原子吸收 特征谱线
原子吸收光谱法

15:35
(2)谱线的热变宽 又称多普勒( Doppler )变宽,它是由于原子在空间 作热运动而引起的。
从物理学原理可知,从一个运动的原子发出的光,如果运动方 向离开观察者,则在观察者看来,其频率要比静止原子所发出 的光频率低,反之,如果原子向着观察者运动,则其频率要比 静止原子发出的光的频率高,这就是多普勒效应。 原子吸收分析法中,气体中的原子是处于无规则热运动中,有 的向着检测器方向运动,使光能增大,波长变短一点。有的背 向检测器运动,光能减弱,波长变长一点,一长一短,使谱线 变宽。这种频率分布和气体中原子的热运动的速度分布相符。
§5-1概述
一、方法简介 原子吸收光谱法 (又名原子吸收分光光度法 ) 是基于测量 试样所产生的原子蒸气对特定谱线的吸收程度,来确定试 样中待测元素的浓度或含量的方法。
原子吸收现象是1859年德国物理学家基尔霍夫发现的,1955年澳 大利亚物理学家A.Walsh提出峰值吸收测量法,从理论上解决了 15:35 定量问题,这一方法才得以应用.
1.14 10 4
从以上计算可以看出,与基态原子数相比,激发态原子数可忽 略不计。
即 N0≈N总
由此我们可以得到结论: (1)基态原子数等于总原子数。
15:35 ( 2)原子吸收法受温度影响不大。
二、吸收轮廓及变宽原因 1.吸收轮廓 从能级跃迁的观点看,吸收线与发射线应是一条严格的几何线, 但实际上是有一定宽度的。我们把吸收线或发射线的强度按频 率的分布叫谱线轮廓。如图5-2所示。 图中最大吸收对应的 频率 ν 0 称为峰值吸收
15:35
§5-2 原子吸收法的基本原理 一、基态原子数与火焰温度的关系 根据热力学原理,在一定温度下达到热力学平衡状态时,基态 和激发态的原子数之比与热力学温度的关系,可以用玻尔茨曼公 式描述: E j E0
第03章 原子吸收光谱分析

7
• 各种元素的基态至第一激发态跃迁最易发生,吸收最强,最灵 敏线——主共振吸收线。 • 各种元素的原子结构和外层电子排布不同,由基态至第一激发 态跃迁吸收能量不同,共振线不同——具有特征性。
• 利用基态的原子蒸气对光源辐射的特征谱线(共振线)的吸收
可以进行定量分析。 • 光谱位于光谱的紫外区和可见区。
• 准确度高,分析速度快;
• 应用广泛。 • 局限:不能对多元素同时测定(需更换光源)、对难 熔元素测定灵敏度和精密度较低、对于成分复杂样品 干扰较严重、对多数非金属元素不能直接测定。
5
元素周期表中可用原子吸收光谱法分析的元素
6
3.2 原子吸收光谱法的基本原理
3.2.1 原子吸收光谱的产生
• 基态原子吸收其共振辐射,外层电子由基态跃迁至激发态 而产生原子吸收光谱。
收定律,有:
I I 0e
Kvl
• 或
I0 A lg 0.434 K v l I
21
• 采用锐线光源进行测量,则Δv发< < Δv
吸
,在辐射线宽度范围内,Kν可近似
发射线
认为不变,并近似等于峰值时的吸收 系数K0,则:
I0 A lg 0.434 K 0l I
22
• 峰值吸收系数K0与谱线的宽度有关,在通常原子吸收测定条
• 由于原子在空间作无规则热运动所导致的,故也称为热变宽。
2v0 vD c
2(ln 2) RT T 7 7.1610 v0 Ar Ar
• Doppler 变宽随温度升高、谱线频率升高和相对原子质量减小而 变宽。
11
3.压力变宽( 10-3nm)
• 当原子吸收区气体压力变大时,相互碰撞引起的变宽是 不可忽略的。原子之间的相互碰撞导致能级变化,激发 态原子平均寿命缩短,引起谱线变宽。 • 劳伦兹(Lorentz)变宽:待测元素原子和其他粒子碰撞。
第六章原子吸收光谱分析法

例题 计算2000K和3000K时, Na589.0nm的激发态 与基态原子数之比各为多少?已知gi/g0=2
解:
Ei
hc
4.136 1015eV s 3 1010cm s1 589.0nm 107 cm nm1
AAS的基本原理
赫鲁兹马克(Holtzmark)变宽(R或R): 同种原子碰撞,又称为共振变宽, R随着待测
元素原子密度升高而增大,在原子吸收法中,测定 元素的浓度较低,R一般可以忽略不计 。
自吸变宽:
光源辐射共振线被光源周围较冷的同种原子所吸 收的现象叫做自吸,自吸现象使谱线强度降低,同 时导致谱线变宽。
AAS的基本原理
表征吸收线轮廓(峰)的参数: 中心频率O(峰值频率) :最大吸收系数对应的频率 中心波长λ(nm) :最大吸收系数对应的波长
半宽度ΔO(吸收线宽度):峰值吸收值一半处的频率
原子吸收线的宽度约为10-3-10-2nm(折合成波长)。
AAS的基本原理
3.吸收峰变宽原因
自然变宽(N或N): 在无外界条件影响时,谱线的固有宽度称为自
AAS的基本原理
一、共振线
1.原子的能级与跃迁 基态第一激发态,吸收一定频率的辐射能量。产生的吸收
线叫共振吸收线(简称共振线) —— 吸收光谱 激发态基态,发射出一定频率的辐射。所释放的光线叫共
振发射线(也简称共振线) ——发射光谱 2.元素的特征谱线 1)各种元素的原子结构和外层电子排布不同 跃迁吸收能量不同——具有特征性 2)各种元素的基态第一激发态 最易发生、吸收最强、最灵敏线,特征谱线 3)利用特征谱线(共振线)可以进行定量分析。
第2章原子吸收光谱分析

2.1.2谱线轮廓与谱线宽度 2.1.2谱线轮廓与谱线宽度 谱线轮廓
吸收光谱与发射光谱的关系 共振线与吸收线
从基态 跃迁第一激发态,又回到基 跃迁第一激发态,又回到基 态,发射出光谱线,称共振发射线 态,发射出光谱线,称共振发射线。 共振发射线。 同样从基态跃迁 同样从基态跃迁至第一激发态所产生的吸 共振吸收线(简称为共振线)。 收谱线称为共振吸收线 收谱线称为共振吸收线(简称为共振线)。
第2 章
原子吸收光谱分析
Atomic absorption spectroscopy AAS
2.1.1 一、历史
概述
原子吸收光谱法是一种基于待测基态原子对特征 谱线的吸收而建立的一种分析方法。这一方法的发展 经历了3 经历了3个发展阶段:
1、原子吸收现象的发现
• 1802年Wollaston发现太阳光谱的暗线; 1802年Wollaston发现太阳光谱的暗线; • 1859年Kirchhoff和 Bunson解释了暗线产生的原因; 1859年Kirchhoff和 Bunson解释了暗线产生的原因;
3、电热原子化技术的提出
1959年里沃夫提出电热原子化技术,大大提高了原子吸收的 灵敏度
二、原子吸收光谱法的特点
1、灵敏度高(火焰法:1 ng/ml,石墨炉100-0.01 pg); 2、准确度好(火焰法:RSD <1%,石墨炉 3-5%) 3、选择性高(可测元素达70个,相互干扰很小) 缺点:不能多元素同时分析
火焰原子化条件的选择
火焰类型 燃气-助燃气比例 测量高度
原子化过程
试样 雾化为雾滴 雾滴蒸发成固体颗粒 固体颗粒蒸发产生分子 分子 原子 激发分子 离子
火焰原子化器特点. 火焰原子化器特点.
原子吸收光谱法的原理

原子吸收光谱法原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。
中文名原子吸收光谱法外文名Atomic Absorption Spectroscopy光线范围紫外光和可见光出现时间上世纪50年代简称AAS测定方法标准曲线法、标准加入法别名原子吸收分光光度法基本原理原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。
由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。
当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。
特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比:A=KC式中K为常数;C为试样浓度;K包含了所有的常数。
此式就是原子吸收光谱法进行定量分析的理论基础由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。
由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。
由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。
AAS现已成为无机元素定量分析应用最广泛的一种分析方法。
该法主要适用样品中微量及痕量组分分析。
原子吸收光谱法谱线轮廓原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长范围,即有一定的宽度。
原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。
中心波长由原子能级决定。
原子吸收分光光度计各项参数名词解释

原子吸收分光光度计各项参数名词解释原子吸收分光光度计各项参数名词解释基态:自由原子、离子或分子内能最低的能级状态。
通常将此能级的能量定位零。
激发态:在外界能量的作用下,原子外层的一个或几个电子可转移到离核较远的轨道上,这种新的原子运动状态叫激发态(一般指最低激发态)。
能级:具有特定内能的自由原子、离子或分子的量子状态。
该能量常用电子伏特表示。
电子跃迁:一个原子、离子或分子中的一个电子从能级E1到另一个能级E2的过程。
共振能:原子通过吸收一个光子从基态转变为共振能级时所需的能量。
电离能:从一个基态原子中移去一个电子所需的最小能量。
激发能:原子由基态转变到高于基态的给定能级所需的能量。
共振线(分析线):对应与共振能级和基态间跃迁的谱线。
当电子从基态跃迁到一激发态时,于所吸收能量对应的光谱线叫做共振吸收线。
而由一激发态跃迁回基态时,于所释放能量对应的光谱线叫做共振发射线。
特征谱线:用原子发射、原子吸收或原子荧光光谱法测定气相中的待测元素浓度时所用的谱线。
包括共振线和其他谱线。
原子吸收光谱:处于基态或者能量较低的激发态的原子,受到光辐射时仅吸收其特征波长的辐射而跃迁至较高能级。
把原子所吸收的特征谱线按波长和频率的次序进行排列的谱线组。
原子吸收光谱法:基于测量蒸汽中原子对特征电磁辐射的吸收测定化学元素的方法。
原子化作用:将含有待测元素的化合物转变成原子蒸汽。
原子蒸汽:含有待测元素自由原子的蒸汽火焰:是一种状态稳定、连续流动的热气体混合物。
其热量来自燃料和氧化剂之间强烈的、放热的、不可逆的化学反应。
通常由一燃烧区、第二燃烧区和椎间区组成。
燃料:为原子化作用和激发作用提供所需能量而采用的一种能与氧化剂反应的还原剂。
放电灯:此种灯充有能被高电压下通过的电流激发的蒸汽或气体,并产生所含元素的特征线。
空心阴极灯:属于放电灯的一种,其阴极是含有一种或多种元素的空心体。
操作时能使阴极溅射,产生的元素蒸汽发射出特别窄的特征线。
仪器分析第6章 原子吸收光谱

化学计量火焰 由于燃气与助燃气之比与化学计量 反应关系相近,又称为中性火焰,这类火焰,温 度高、稳定、干扰小背景低,适合于许多元素的 测定。
富燃火焰 指燃气大于化学元素计量的火焰。其特 点是燃烧不完全,温度略低于化学火焰,具有还 原性,适合于易形成难解离氧化物的元素测定; 干扰较多,背景高。
(3)原子吸收法的选择性高,干扰较少且易于克服
(4)原子吸收条件下,原子蒸气中基态原子比激发 态原子数目多得多,所以测定的是大部分原子,这 就使得原子吸收法具有较高的灵敏度
原子吸收光谱的特点:
优点: (1) 检出限低,10-10~10-14g; (2) 准确度高,RSD约1%~5%; (3) 选择性高,一般情况下共存元素不干扰; (4) 应用广,可测定70多个元素(各种样品中) 局限性:难熔元素、非金属元素测定困难;不能同 时多元素测定
澳大利亚物理学家瓦尔西发表了著名论文:《原 子吸收光谱法在分析化学中的应用》奠定了原子吸收 光谱法的基础,之后原子吸收光谱法迅速发展。
原子吸收光谱与原子发射光谱的比较:
(1)原子吸收光谱分析利用的是原子吸收现象,而 发射光谱分析则基于原子发射现象
(2)原子吸收线比发射线的数目少的多,这样谱线 的重叠概率小
✓ 单道双光束型:利用参比光束补偿 光源引起的基线漂移。
1. 光源
作用:辐射待测元素的特征光谱(共振线和其它 非吸收谱线),以供测量之用。
要求: A. 能辐射锐线光源 B. 辐射的光强度必须足够、稳定且背景小 C. 灯供电稳定,以确保光强度稳定 空心阴极灯、蒸气放电灯、无极放电灯
空心阴极灯结构
♫ 干燥:试液随升温脱水干燥,由液体转化为固 体。一般情况下,90~120℃,15 ~ 30 s。
原子吸收光谱分析法

对于物理干扰,最好的消除方法 就是配制与试样溶液组成相似的 标准溶液。也可用标准参加法来 进行测定。
三,测定条件的选择: 1.分析线的选择:一般选用共
振线作分析线。 2.灯电流:保正稳定和适当光
强度输出的条件下,尽量选 用较低的工作电流。
5.狭缝宽度:由于原子吸收光谱法谱 线的重叠较少,一般可用较宽的狭 缝,以增强光的强度。但当存在谱 线干扰和背景吸收较大时,那么宜 选用较小的狭缝宽度。
SCV0.0044(g/1% 吸 收 ) A
式中:S为绝对灵敏度;C为试液 中 待 测 元 素 的 浓 度 〔g能检 出的元素的最低浓度或最小质 量。
定义为:能给出信号强度 等于3倍噪声信号强度标准偏差 时所对应的元素浓度或质量。
当在正负电极上施加适当电 压〔一般为200~500伏〕时,在 正负电极之间便开始放电,这时, 电子从阴极内壁射出,经电场加 速后向阳极运动。
电子在由阴极射向阳极的过程中, 与载气〔惰性气体〕原子碰撞使其 电离成为阳离子。带正电荷的惰性 气体离子在电场加速下,以很快的 速度轰击阴极外表,使阴极内壁的 待测元素的原子溅射出来,在阴极 腔内形成待测元素的原子蒸气云。
三.光学系统: 分光系统一般用光栅来进行分光。
光谱通带: W=D×S×10-3
其中:W为光谱通带〔单位nm〕;D为 光 栅 的 倒 线 色 散 率 〔 单 位 nm/mm-1〕 ; S为狭缝宽度〔单位μm〕。
四.检测系统: 检测系统包括检测器、放大器、
对数转换器、显示器几局部。
原子吸收光谱法的分析过程:
计算式为:D c 3 ( g / m L )
A
或 D g 3 ( g )
A
式 中 D 为 检 出 极 限 〔μg/mL 或 g〕 ; σ 为 对 空 白 溶 液 进 行 不 少 于 10 次 测 量时的标准偏差;A为吸光度;g为 质量〔g〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子吸收谱线是指在原子吸收光谱中所观察到的特征性谱线,这些谱线对应于原子在吸收光时特定能级之间的跃迁。
原子吸收谱线的特征取决于原子的能级结构和电子跃迁过程。
每个元素都有独特的原子能级结构,因此其吸收谱线也是独特的,可用于元素的鉴定和定量分析。
以下是一些常见的原子吸收谱线类型:
1. 基态至激发态跃迁谱线:这些谱线对应于原子中的电子从基态跃迁到激发态。
它们通常出现在可见光或紫外光区域,例如氢的巴尔末系列(Balmer series)谱线。
2. 激发态至基态跃迁谱线:这些谱线对应于原子中的电子从激发态跃迁回基态。
它们通常出现在可见光或近红外光区域,例如钠的黄线双线(D-line)谱线。
3. 多电子跃迁谱线:当涉及到多个电子的跃迁时,会引发更复杂的谱线结构。
例如,过渡金属元素常常显示出多个吸收峰,对应于不同的电子跃迁。
4. 超精细结构谱线:原子的超精细结构是由于核自旋、电子自旋和
电子轨道运动相互作用引起的。
这些相互作用会导致谱线的进一步分裂,形成超精细结构谱线。
需要注意的是,原子吸收谱线的位置和强度可以受到多种因素的影响,包括温度、气体压力、电磁辐射源的特性等。
因此,在实际的原子吸收光谱分析中,需要考虑这些因素,并与标准参考数据进行比较和分析。