考点五十 几何概型学生

合集下载

完整版几何概型的经典题型及答案

完整版几何概型的经典题型及答案

几何概型的常见题型及典例分析一•几何概型的定义1. 定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或 体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型 .2. 特点:(1) 无限性,即一次试验中,所有可能出现的结果(基本事件)有无限 多个;(2) 等可能性,即每个基本事件发生的可能性均相等 . 构成事件A 的区域长度(面积或体 积) 试验的全部结果所构成的区域长度(面积或体积)说明:用几何概率公式计算概率时,关键是构造出随机事件所对应 的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系:(1) 联系:每个基本事件发生的都是等可能的.(2) 区别:①古典概型的基本事件是有限的, 几何概型的基本事件是无 限的;②两种概型的概率计算公式的含义不同..常见题型(一)、与长度有关的几何概型分析:在区间[1,1]上随机取任何一个数都是一个基本事件.所取的数是 区间[1,1]的任意一个数,基本事件是无限多个,而且每一个基本事件的 发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的3.计算公式:P (A )例1、在区间[1,1]上随机取一个数x 1X ,cos 2-的值介于0到2之间的概率为().A.- 3B.C.D.区间长度有关,符合几何概型的条件 解:在区间[1,1]上随机取一个数X ,即x [0到-之间,需使x或 x22 2 33 2 2 2••• 1 x 2或-x 1,区间长度为3 3由几何概型知使cos —x 的值介于0到1之间的概率为2 22符合条件的区间长度 J 1所有结果构成的区间长 度 2 3 .例2、如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯 C,D ,问A 与C,B 与D 之间的距离都不小于10米的 概率是多少?思路点拨从每一个位置安装都是一个基本事件,基本事件有无限 多个,但在每一处安装的可能性相等,故是几何概型.解 记E : “ A 与C,B 与D 之间的距离都不小于10米”,把AB1等分,由于中间长度为妙3=10米,方法技巧我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生 则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型 就可以用几何概型来求解.例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交 点在该直径上的位置是等可能的,求任意画的弦的长度不小于 R 的概率 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以, 地分布在于平行弦垂直的直径上(如图1-1 ) O 也就是说,样本空间所对应的区域 G 是一维空 间(即直线)上的线段 MN 而有利场合所对 应的区域G 是长度不小于R 的平行弦的中点K 所在的区间。

考点52几何概型-高考全攻略之备战2019年高考数学(理)考点一遍过

考点52几何概型-高考全攻略之备战2019年高考数学(理)考点一遍过

原创精品资源学科网独家享有版权,侵权必究!
1
(1)了解随机数的意义,能运用模拟方法估计概率.
(2)了解几何概型的意义
.
一、几何概型
1.几何概型的概念
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
2.几何概型的特点
(1)试验中所有可能出现的结果(基本事件)有无限多个.
(2)每个基本事件发生的可能性相等.
3.几何概型的概率计算公式
()P A
A 构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)
. 4.必记结论 (1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;
(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;
(3)与体积有关的几何概型.。

高考数学一轮复习考点规范练55几何概型含解析新人教A版

高考数学一轮复习考点规范练55几何概型含解析新人教A版

考点规范练55 几何概型基础巩固1.(2021全国Ⅰ,文7)在区间(0,12)随机取1个数,则取到的数小于13的概率为( ) A.34 B.23 C.13 D.16答案:B解析:所求事件的概率P=13-012-0=23.2.若将一个质点随机地投入到如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( )A.π2 B.π4C.π6D.π8答案:B 解析:所求概率为S 半圆S 长方形=12π·122×1=π4,故选B .3.“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思是:有一个正方形的池塘,池塘的边长为一丈,有一棵芦苇生长在池塘的正中央,露出水面一尺,若把它引向岸边,正好与岸边齐(如图所示),问水有多深?芦苇有多长?其中一丈为十尺.若从该芦苇上随机取一点,则该点取自水上的概率为( )A.1213 B.113C.314D.213答案:B解析:设水深为x 尺,根据勾股定理可得(x+1)2=x 2+52,解得x=12,则水深12尺,芦苇长13尺.根据几何概型概率公式可得,从该芦苇上随机取一点,该点取自水上的概率为P=113,故选B.4.某人从甲地去乙地共走了500 m,途经一条宽为x m的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品未掉在河里,则能找到,已知该物品能被找到的概率为45,则河宽大约为()A.80 mB.50 mC.40 mD.100 m答案:D解析:由长度型的几何概型公式结合题意可知,河宽大约为500×(1-45)=100(m).5.已知在△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为()A.16B.13C.12D.23答案:C解析:如图,当BE=1时,∠AEB为直角,则点D在线段BE(不包含B,E点)上时,△ABD为钝角三角形;当BF=4时,∠BAF为直角,则点D在线段CF(不包含C,F点)上时,△ABD为钝角三角形.故△ABD为钝角三角形的概率为1+26=12.6.有一个长、宽分别为50 m,30 m的游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置的可能性相同.一人在池中心(对角线的交点)处呼唤工作人员,其声音可传出15√2 m,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是()A.34B.38C.3π16D.12+3π32答案:B解析:如图,工作人员在池边巡视的长度为160,工作人员能及时听到呼唤的长度为30+30=60,故所求的概率为60160=38.7.若在区间[-1,1]上随机取一个数x ,则sin πS 4的值介于-12与√22之间的概率为( )A.14 B.13C.23D.56答案:D解析:∵-1≤x ≤1,∴-π4≤πS 4≤π4.由-12≤sinπS 4≤√22, 得-π6≤πS 4≤π4,则-23≤x ≤1.故所求事件的概率为1-(-23)1-(-1)=56.8.记函数f (x )=√6+S -S 2的定义域为D.在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是 . 答案:59解析:由6+x-x 2≥0,即x 2-x-6≤0得-2≤x ≤3,所以D=[-2,3]⊆[-4,5].由几何概型的概率公式得x ∈D 的概率P=3-(-2)5-(-4)=59,答案为59.9.记集合A={(x ,y )|x 2+y 2≤4}和集合B={(x ,y )|x+y-2≤0,x ≥0,y ≥0}表示的平面区域分别为Ω1和Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2的概率为 .答案:12π解析:作圆O :x 2+y 2=4,区域Ω1就是圆O 内部(含边界),其面积为4π,区域Ω2就是图中△AOB 内部(含边界),其面积为2,因此所求概率为24π=12π.10.在圆C :(x-3)2+y 2=3上任取一点P ,则锐角∠COP<π6(O 为坐标原点)的概率是 .答案:23解析:当∠COP=π6时,直线OP 的方程为x ±√3y=0,圆心C 到直线OP 的距离d=32.又圆C 的半径为√3,此时弦所对的圆心角为π3,所以所求概率P=1-π3×22π=23.能力提升11.在区间[-1,1]上随机取一个数k ,使直线y=kx+√52与圆x 2+y 2=1不相交的概率为( ) A.34 B.23C.12D.13答案:C 解析:要使直线y=kx+√52与圆x 2+y 2=1相交,应满足√52√≥1,解得-12≤k ≤12,所以在区间[-1,1]上随机取一个数k ,使直线y=kx+√52与圆x 2+y 2=1不相交的概率为P=12+121+1=12.故选C .12.如图,“赵爽弦图”是由四个全等的直角三角形(阴影部分)围成一个大正方形,中间空出一个小正方形组成的图形.若在大正方形内随机取一点,该点落在小正方形的概率为15,则图中直角三角形较大锐角的正弦值为( )A.√55B.2√55C.15D.√33答案:B解析:设小正方形的边长为1,直角三角形的直角边长分别为x ,1+x ,√S 2+(1+S )2. 由几何概型可得12S 2+(1+S )2=15,解得x=1(x=-2(舍)),所以直角三角形的边长分别为1,2,√5,直角三角形较大锐角的正弦值为√5=2√55,故选B .13.已知函数f (x )=x 2+bx+c ,其中0≤b ≤4,0≤c ≤4.记函数f (x )满足条件{S (2)≤12,S (-2)≤4为事件A ,则事件A 发生的概率为( ) A.14 B.58 C.12 D.38答案:C 解析:由题意, 得{4+2S +S ≤12,4-2S +S ≤4,0≤S ≤4,0≤S ≤4,即{2S +S -8≤0,2S -S ≥0,0≤S ≤4,0≤S ≤4,表示的区域(阴影部分)如图所示,可知阴影部分的面积为8, 所以所求概率为12,故选C .14.设点(a ,b )是区域{S +S -4≤0,S >0,S >0内的任意一点,则使函数f (x )=ax 2-2bx+3在区间[12,+∞)内是增函数的概率为 . 答案:13解析:作出不等式组{S +S -4≤0,S >0,S >0所对应的平面区域如图△AOB 区域,可知符合条件的点所构成的区域面积为S △AOB =12×4×4=8. 若f (x )=ax 2-2bx+3在区间[12,+∞)内是增函数,则{S >0,--2S 2S=S S ≤12,即{S >0,S -2S ≥0.则A (0,4),B (4,0), 由{S +S -4=0,S -2S =0得{S =83,S =43.即C (83,43). 则使函数f (x )=ax 2-2bx+3在区间[12,+∞)内为增函数的点(a ,b )所构成的区域为△OBC ,其面积为12×4×43=83.故所求的概率为838=13.15.如图,在Rt △ABC 中,∠BAC=90°,AB=1,BC=2.在边BC 上任取一点M ,则∠AMB ≥90°的概率为 .答案:14解析:如图,在Rt △ABC 中,作AD ⊥BC ,D 为垂足,由题意可得BD=12,且点M 在BD 上时,满足∠AMB ≥90°,故所求概率为SSSS=122=14.16.张先生订了一份报纸,送报人在早上6:30~7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00~8:00之间,则张先生在离开家之前能得到报纸的概率是 . 答案:78解析:以横坐标x 表示报纸送到时间,纵坐标y 表示张先生离家时间,建立如图所示的平面直角坐标系.因为随机试验落在正方形区域内任何一点是等可能的,所以符合几何概型.根据题意只要点落到阴影部分,就表示张先生在离开家前能得到报纸,故所求的概率为1×1-12×12×121×1=78.高考预测17.若不等式x 2+y 2≤2所表示的平面区域为M ,不等式组{S -S ≥0,S +S ≥0,S ≥2S -6表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M 内的概率为 . 答案:π24解析:分别作出平面区域M 和平面区域N 如图所示,可知平面区域M 与平面区域N 重叠部分的面积为14π(√2)2=π2,平面区域N 的面积为12×3×2+12×3×6=12,故所求的概率为12π12=π24.。

苏教版 高考数学 一轮复习 讲义---第10章 学案59 几何概型

苏教版 高考数学 一轮复习 讲义---第10章  学案59  几何概型

学案59 几何概型导学目标: 了解几何概型的意义.自主梳理 1.几何概型设D 是一个可度量的区域,每个基本事件可以视为从区域D 内随机地取一点,区域D 内的每一点被取到的机会都一样;随机事件A 的发生可以视为恰好取到区域D 内的某个指定区域d 中的点.这时,事件A 发生的概率与d 的测度(长度、面积、体积等)成正比,与d 的形状和位置无关,则称这样的概率模型为几何概型.2.几何概型中,事件A 的概率计算公式:P(A)=d 的测度D 的测度.3.古典概型与几何概型的区别(1)相同点:基本事件发生的可能性都是________; (2)不同点:古典概型的基本事件是有限个,是可数的;几何概型的基本事件是________,是不可数的.自我检测1.在长为12 cm 的线段AB 上任取一点M ,并且以线段AM为边作正方形,则这个正方形的面积介于36 cm 2与81 cm 2之间的概率为________. 2.(2011·福建改编)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于____________.3. 如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连结AA ′,得到一条弦,则此弦的长度小于或等于半径长度的概率为________.4.(2010·湖南)在区间[-1,2]上随机取一个数x ,则|x|≤1的概率为________. 5.(2011·江西)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不.在家看书的概率为________.探究点一 与长度有关的几何概型例1 国家安全机关监听录音机记录了两个间谍的谈话,发现30 min 长的磁带上,从开始30 s 处起,有10 s 长的一段内容包含两间谍犯罪的信息.后来发现,这段谈话的一部分被某工作人员擦掉了,该工作人员声称他完全是无意中按错了键,使从此处起往后的所有内容都被擦掉了.那么由于按错了键使含有犯罪的内容的谈话被部分或全部擦掉的概率有多大?变式迁移1在半径为1的圆的一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率为________.探究点二与角度有关的几何概型例2如图所示,在等腰Rt△ABC中,过直角顶点C在∠ACB内部作一条射线CM,与线段AB交于点M,求AM<AC的概率.变式迁移2若将例2题目改为:“在等腰Rt△ACB中,在斜边AB上任取一点M,求AM的长小于AC的长的概率”,答案还一样吗?探究点三与面积有关的几何概型例3两人约定在20∶00到21∶00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20∶00至21∶00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率.变式迁移3甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.如果甲船和乙船的停泊时间都是4小时,求它们中的任何一条船不需要等待码头空出的概率.分类讨论与数形结合思想例 (14分)已知函数f(x)=x 2-2ax +b 2,a ,b ∈R .(1)若a 从集合{0,1,2,3}中任取一个元素,b 从集合{0,1,2}中任取一个元素,求方程f (x )=0有两个不相等实根的概率;(2)若a 从区间[0,2]中任取一个数,b 从区间[0,3]中任取一个数,求方程f (x )=0没有实根的概率.【答题模板】解 (1)∵a 取集合{0,1,2,3}中任一个元素,b 取集合{0,1,2}中任一个元素,∴a ,b 的取值的情况有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值,即基本事件总数为12.[3分]设“方程f (x )=0有两个不相等的实根”为事件A ,当a ≥0,b ≥0时,方程f (x )=0有两个不相等实根的充要条件为a >b .当a >b 时,a ,b 取值的情况有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),即A 包含的基本事件数为6,∴方程f (x )=0有两个不相等实根的概率为P (A )=612=12.[7分](2)∵a 从区间[0,2]中任取一个数,b 从区间[0,3]中任取一个数,则试验的全部结果构成区域Ω={(a ,b )|0≤a ≤2,0≤b ≤3},这是一个矩形区域,其面积S Ω=2×3=6.[9分]设“方程f (x )=0没有实根”为事件B ,则事件B 所构成的区域为M ={(a ,b )|0≤a ≤2,0≤b ≤3,a <b },即图中阴影部分的梯形,其面积S M =6-12×2×2=4.[12分]由几何概型的概率计算公式可得方程f (x )=0没有实根的概率为P (B )=S M S Ω=46=23.[14分]【突破思维障碍】古典概型和几何概型的区别在于试验的全部结果是否有限,因此到底选用哪一种模型,关键是对试验的确认和分析.第(1)问关键是列举不重不漏隐含了分类讨论思想.第(2)问是几何概型问题,解决此问题的关键是将已知的两个条件转化为线性约束条件,从而转化成平面区域中的面积型几何概型问题,隐含了数形结合思想.【易错点剖析】1.计算古典概型的概率时,列举基本事件应不重不漏. 2.计算几何概型的概率时,区域的几何度量要准确无误.1.几何概型:若一个试验具有两个特征:①每次试验的结果是无限多个,且全体结果可用一个有度量的几何区域来表示;②每次试验的各种结果是等可能的.那么这样的试验称为几何概型.2.由概率的几何定义可知,在几何概型中,“等可能”一词应理解为对应于每个试验结果的点落入某区域内的可能性大小仅与该区域的几何度量成正比,而与该区域的位置与形状无关.3.几何概型的概率公式:设几何概型的基本事件空间可表示成可度量的区域Ω,事件A 所对应的区域用A 表示(A ⊆Ω),则P (A )=A 的度量Ω的度量.(满分:90分)一、填空题(每小题6分,共48分) 1.(2009·辽宁)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为________.2.(2010·天津和平区一模)在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是__________________________________________________________________.3.(2010·山东临沂一中期末)已知正三棱锥S —ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P —ABC <12V S —ABC 的概率为________.4.已知正方体ABCD —A 1B 1C 1D 1内有一个内切球O ,则在正方体ABCD —A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是________.5.已知函数f (x )=x 2+bx +c ,其中0≤b ≤4,0≤c ≤4.记函数f (x )满足⎩⎪⎨⎪⎧f (2)≤12f (-1)≤3的事件为A ,则事件A 的概率为________.6.(2010·青岛一模)从集合{(x ,y )|x 2+y 2≤4,x ∈R ,y ∈R }内任选一个元素(x ,y ),则x ,y 满足x +y ≥2的概率为________.7. 如图所示,半径为10 cm 的圆形纸板内有一个相同圆心的半径为1 cm 的小圆.现将半径为1 cm 的一枚硬币抛到此纸板上,使硬币整体随机落在纸板内,则硬币落下后与小圆无公共点的概率为________.8.(2010·济南模拟)在可行域内任取一点,规则如流程图所示,则能输出数对(x ,y )的概率是________.二、解答题(共42分)9.(14分) 已知等腰Rt△ABC中,∠C=90°.(1)在线段BC上任取一点M,求使∠CAM<30°的概率;(2)在∠CAB内任作射线AM,求使∠CAM<30°的概率.10.(14分)甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.设甲乙两艘轮船停靠泊位的时间分别是4小时和6小时,求有一艘轮船停靠泊位时必须等待一段时间的概率.11.(14分)已知函数f(x)=-x2+ax-b.(1)若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;(2)若a,b都是从区间[0,4]任取的一个数,求f(1)>0成立时的概率.学案59 几何概型答案自主梳理3.(1)相等的 (2)无限个 自我检测 1.14解析 ∵AM 2∈[36,81],∴AM ∈[6,9], ∴P =9-612=312=14.2.12解析 这是一道几何概型的概率问题,点Q 取自△ABE 内部的概率为S △ABE S 矩形ABCD=12·|AB|·|AD||AB|·|AD|=12.3.13解析 当∠A ′OA =π3时,AA ′=OA ,∴P =23π2π=13.4.23解析 由|x|≤1,得-1≤x ≤1.由几何概型的概率求法知,所求的概率 P =区间[-1,1]的长度区间[-1,2]的长度=23.5.1316解析 ∵去看电影的概率P 1=π×12-π×(12)2π×12=34, 去打篮球的概率P 2=π×(14)2π×12=116, ∴不在家看书的概率为P =34+116=1316.课堂活动区例1 解题导引 解决概率问题先判断概型,本题属于几何概型,满足两个条件:基本事件的无限性和每个基本事件发生的等可能性,需要抓住它的本质特征,即与长度有关.解 包含两个间谍谈话录音的部分在30 s 和40 s 之间,当按错键的时刻在这段时间之内时,部分被擦掉,当按错键的时刻在0到30 s 之间时全部被擦掉,即在0到40 s 之间,即0到23 min 之间的时间段内按错键时含有犯罪内容的谈话被部分或全部擦掉,而0到30 min 之间的时间段内任一时刻按错键的可能性是相等的,所以按错键使含有犯罪内容的谈话被部分或全部擦掉的概率只与从开始到谈话内容结束的时间段长度有关,符合几何概型的条件.记A ={按错键使含有犯罪内容的谈话被部分或全部擦掉},A 的发生就是在0到23 min时间段内按错键.P(A)=2330=145.变式迁移1 12解析记“弦长超过圆内接等边三角形的边长”为事件A ,如图所示,不妨在过等边三角形BCD 的顶点B 的直径BE 上任取一点F 作垂直于直径的弦,当弦为CD 时,就是等边三角形的边长,弦长大于CD 的充要条件是圆心O 到弦的距离小于OF ,由几何概型的概率公式得P(A)=12×22=12.例2 解题导引 如果试验的结果所构成的区域的几何度量可用角度来表示,则其概率公式为P(A)=构成事件A 的角度试验的全部结果所构成区域的角度. 解 在AB 上取AC ′=AC ,连结CC ′,则∠ACC ′=180°-45°2=67.5°.设A ={在∠ACB 内部作出一条射线CM ,与线段AB 交于点M ,AM<AC},则μΩ=90°,μA =67.5°,P(A)=μA μΩ=67.5°90°=34.变式迁移2 解 不一样,这时M 点可取遍AC ′(长度与AC 相等)上的点, 故此事件的概率应为AC ′长度AB 长度=22.例3 解题导引 解决此题的关键是将已知的两个条件转化为线性约束条件,从而转化成平面区域中与面积有关的几何概型问题.对于几何概型的应用题,关键是构造出随机事件A 对应的几何图形,利用几何图形的度量来求随机事件的概率,根据实际问题的具体情况,合理设置参数,建立适当的坐标系,在此基础上将试验的每一个结果一一对应于该坐标系的一点,便可构造出度量区域. 解 设两人分别于x 时和y 时到达约见地点,要使两人能在约定的时间范围内相见.当且仅当|x -y|≤23.两人在约定时间内到达约见地点的所有可能结果可用图中的单位正方形内(包括边界)的点来表示,两人在约定时间内相见的所有可能结果可用图中的阴影部分(包括边界)的点来表示.因此阴影部分与单位正方形的面积比就反映了两人在约定时间范围内相遇的可能性的大小,也就是所求的概率,即P =S 阴影部分S 单位正方形=1-⎝⎛⎭⎫13212=89.变式迁移3 解 设甲、乙两船到达时间分别为x 、y , 则0≤x ≤24,0≤y ≤24且y -x ≥4或y -x ≤-4. 作出区域⎩⎪⎨⎪⎧0≤x ≤24,0≤y ≤24,y -x ≥4或y -x ≤-4.设“两船无需等待码头空出”为事件A , 则P(A)=S 阴影部分S 正方形=2×12×20×2024×24=2536.课后练习区1.1-π4解析 当以O 为圆心,1为半径作圆,则圆与长方形的公共区域内的点满足到点O 的距离小于或等于1,故所求事件的概率为P(A)=μA μΩ=S 长方形-S 半圆S 长方形=1-π4.2.34解析 由于△ABC 、△PBC 有公共底边BC ,所以只需P 位于线段BA 靠近B 的四分之一分点E 与A 之间,即构成一个几何概型,∴所求的概率为|AE||AB|=34.3.78 解析 当P 在三棱锥的中截面及下底面构成的正三棱台内时符合要求,由几何概型知,P =1-18=78.4.π6解析 设正方体棱长为a ,则正方体的体积为a 3,内切球的体积为43π⎝⎛⎭⎫a 23=16πa 3,故M在球O 内的概率为16πa 3a 3=π6.5.58 解析满足0≤b ≤4,0≤c ≤4的区域的面积为4×4=16,由⎩⎨⎧f (2)≤12f (-1)≤3,得⎩⎪⎨⎪⎧2b +c ≤8-b +c ≤2,其表示的区域如图中阴影部分所示,其面积为12×(2+4)×2+12×2×4=10,故事件A 的概率为1016=58.6.π-24π解析 即图中弓形面积占圆面积的比例,属面积型几何概型:π-24π.7.7781 解析 由题意知,硬币的中心应落在距圆心2~9 cm 的圆环上,圆环的面积为π×92-π×22=77π,故所求概率为77π81π=7781.8.π4解析 根据题意易知输出数对(x ,y)的概率即为满足x 2+y 2≤12的平面区域与不等式组⎩⎪⎨⎪⎧-1≤x +y ≤1,-1≤x -y ≤1所表示的平面区域面积的比,即P(A)=π×122=π4. 9.解 (1)设CM =x ,则0<x<a(不妨设BC =a).若∠CAM<30°,则0<x<33a ,故∠CAM<30°的概率为P(A)=区间⎝⎛⎭⎫0,33a 的角度区间(0,a )的角度=33.(7分)(2)设∠CAM =θ,则0°<θ<45°. 若∠CAM<30°,则0°<θ<30°, 故∠CAM<30°的概率为P(B)=区间(0°,30°)的长度区间(0°,45°)的长度=23.(14分)10.解设事件A ={有一艘轮船停靠泊位时必须等待一段时间},以x 轴和y 轴分别表示甲、乙两船到达泊位的时间,则点(x ,y)的所有可能结果是边长为24的正方形区域,如右图所示,由已知得事件A 发生的条件是⎩⎪⎨⎪⎧x +4≥y ,y +6≥x ,0≤x ≤24,0≤y ≤24.(7分)作出这个二元一次不等式组表示的平面区域为如图所示的阴影部分.∵S 正方形=242=576,S 阴影=242-12×202-12×182=214,(12分)∴P(A)=S 阴影S 正方形=214576=107288.所以,甲、乙两船有一艘停靠泊位时必须等待一段时间的概率为107288.(14分)11.解 (1)a ,b 都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N =5×5=实用文档 祝你高考成功! 11 25(个).(2分)函数有零点的条件为Δ=a 2-4b ≥0,即a 2≥4b.因为事件“a 2≥4b ”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4),共12个.所以事件“a 2≥4b ”的概率为P =1225.(7分) (2)∵a ,b 都是从区间[0,4]上任取的一个数,f(1)=-1+a -b>0,∴a -b>1,此为几何概型,所以事件“f(1)>0”的概率为P =12×3×34×4=932.(14分)。

几何概型 - 简单 - 习题

几何概型 - 简单 - 习题

几何概型一、选择题(共12小题;共60分)1. 下列关于几何概型的说法错误的是A. 几何概型是古典概型的一种,基本事件都具有等可能性B. 几何概型中事件发生的概率与它的位置或形状无关C. 几何概型在一次试验中可能出现的结果有无限多个D. 几何概型中每个结果的发生都具有等可能性2. 已知是长方形,,,为的中点,在长方形内随机取一点,取到的点到的距离大于的概率为A. B. C. D.3. 若将一个质点随机投入如图所示的长方形中,其中,,则质点落在以为直径的半圆内的概率是A. B. C. D.4. 张卡片上分别写有数字,,,,从这张卡片中随机抽取张,则取出的张卡片上的数字之和为奇数的概率为A. B. C. D.5. 设在上随机地取值,则关于的方程有实数根的概率为A. B. C. D.6. 如图,在半径为,弧长为的扇形中,以为直径作一个半圆.若在扇形内随机取一点,则此点取自阴影部分的概率是A. B. C. D.7. 在中,,,,在边上任取一点,则为钝角三角形的概率为A. B. C. D.8. 如图,在边长为的正方形内有区域(阴影部分所示),张明同学用随机模拟的方法求区域的面积.若每次在正方形内随机产生个点,并记录落在区域内的点的个数.经过多次试验,计算出落在区域内点的个数的平均值为个,则区域的面积约为A. B. C. D.9. 如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则A. B. C. D.10. 某个路口交通指示灯,红灯时间为秒,黄灯时间为秒,绿灯时间为秒,黄灯时间可以通行,当你到达路口时,等待时间不超过秒就可以通行的概率为A. B. C. D.11. 在长为的线段上任取一点,则点与线段两端点的距离都大于的概率等于A. B. C. D.12. 在区间内随机取出一个数,使得的概率为A. B. C. D.二、填空题(共5小题;共25分)13. 某路公共汽车每发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过的概率为.14. 在区间上随机选取一个数,则的概率为.15. 已知事件“在矩形的边上随机取一点,使的最大边是”发生的概率为,则.16. 在边长为的正三角形内任取一点,则使点到三个顶点的距离至少有一个小于的概率是.17. 已知一只蚂蚁在边长分别为,,的三角形的边上随机爬行,则其恰在离三个顶点的距离都大于的地方的概率为.三、解答题(共5小题;共65分)18. 设有一个等边三角形网格,其中各个等边三角形的边长都是,现将直径等于的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.19. 已知在等腰直角三角形中,.(1)在线段上任取一点,求使的概率;(2)在内任作射线,求使的概率.20. 在等腰的斜边上任取一点,求小于的概率.21. 如图,两盏路灯之间的距离是米,由于光线较暗,想在其间再随意安装两盏路灯、,问与,与之间的距离都不小于米的概率是多少?22. 在的水中有一个草履虫,现从中随机取出水放到显微镜下观察,求发现草履虫的概率.答案第一部分1. A 【解析】几何概型与古典概型是两种不同的概率模型,无包含关系.2. B3. B 【解析】长方形的面积,以为直径的半圆的面积,所以.4. C 【解析】采用列举法得所有的基本事件有,,,,,六种情况,其中两数字之和为奇数的有,,,四种情况,故所求概率为.5. C【解析】方程有实根,则,解得或(舍去).由几何概型的概率计算公式可知所求的概率为.6. B 【解析】阴影部分的面积为,扇形的面积为,所以在扇形内随机取一点,则此点取自阴影部分的概率.7. C 【解析】过点作,垂足为,则;过点作,交于点,则,,易知当点在线段和上时(不包括线段端点,,),为钝角三角形,故所求概率为.8. B 【解析】设区域的面积约为,根据题意有,所以,,所以区域的面积约为.9. A10. A11. D 【解析】将线段平均分成段,设中间两点分别为,,则当点在线段上时符合题意,所以概率.12. D第二部分13.【解析】本题可以看成向区间内均匀投点,求点落入内的概率.设某乘客候车时间不超过,所以.14.15.【解析】如图,设,根据对称性,由题中条件知,点的活动范围为,即.当时,,解得,所以.16.【解析】分别以点,,为圆心,以为半径作圆,与构成三个扇形,如图中阴影部分所示,当点落在其内时符合要求.所以.17.【解析】由题意可知,三角形的三条边长的和为,而蚂蚁要在离三个顶点的距离都大于的地方爬行,则它爬行的区域长度为,根据几何概型的概率计算公式可得所求概率为.第三部分18. 记事件为“硬币落下后与格线没有公共点”,如图所示,在等边三角形内作小等边三角形,使其三边与原等边三角形三边的距离都为,则小等边三角形的边长为.由几何概型的概率计算公式得.19. (1)设,,则.若,则,故的概率.(2)设,则.若,则,故的概率.20. 在上截取,于是,.21. 记:“与,与之间的距离都不小于米”,把三等分,由于中间长度为米所以.22. 记事件在取出的水中有草履虫,由几何概型的概率计算公式得.。

高中数学复习:几何概型

高中数学复习:几何概型

考点突破 栏目索引
考点突破 栏目索引
由图得等车时间不超过10分钟的概率为
1 2
.
(2)因为∠B=60°,∠C=45°,所以∠BAC=75°.
在Rt△ABD中,AD= 3,∠B=60°,
所以BD=
AD tan 60
=1,∠BAD=30°.
记事件N为“在∠BAC内作射线AM交BC于点M,使BM<1”,则当∠BAM
考点突破 栏目索引
1-1 (2018河南濮阳模拟)在[-6,9]内任取一个实数m,设f(x)=-x2+mx+m,
则函数f(x)的图象与x轴有公共点的概率为( D )
A. 2
B. 7
C. 3 D.11
15
15
5
15
答案 D ∵f(x)=-x2+mx+m的图象与x轴有公共点,∴Δ=m2+4m>0,∴m<-
<∠BAD时,事件N发生.
由几何概型的概率公式,得P(N)=3705
2
=5
.
考点突破 栏目索引
规律总结 与长度、角度有关的几何概型的求法 解答关于长度、角度的几何概型问题,只要将所有基本事件及事件A包 含的基本事件转化为相应长度或角度,即可利用几何概型的概率计算公 式求解.要特别注意“长度型”与“角度型”的不同,解题的关键是构 建事件的区域(长度或角度).
4或m>0,∴在[-6,9]内取一个实数m,函数f(x)的图象与x轴有公共点的概
率P=[4 (6)] (9 0) =11,故选D.
9 (6)
15
考点突破 栏目索引
1-2
在区间
2
,
2
上随机取一个数x,则cos

几何概型讲义

几何概型讲义

D O BA C 几何概型[知识点]:1. 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件2. 特别提醒:基本事件有如下两个特点: ○1任何两个基本事件都是互斥的; ○2任何事件都可以表示成基本事件的和。

2.所有基本事件的全体,叫做样本空间,用Ω表示,例如“抛一枚硬币”为一次实验,则Ω={正面,反面}。

3.等可能性事件(古典概型):如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件古典概型的两个共同特点: ○1有限性,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的; ○2等可能性,即每个基本事件出现的可能性相等。

4.古典概型的概率公式:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n =5.几何概型:如果第个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

6.几何概型的特点: ○1试验的结果是无限不可数的; ○2每个结果出现的可能性相等。

7.几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A 8. 用几何概型解题,主要运用转化,数形结合等重要的数学思想方法,解决问题的关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率。

[典例]:1.如图,60AOB ∠=,2OA =,5OB =,在线段OB 上任取一点C ,试求:(1)AOC ∆为钝角三角形的概率;(2)AOC ∆为锐角三角形的概率.解:如图,由平面几何知识:当AD OB ⊥时,1OD =; 当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形记"AOC ∆为钝角三角形"为事件M ,则11()0.45OD EB P M OB ++===即AOC ∆为钝角三角形的概率为0.4.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角,记"AOC ∆为锐角三角"为事件N,则3()0.65DE P N OB ===即AOC ∆为锐角三角形的概率为0.6.2.甲、乙两人约定在下午4:00~5:00间在某地相见他们约好当其中一人先到后一定要等另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。

高中二年级数学几何概型知识点梳理

高中二年级数学几何概型知识点梳理

高中二年级数学几何概型知识点梳理高中二年级数学几何概型知识点梳理几何概型是一种概率模型。

以下是查字典数学网为大家整理的高中二年级数学几何概型知识点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。

一、知识点剖析部分几何概型:掌握要点:1.几何概型定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;2. 几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等.3. 几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积); 试验的全部结果所构成的区域长度(面积或体积)易混易错:1. 古典概型与几何概型的特点相混淆,不能区分是古典概型问题还是几何概型问题。

2. 不能选择适当的度量角度。

二、典型例题剖析:运用几何概型概率公式求概率方法归纳:计算几何概型概率就是要计算基本事件总体与事件A包含的基本事件对应的区域的长度(面积、角度、体积),具体方法为:(1) 适当选择观察角度(2) 把基本事件转化为与之对应的区域(3) 把随机事件转化为与之对应的区域(4) 利用概率公式计算(5) 如果事件A对应的区域不好处理,可以利用对立事件概率公式逆向思维进行求解。

例1 某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).思路点拨:如果试验的结构所构成的区域的几何度量可以用长度表示,则可以按公式 P(A)=构成事件A的长度计算. 试验的全部结果所构成的区域长度解答示范:解:可以认为人在任一时刻到站是等可能的. 设上一班车离站时刻为a,则某人到站的一切可能时刻为 = (a, a+5),记A={等车时间少于3分钟},则他到站的时刻只能为g = (a+2, a+5)中的任一时刻。

P(A)= g的长度3= ?的长度5例2. 街道旁边有一游戏:在铺满边长为9cm的正方形塑料板的宽广地面上,掷一枚半径为1cm的小圆板,规则如下:每掷一次交5角钱,若小圆板压在边上,可重掷一次;若掷在正方形内可再交5角再掷一次;若压在塑料板的顶点上,可获得一元钱.试问:(1)小圆板压在塑料板的边上的概率是多少?(2)小圆板压在塑料板顶点上的概率是多少?思路点拨:如果试验的结构所构成的区域的几何度量可以用面积表示,则可以按公式 P(A)=构成事件A的面积计算. 试验的全部结果所构成的区域面积最后,希望小编整理的高中二年级数学几何概型知识点对您有所帮助,祝同学们学习进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点五十 几何概型
知识梳理
1.几何概型
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.
2.几何概型的概率公式
P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)
3.几何概型的两个特点
几何概型有两个特点:一是无限性;二是等可能性.
4.几何概型与古典概型的区别
古典概型与几何概型中基本事件发生的可能性都是相等的,但古典概型要求基本事件有有限个,而几何概型则是无限个.
典例剖析
题型一 与长度有关的几何概型
例1 (2014·高考湖南卷)在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( ) A. 45 B. 35 C. 25 D. 15
变式训练 (2015山东文)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝⎛⎭
⎫x +12≤1”发生的概率为( )
A. 34
B. 23
C. 13
D. 14
解题要点 基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.
题型二 与面积有关的几何概型
例2 (2014·高考辽宁卷) 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )
A. π2
B. π4
C. π6
D. π8
变式训练 (2015福建文)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C
与点D 在函数f (x )=⎩⎪⎨⎪⎧
x +1,x ≥0,-12
x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )
A. 16
B. 14
C. 38
D. 12
解题要点 求解与面积有关的几何概型的注意点:
求解与面积有关的几何概型时,关键是弄清某事件对应的面积以求面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解. 题型三 与体积有关的几何概型
例3 在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )
A. π12 B .1-π12 C. π6 D .1-π6
变式训练 有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.
解题要点 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.
当堂练习
1.(2015陕西文)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A. 34+12π B. 12+1π C. 14-12π D. 12-1π
2.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )
A. 4π81
B. 81-4π81
C. 127
D. 827
3. 在区间⎣⎡⎦⎤-π2,π2上随机取一个x ,sin x 的值介于-12与12
之间的概率为( ) A. 13 B. 2π C. 12 D. 23
4.在[-2,3]上随机取一个数x ,则(x +1)(x -3)≤0的概率为( )
A. 25
B. 14
C. 35
D. 45
5.利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为__________.
课后作业
一、 选择题
1.在长为10cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25cm 2与49cm 2之间的概率为( )
A. 25 B .15、 C. 45 D .310
2.在区间(10,20]内的所有实数中,随机取一个实数a ,则这个实数a <13的概率是( ) A. 13 B .17 C. 310 D .710
3.在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为( )
A. 16 B .13 C. 23 D .45
4.如图,一个矩形的长为5,宽为2,在矩形内随机的撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积约为( )
A. 235 B .215 C. 195 D .165
5.假设△ABC 为圆的内接正三角形,向该圆内投一点,则点落在△ABC 内的概率( )
A. 334π B .2π C. 4π D .33π4
6.一只蚂蚁在一直角边长为1cm 的等腰直角三角形ABC (∠B =90°)的边上爬行,则蚂蚁距A 点不超过1cm 的概率为( )
A .22
B .23
C .2- 3
D .2- 2 7.(2015湖北文)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12
”的概率,p 2为事件“xy ≤12
”的概率,则( ) A .p 1<p 2<12 B .p 2<12<p 1 C.12<p 2<p 1 D .p 1<12
<p 2 二、填空题
8.在区间[20,80]内任取一个实数m ,则实数m 落在区间[50,75]内的概率为________.
9.(2013·湖北卷)在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56
,则m =________.
10. (2014·福建文)如图所示,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.
11.取一个边长为2a 的正方形及其内切圆如图,随机向正方形内丢一粒豆子,豆子落入圆内的概率为______________________.
三、解答题
12.已知关于x 的一元二次方程x 2-2(a -2)x -b 2+16=0.
(1)若a ,b 是一枚骰子掷两次所得到的点数,求方程有两正根的概率;
(2)若a ∈[2,6],b ∈[0,4],求方程没有实根的概率.
13.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).
(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率;
(2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于22
的概率.。

相关文档
最新文档