式可以合并.解:(1)=3与不能合并;(2)=与能合并;(3)=5,=10,5与10不能合并;(4)与不能合并.点拨:二次根式合并的方法1.将二次根式都化为最简二次根式;2.把被开方数相同的二次根式合并.【例2】计算:(1)+2+-.(2)a+-.分析:先把各二次根式化成最简二次根式,再把被开方数相同的二次根式合并.解:(1)+2+-=++2-=++2-=+.(2)a+-=+2-+=+(2+1)=+3.总结:二次根式加减的步骤:1.化简:将每一个二次根式都化为最简二次根式.2.判断:判断哪些二次根式的被开方数相同,把被开方数相同的二次根式结合在一起.3.合并:合并被开方数相同的二次根式,将二次根式的系数相加,被开方数不变.三、交流反思这节课我们学习了二次根式的加减运算,在运算时要注意按照:“一化二找三合并”的步骤进行,细心运算.四、检测反馈1.计算:-=________.A.B.2 C.D.2+2.化简-(-1)的结果是()A.2-1B.2-C.1D.2+3.下列根式中,不能与合并的是()A.B.C.D.4.计算-9的结果是()A.-B.C.-D.5.下列计算正确的是()A.4-3=1B.+=C.2=D.3+2=56.已知最简二次根式与能合并,则a的值可以是()A.5B.3C.7D.87.请确定下列二次根式是否能合并,说明理由.(1)和;(2)和;(3)和.8.计算:(1)-(2)+6-3x五、布置作业教科书第15页习题16.3第1,2,3题六、板书设计七、教学反思本节课学习了二次根式加减,关键是掌握二次根式加减的步骤:(1)化:将每一个二次根式都化为最简二次根式;(2)找:找出被开方数相同的二次根式,把被开方数相同的二次根式结合在一起;(3)合并:将被开方数相同的二次根式的系数相加,被开方数不变.并能运用步骤进行计算.。
新人教版八年级数学下导学案(全册)

, ,b - 3 等式子的实际意义.说一说他们的共同特征.第十六章 二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质: a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质 a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0) 。
三、学习过程(一)复习回顾:(1)已知 x 2 = a ,那么 a 是 x 的_____; x 是 a 的____, 记为____, a 一定是 ____数。
(2)4 的算术平方根为 2,用式子表示为=______;正数 a 的算术平方根为4_____,0 的算术平方根为____;式子 a ≥ 0(a ≥ 0) 的意义是。
(二)自主学习(1) 16 的平方根是;(2)一个物体从高处自由落下,落到地面的时间是 t (单位:秒)与开始下落时的高度 h ( 单位:米 ) 满足关系式 h = 5t 2 。
如果用含 h 的式子表示 t ,则t =;(3)圆的面积为 S ,则圆的半径是 ;(4)正方形的面积为 b - 3 ,则边长为。
思考: 16 ,h 5s π定义: 一般地我们把形如 a ( a ≥ 0 )叫做二次根式,a 叫做______。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3 , - 16 , 34 , -5 , a (a ≥ 0) , x 2 + 13。
2、当a为正数时a指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。
所以,在二次根式a中,字母a必须满足,a才有意义。
3、根据算术平方根意义计算:(1)(4)2(2)(3)2(3)(0.5)2(4)(13)2根据计算结果,你能得出结论:(a)2=________,其中a≥0,4、由公式(a)2=a(a≥0),我们可以得到公式a=(a)2,利用此公式可以把任意一个非负数写成一个数的平方的形式。
人教版初中数学八年级下册16.3.1《二次根式的加减运算》教案

今天在教授《二次根式的加减运算》这一章节时,我发现学生们对于合并同类二次根式这个概念掌握得还不错,但是在简化二次根式,特别是含有分数的表达式时,遇到了一些困难。这让我意识到,在今后的教学中,我需要更加关注这个难点的讲解和练习。
在讲授过程中,我尽量用生活中的实例来解释二次根式的概念,让学生们能更好地理解它的实际意义。例如,通过计算不同边长的矩形面积,让学生们感受二次根式在几何中的应用。这样的方式似乎挺有效,学生们能更直观地理解抽象的数学概念。
然而,我也注意到,在小组讨论和实验操作环节,有些学生参与度不高,可能是因为他们对这个话题还不够感兴趣或者对知识点掌握不牢。针对这个问题,我打算在接下来的课程中,增加一些互动环节,鼓励学生们多发言、多思考,提高他们的参与度。
另外,对于简化二次根式这个难点,我计划在下一节课中用更多的时间来讲解和演示。通过列举不同类型的例子,让学生们逐步掌握简化方法,并能够熟练运用到实际运算中。同时,我也会布置一些针对性的课后练习,以便学生们能够巩固所学知识。
-例如:计算一个边长为√5和√3的矩形面积,学生需要掌握运用二次根式加减运算求解。
c.理解二次根式的性质,如√a^2 = |a|,并能应用于运算中;
-例如:在计算√9 - √(-4)时,学生应掌握将√(-4)转换为2i,然后进行计算。
2.教学难点
a.合并同类二次根式时,识别不同根号下的相同因数,特别是当因数分解较为复杂时;
c.掌握简化二次根式的方法;
d.解决实际问题中涉及二次根式加减运算的问题;
e.通过二次根式的加减运算,培养学生的运算能力和逻辑思维能力。
二、核心素养目标
1.培养学生的数学抽象能力:通过二次根式的加减运算,使学生能够从具体问题中抽象出数学规律,形成对二次根式加减运算的数学表达和认知。
八年级数学下册16.3二次根式的加减导学案新人教版

四、课堂达标检测
1、计算:(1)3 + -4 ;(2) —15 + ;(3) — — + — 2、把下列各式化成最简二次根式(a>0,b>0).
(1) +3a - ×
(2)
—ab ) ÷
3、解下列方程和不等式。
(1) x+
=2x+1
(2) (x-1)>3(x+1)
五、学习反馈
本 节课你学到了什么?有什么收获和体会?还有什么困惑?
出错误或提出有价值的疑问,给谁的小组加分(或奖星).
交流内容
展示小组(随机)
点评小组(随机)
____________
第______组
第______组
____________
第______组
第______组
三、归纳总结
1、二次根式的加减即为对同类二次根式的合并。
2、二次根式的加减与整式的加减根据都是分配律,它们的运算实质也基本相同.
16。3 二次根式的加减
预习案
一、学习目标
1、理解二次根式的性质,并利用性质对二次根式进行化简.
二、预习内容
预习课本 P3-4 页内容。
1、二次根式的两个性质:
.
根据性质进行计算。
(1)如果 =x 成立,则 x 一定是( )
A.正数 B.0 C.负数 D.非负数
2、代数式的定义:
.
三、预习检测 1、下列根式中,与 是同类二次根式的是( )
预习检测 1、B 2、D 3ቤተ መጻሕፍቲ ባይዱC 课堂达标检测
参考答案
1、解:(1)原式=9 + —4× =8 ;
(2)原式=3 -15× + ×4 =— ;
新人教版八年级数学下册导学案(130页)

义务教育基础课程初中教学资料第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。
理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。
(2)被开方数必须是 数。
判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。
巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。
2.若1213-+-x x 有意义,则x 的取值范围是 。
3.已知122+-+-=x x y ,则=yx 4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。
八年级数学下册第十六章二次根式16.3二次根式的加减教案新版新人教版

16.3 二次根式的加减第1课时 二次根式的加减1.会将二次根式化为最简二次根式,掌握二次根式加减法的运算;(重点) 2.熟练进行二次根式的加减运算,并运用其解决问题.(难点)一、情境导入小明家的客厅是长7.5m ,宽5m 的长方形,他要在客厅中截出两个面积分别为8m 2和18m 2的正方形铺不同颜色的地砖,问能否截出?二、合作探究探究点一:被开方数相同的最简二次根式已知最简二次根式2a +b 与a +b3a -4能够合并同类项,求a +b 的值.解析:利用最简二次根式的概念求出a ,b 的值,再代入a +b 求解即可. 解:∵最简二次根式2a +b 与a +b3a -4能够合并同类项,∴a +b =2,2a +b =3a -4,解得a =3,b =-1,∴a +b =3+(-1)=2. 方法总结:根据同类二次根式的概念求待定字母的值时,应该根据同类二次根式的概念建立方程或方程组求解.探究点二:二次根式的加减【类型一】 二次根式的加减运算计算:12-13-(2)2+|2-3|.解析:二次根式的加减运算应先化简,再合并同类二次根式.解:原式=23-33-2+2-3=⎝ ⎛⎭⎪⎫2-13-13=233. 方法总结:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并时系数相加减,根式不变.【类型二】 二次根式的化简求值先化简,再求值:a 2-b 2a ÷⎝ ⎛⎭⎪⎫a -2ab -b 2a ,其中a =2+3,b =2- 3.解析:先将原式化为最简形式,再将a 与b 的值代入计算即可求出.解:原式=(a +b )(a -b )a ÷a 2-2ab +b 2a =(a +b )(a -b )a ·a (a -b )2=a +ba -b.当a =2+3,b =2-3时,原式=2+3+2-32+3-2+3=423=233.方法总结:化简求值时一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,缺少必要的步骤易造成错解.【类型三】 二次根式加减运算在实际生活中的应用母亲节快到了,为了表示对妈妈的感恩,小号同学特地做了两张大小不同的正方形的壁画送给妈妈,其中一张面积为800cm 2,另一张面积为450cm 2,他想如果再用金色细彩带把壁画的边镶上会更漂亮,他手上现有1.2m 长的金色细彩带,请你帮他算一算,他的金色细彩带够用吗?如果不够,还需买多长的金色细彩带(2≈1.414,结果保留整数)?解析:先求出每张正方形壁画的边长,再根据正方形的周长公式求所需金色细彩带的长. 解:镶壁画所用的金色细彩带的长为:4×(800+450)=4×(202+152)=1402≈197.96(cm).因为1.2m =120cm <197.96cm ,所以小号的金色细彩带不够用.197.96-120=77.96≈78(cm),即还需买78cm 的金色细彩带.方法总结:利用二次根式来解决生活中的问题,应认真分析题意,注意计算的正确性与结果的要求.三、板书设计1.被开方数相同的最简二次根式 2.二次根式的加减一般地,二次根式加减时,可以先将二次根式化简成最简二次根式,再将被开方数相同的二次根式进行合并.在授课过程中,要以学生为主体,进行探究性学习,让学生自己发现规律,得出结论.在例题的选择上可由简到难,符合学生的认知规律,便于学生掌握知识.在得到定义、法则的过程中,让学生经历发现、思考、探究的过程,体会学习知识的成功与快乐.第2课时 二次根式的混合运算1.会熟练地进行二次根式的加减乘除混合运算,进一步提高运算能力;(重点) 2.正确地运用二次根式加减乘除法则及运算律进行运算,并把结果化简.(难点)一、情境导入如果梯形的上、下底边长分别为22cm ,43cm ,高为6cm ,那么它的面积是多少? 毛毛是这样算的:梯形的面积:12(22+43)×6=(2+23)×6=2×6+23×6=2×6+218=23+62(cm 2).他的做法正确吗? 二、合作探究探究点一:二次根式的混合运算 【类型一】 二次根式的四则运算计算:(1)12223×9145÷35; (2)⎝ ⎛⎭⎪⎫312-213+48÷23+⎝⎛⎭⎪⎫132; (3)2-(3+2)÷ 3.解析:先把各二次根式化为最简二次根式,再把括号内合并后进行二次根式的乘法运算,然后进行加法运算.解:(1)原式=12×9×83×145×53=12×9×229=2; (2)原式=⎝ ⎛⎭⎪⎫63-233+43÷23+13=2833×123+13=143+13=5; (3)原式=2-(3+2)÷13=2-3+23=2-1-233.方法总结:二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.探究点二:利用乘法公式及运算律进行二次根式混合运算计算:(1)(2+3-6)(2-3+6);(2)(2-1)2+22(3-2)(3+2);(3)⎝ ⎛⎭⎪⎫6-1332-3424×(-26). 解析:(1)利用平方差公式展开然后合并即可;(2)先利用完全平方公式和平方差公式展开然后合并即可;(3)利用乘法分配律进行计算即可.解:(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+62;(2)原式=2-22+1+22×(3-2)=2-22+1+22=3;(3)原式=⎝ ⎛⎭⎪⎫6-66-326×(-26)=-236×(-26)=8.方法总结:利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.探究点三:二次根式混合运算的综合运用【类型一】 与二次根式的混合运算有关的新定义题型对于任意的正数m 、n 定义运算※为m ※n =⎩⎨⎧m -n (m ≥n ),m +n (m <n ).计算(3※2)×(8※12)的结果为( )A .2-4 6B .2C .2 5D .20解析:∵3>2,∴3※2=3-2.∵8<12,∴8※12=8+12=2(2+3),∴(3※2)×(8※12)=(3-2)×2(2+3)=2.故选B.方法总结:弄清新定义中的运算法则,转化为代数式的运算,正确运用运算律及公式是解题的关键.【类型二】 二次根式运算的拓展应用请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰似斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解析:分别把n =1、2代入式子化简即可.解:第1个数,当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15[1+52-1-52]=15×5=1;第2个数,当n =2时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52=15×1×5=1.方法总结:此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.三、板书设计1.二次根式的四则运算先算乘方(开方),再算乘除,最后算加减,有括号的先算括号内的.2.运用乘法公式和运算律进行计算在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.本节课以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 二次根式
16.3 二次根式的加减
第1课时 二次根式的加减
学习目标:1.了解二次根式的加、减运算法则;
2.会用二次根式的加、减运算法则进行简单的运算.
重点:了解二次根式的加、减运算法则.
难点:会用二次根式的加、减运算法则进行简单的运算.
一、知识回顾
1
.满足什么条件的二次根式是最简二次根式?
2.化简下列两组二次根式,每组化简后有什么共同特点?
一、要点探究
探究点1:在二次根式的加减运算中可以合并的二次根式
类比探究 在七年级我们就已经学过单项式加单项式的法则.观察下图并思考:
(1)由左图,易得2a +3a = ;
(2)当a 时,分别代入左、右得______; (3)当a 时,分别代入左、右得_____;...... (4)根据右图,你能否直接得出当a ,b =时,2a +3b 的值?结果能进行化简吗?
. 要点归纳:(1)判断几个二次根式是否可以合并(加减运算),一定都要化为最简二次根式再判断.(2)合并的方法与合并同类项类似,把根号外的因数(式)相加,根指数和被开方数(式)不变.如:(m n +=+
例1 若最简根式2132m n +-3mn .
方法总结:确定可以合并的二次根式中字母取值的方法:利用被开方数相同,根指数都为2,列关于待定字母的方程求解即可.
【变式题】38a -172a -42a x x a
--义,求x 的取值范围. 针对训练 1.3是同类二次根式的是( )
A 2
B 5
C .8
D 122.
8与最简二次根式1m +m =_____.
3.12________(填序号).
13
48125118.3①;②-;③;;⑤
探究点2:二次根式的加减及其应用
思考 现有一块长7.5 dm 、宽5 dm 的木板,能否采用如图的方式,在这块木板上截出两个分别是8 dm 2和18 dm 2 的正方形木板? 问题1 怎样列式求两个正方形边长的和?
问题2 所列算式能直接进行加减运算吗?如果不能,把式中各个二次根式化成最简二次根式后,再试一试(说出每步运算的依据).
要点归纳:二次根式的加减法法则:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.
加减法的运算步骤:(1)化——将非最简二次根式的二次根式化简; (2)找——找出被开方数相同的二次根式; (3)并——把被开方数相同的二次根式合并.
例2
计算:
例
3 计算:
++
例4 已知a ,b
,c
满足(2
0a c -=.
(1)求a ,b ,c 的值;
(2)以a ,b ,c 为三边长能否构成三角形?若能构成三角形,求出其周长;若不能,请说明理由. 分析:(1)若几个非负数的和为零,则这几个非负数必须为零;(2)根据三角形的三边关系来
判断.
【变式题】有一个等腰三角形的两边长分别为,求其周长.
A 2=
B . =
C .
= D =
二、课堂小结
1.能进行合并的是()
A B C D
2.下列运算中错误的是()
A.B. =C. 2D.23
(=
3.则这个三角形的周长为________.
4.计算:
______;_________
(2);
763.02m和150.72m,求圆环的宽度d(π取3.14).
参考答案
自主学习
一、知识回顾
1.满足如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式. 2
.2
每组化简后,被开方数相同.
课堂探究
一、要点探究
探究点1:在二次根式的加减运算中可以合并的二次根式 类比探究 (1)5a (2
) (3)
(4)2a + 3b
=
+
例1 解:由题意得212,323,n m n +=⎧⎨-=⎩
解得4,3
1.2
m
n ⎧=⎪⎪⎨⎪
=⎪
⎩3== 【变式题】解:由题意得 3a - 8 = 17
- 2a ,∴
a = 5
.=
∴ 20 - 2x ≥0,x - 5>0.∴ 5<x ≤10.
1. D
2.1
3. ②⑤
探究点
2:二次根式的加减及其应用 问题
问题2
(
2357.5,+=<<
∴在这块木板上可以截出两个分别是 8 dm 2 和 18 dm 2 的正方形木板.
例2 解:=
=
10===
9=-=
例3 计算:
=-+=
++=+-=
=
例4 解:(1)由题意得5a
b c ====,
(2) 能. 理由如下:∵5,
即 a <c <b ,又∵ a c +=
∴ a + c >b ,∴ 能构成三角形,周长为 5.a b c ++=
【变式题】解:当腰长为=
∴此时能构成三角形,周长为当腰长为 时,∵=
∴ 此时能构成三角形,周长为
1.C
2.当堂检测
1.C
2.A
3.
4.
5. 解:(1)
(2)=
-=(
(4)-(
43
-=
6.解:设大圆和小圆的半径分别为R,r,面积分别为S1,S2,由
,
=2
1
π
S R
=2
2
π
S r可知
R r
则
=-=
d R r
)
=m.
答:圆环的宽度为.
7.解:∵a*b
= 2*3)-(27*32
)
=-
=+
-=-。