几何概型的概率计算公式-数学

合集下载

高中数学:第三章概率 小结 (21)

高中数学:第三章概率 小结 (21)
第24页
探究2 解与面积相关的几何概型问题的三个关键点. (1)根据题意确认是否是与面积有关的几何概型问题; (2)找出或构造出随机事件对应的几何图形,利用图形的几 何特征计算相关面积; (3)套用公式,从而求得随机事件的概率.
第25页
思考题2
(1)(高考真题·北京卷)设不等式组
0≤x≤2, 0≤y≤2
①求乘客到站候车时间大于10分钟的概率; ②求候车时间不超过10分钟的概率; ②求乘客到达车站立即上车的概率.
第12页
【思路】 分析概率模型 → 得其为几何概型 → 结果 【解析】 ①如下图所示,设相邻两班车的发出时间为 T1,T2,T1T2=15.
设T0T2=3,TT0=10,记“乘客到站候车时间大于10分 钟”为事件A.
【解析】 ∵区间[-1,2]的区间长度为3,随机数x的取值区
间[0,1]的区间长度为1,
∴由几何概型知x∈[0,1]的概率为13.
【答案】
1 3
第9页
(2)在等腰直角三角形ABC中,在斜边AB上任取一点M,求 AM的长大于AC的长的概率.
【思路】 点M随机地落在线段AB上,故试验所有点所在的 区域为线段AB,在AB上截取AC′=AC,则当点M位于线段BC′上 时,AM>AC.故“AM的长度大于AC的长度”的度量为BC′.
思考题1 某人向平面区域|x|+|y|≤ 2 内任意投掷一枚飞 镖,则飞镖恰好落在单位圆x2+y2=1内的概率为________.
第51页
【解析】 区域|x|+|y|≤ 2是边长为2的一个正方形区域(如 图),由图知所求概率为π4.
第44页
自助餐
第45页
与线性规划有关的几何概型问题 (仅供先学必修五的学校使用)

高考数学 考点一遍过 专题52 几何概型 理-人教版高三全册数学试题

高考数学 考点一遍过 专题52 几何概型 理-人教版高三全册数学试题

专题52 几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.一、几何概型1.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件发生的可能性相等.3.几何概型的概率计算公式() P AA构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).4.必记结论(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;(3)与体积有关的几何概型.二、随机模拟用计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法.这个方法的基本步骤是:(1)用计算器或计算机产生某个X围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN作为所求概率的近似值.注意,用随机模拟方法得到的结果只能是概率的近似值或估计值,每次试验得到的结果可能不同,而所求事件的概率是一个确定的数值.考向一与长度有关的几何概型求解与长度有关的几何概型的问题的关键是将所有基本事件及事件A包含的基本事件转化为相应长度,进而求解.此处的“长度”可以是线段的长短,也可以是时间的长短等.注意:在寻找事件A发生对应的区域时,确定边界点是问题的关键,但边界点能否取到不会影响事件A的概率.典例1某学校星期一至星期五每天上午都安排五节课,每节课的时间为40分钟.第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间到达教室,则他听第二节课的时间不少于10分钟的概率是A.12B.13C.23D.35【答案】A故所求概率为201402=,选A . 典例2 在区间[]0,2上随机抽取一个数x ,则事件“1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭”发生的概率为 A .34B .23 C .13D .14【答案】A【解析】区间[]0,2的长度为2, 由1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭可得302x ≤≤, 所以所求事件的概率为P =33224-=.1.公共汽车在7:00到7:20内随机到达某站,李老师从家里赶往学校上班,7:15到达该站,则她能等到公共汽车的概率为A .13B .23 C .14D .342.在长度为10的线段AB 上任取一点C (不同于A ,B ),则以AC ,BC 为半径的圆的面积之和小于58π的概率为A .B .C .D .考向二 与面积有关的几何概型求解与面积有关的几何概型的问题的关键是构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型的概率计算公式,从而求得随机事件的概率. 必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.“面积比”是求几何概型的一种重要的方法.典例3 在如图所示的扇形AOB中,∠AOB=,半圆C切AO于点D,与圆弧AB切于点B,若随机向扇形AOB内投一点,则该点落在半圆C外的概率为A.B.C.D.【答案】A则所求概率P=1-SS=1-,故选A.典例4 如图,已知A(a,0)(a>0),B是函数f(x)=2x2图象上的一点,C(0,2),若在矩形OABC内任取一点P,则点P落在阴影部分的概率为________.【答案】3.圆O 内有一内接正三角形,向圆O 内随机投一点,则该点落在正三角形内的概率为 A 33B .3C .33.34.已知1Ω是集合()22{,|1}x y x y +≤所表示的区域,2Ω是集合(){,|1}x y x y +≤所表示的区域,向区域1Ω内随机地投一个点,则该点落在区域2Ω内的概率为________.考向三 与体积有关的几何概型的求法用体积计算概率时,要注意所求概率与所求事件构成的区域的体积的关系,准确计算出所求事件构成的区域的体积,确定出基本事件构成的区域的体积,求体积比即可.一般当所给随机事件是用三个连续变量进行描述或当概率问题涉及体积时,可以考虑用此方法求解.典例5一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器六个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全,即始终保持与正方体玻璃容器六个表面的距离均大于10,飞行才是安全的.假设蜜蜂在正方体玻璃容器内飞行到任意位置的可能性相等,那么蜜蜂飞行安全的概率是A.512B.23C.127D.425【答案】C5.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食落在圆锥外面”的概率是A.π14B.π12C.π4D.π112-考向四随机模拟的应用利用随机模拟试验可以近似计算不规则图形A的面积,解题的依据是根据随机模拟估计概率()AP A=随机取的点落在中的随机取点频数的总次数,然后根据()随机取点构的成事全部件的区结果构成的区域面积域面积AP A=列等式求解.典例6 《周髀算经》中给出了勾股定理的绝妙证明,如图是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积分别称朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷3000颗图钉,则落在黄色图形内的图钉数约为(3≈1.732)A.134 B.268C.402 D.536【答案】C6.如图,在一不规则区域内,有一边长为1 m 的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为 375,以此试验数据为依据可以估计出该不规则图形的面积为A .83 m 2 B .2 m 2C .38m 2 D .3 m 21.在[]0,π内任取一个实数x ,则1sin 2x ≤的概率为 A .2 3B .1 2C .13D .1 42.若任取[]0,1、x y ∈,则点(),P x y 满足y x >的概率为A .23B .13 C .12D .343.在区间[]0,4上随机地选择一个数,p 则方程2380x px p -+-=有两个正根的概率为A .13B .23 C .12D .144.在直角坐标系中,任取n 个满足x 2+y 2≤1的点(x ,y ),其中满足|x|+|y|≤1的点有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4m n B .4nmC .2m n D .2nm5.某校航模小组在一个棱长为6米的正方体房间内试飞一种新型模型飞机,为保证模型飞机安全,模型飞机在飞行过程中要始终保持与天花板、地面和四周墙壁的距离均大于1米,则模型飞机“安全飞行”的概率为 A .127B .116C .38D .8276.如图,在矩形ABCD 中,AB =3,BC =1,以A 为圆心、1为半径作圆弧DE ,点E 在线段AB 上,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是A .1 4B .13C .25D .357.已知函数()2,01(e 1,1e x x f x x x⎧≤<⎪=⎨≤≤⎪⎩为自然对数的底数)的图象与直线e 、x x =轴围成的区域为E ,直线e 1、x y ==与x 轴、y 轴围成的区域为F ,在区域F 内任取一点,则该点落在区域E 内的概率为A .43e B .23e C .23D .2e8.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 A .3π 10B .3π 20C .3π110-D .3π120- 9.有一根长为1米的细绳,将细绳随机剪断,则两截的长度都大于18米的概率为__________. 10.一个正方体的外接球的表面积为48π,从这个正方体内任取一点,则该点取自正方体的内切球内的概率为__________.11.甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一天内随机到达,若两船同时到达则有一艘必须等待,试求这两艘轮船中有一艘在停靠泊位时必须等待的概率.12.某班早晨7:30开始上早读课,该班学生小陈和小李在早上7:10至7:30之间到班,且两人在此时间段的任何时刻到班是等可能的.(1)在平面直角坐标系中画出两人到班的所有可能结果表示的区域; (2)求小陈比小李至少晚5分钟到班的概率.13.已知函数()22(,f x ax bx a a b =-+∈R ).(1)若a 从集合{}0,1,2,3中任取一个元素,b 从集合{}0,1,2,3中任取一个元素,求方程()0f x =有实根的概率;(2)若b 从区间[]0,2中任取一个数,a 从区间[]0,3中任取一个数,求方程()0f x =没有实根的概率.1.(2017新课标全国Ⅰ理科)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π42.(2016新课标全国Ⅰ理科)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .343.(2017某某)记函数2()6f x x x =+-的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ .4.(2016某某理科)在[1,1]上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9xy 相交”发生的概率为 .1.【答案】 C2.【答案】C【解析】设AC =x ,则BC =10-x ,0<x <10,由题意πx 2+π(10-x )2<58π,得x 2-10x +21<0,得3<x <7, 故所求的概率为.3.【答案】C4.【答案】2π【解析】易知1Ω的面积1πS =,2 Ω的面积22S =, 根据几何概型可得所求事件的概率为P=2.π5.【答案】D【解析】由题意可知,正方体的体积V =8,圆锥的体积V 1=212ππ1233⨯⨯⨯=,所以“鱼食落在圆锥外面”的概率是P=1π112V V V -=-. 6.【答案】A变式拓展【解析】由几何概型的概率计算公式及题意可近似得到正方形不规则图形S S =3751000,所以该不规则图形的面积大约为1000375=83(m 2).1.【答案】C【解析】若1sin 2x ≤,则在[]0,π内π5π0π66或x x ≤≤≤≤, 所以所求概率为π216π03P ⨯==-.选C .2.【答案】C【解析】根据几何概型的概率计算公式可知P =11112112⨯⨯=⨯.故选C .3.【答案】A【解析】因为方程2380x px p -+-=有两个正根,所以()243800,380p p p p ∆⎧=--≥⎪>⎨⎪->⎩所以8p ≥或 84,3p <≤ 又因为[]0,4,p ∈所以所求概率为841343P -==. 4.【答案】D5.【答案】D【解析】依题意得,模型飞机“安全飞行”的概率为(626-)3=827,故选D.6.【答案】B【解析】连接AC,交圆弧DE于点M.在Rt△ABC中,AB3BC=1,所以tan∠BAC=3BCAB=即∠BAC=π6.要使直线AP与线段BC有公共点,则点P必须在圆弧EM上,于是所求概率为P=π16π32=.故选B.7.【答案】A【解析】由题意,区域F的面积为e;区域E的面积S=1e2011d dx x xx+⎰⎰=31e0114|ln|33x x+=,所以在区域F内任取一点,则该点落在区域E内的概率为43e.8.【答案】D【解析】由题意,直角三角形内切圆的半径r=8151732+-=,所以现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率P =18159π3π211208152⨯⨯-=-⨯⨯. 9.【答案】3410.【答案】【解析】因为一个正方体的外接球的表面积为48π,所以这个正方体的棱长为4,而棱长为4的正方体的体积为43,该正方体的内切球的半径为2,体积为×23,所以所求概率P =.11.【解析】设甲船到达的时间为x ,乙船到达的时间为y ,则0≤x <24,0≤y <24.若有一艘在停靠泊位时必须等待,则|y-x|<6,如图中阴影部分所示,所以所求概率为1-=1-=.12.【解析】(1)用,x y 分别表示小陈、小李到班的时间,则][10,3010,30,x y ⎡⎤∈∈⎣⎦,所有可能结果对应坐标平面内一个正方形区域ABCD ,如图所示.(2)小陈比小李至少晚到5分钟,即5x y -≥,对应区域为△BEF ,则所求概率为1151592202032△BEF ABCDS P S ⨯⨯===⨯.“b a ≥或0a =”.于是此时,a b 的取值情况为()()()()()()()()()()0,0,0,1,0,2,0,3,1,2,1,3,2,3,1,1,2,2,3,3,即A 包含的基本事件数为10.故 “方程()0f x =有实根”的概率为()105168P A ==. (2)从区间[]0,2中任取一个数,b 从区间[]0,3中任取一个数,a 则试验的全部结果构成区域(){,|03,02}a b a b ≤≤≤≤, 这是一个长方形区域,其面积为236⨯=,设“方程()0f x =没有实根”为事件B ,则事件B 所构成的区域为(){,|03,02,}a b a b a b ≤≤≤≤>,其面积为162242-⨯⨯=.由几何概型的概率计算公式可得“方程()0f x =没有实根”的概率为()4263P B ==.1.【答案】B秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B . 【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 2.【答案】B【解析】由题意,这是一个几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B . 【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等. 3.【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.直通高考4.【答案】34【解析】直线y =kx 与圆22(5)9x y相交,需要满足圆心到直线的距离小于半径,即3d =<,解得3344k -<<,而[1,1]k ,所以所求概率P =33224=.。

高中数学高考统计知识点总结

高中数学高考统计知识点总结

第二章:统计 1、抽样方法:①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显)注意:在N 个个体的总体中抽取出n 个个体组成样本, 每个个体被抽到的机会(概率)均为Nn。

2、总体分布的估计: ⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1。

⑵茎叶图:①茎叶图适用于数据较少的情况, 从中便于看出数据的分布, 以及中位数、众位数等。

②个位数为叶, 十位数为茎, 右侧数据按照从小到大书写, 相同的数据重复写。

3、总体特征数的估计:⑴平均数:nx x x x x n++++=Λ321; 取值为n x x x ,,,21Λ的频率分别为n p p p ,,,21Λ, 则其平均数为n n p x p x p x +++Λ2211; 注意:频率分布表计算平均数要取组中值。

⑵方差与标准差:一组样本数据n x x x ,,,21Λ方差:212)(1∑=-=ni ix xns ;标准差:21)(1∑=-=ni ix xns注:方差与标准差越小, 说明样本数据越稳定。

平均数反映数据总体水平;方差与标准差反映数据的稳定水平。

⑶线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图, 判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i ni i x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑注意:线性回归直线经过定点),(y x 。

第三章:概率1、随机事件及其概率:⑴事件:试验的每一种可能的结果, 用大写英文字母表示;⑵必然事件、不可能事件、随机事件的特点; ⑶随机事件A 的概率:1)(0,)(≤≤=A P nmA P . 2、古典概型:⑴基本事件:一次试验中可能出现的每一个基本结果;⑵古典概型的特点: ①所有的基本事件只有有限个; ②每个基本事件都是等可能发生。

几何概型概率的研究

几何概型概率的研究
数学有数
几 何 概 型 概 率 的 研 究
■吴 志峰
几何 概型是普通高 中课程人教版必 修 3的 内容 ,
是继古典概型之后的一个新 的概率模型 .是新课标新
称这样 的概率模型为几何概率模型 . 简称几何概 型. 在 几何概型 中, 事件 A 的概率的计算公式如下 :
P ( A) =

综上 , 由①② , 可得△ o A 曰 面积的最大值为

【 上
设Q ( x , y ) 为 直 线z 上 任 意 一点, 则 j _ 葡, 即
. :
( 作者单位 江苏省太仓高级 中学 )
责任 编 校 徐 国坚
0.
离中 2 0 1 3年第 1 0期
数 学有数


10 y o y 一 ,

1 ,

1 , ≥0 ) 的离 心 率 为

( 2 x  ̄ + y o E ) x 一 4 0 + 2 — 2 y o 2 = 0 ,B 口 ( x o 2 + 1 ) x 2 - 4 x c x + 2 x o 2 = O .

与长度有关 的几何 概型是最基础 的问题 , 线 段上
表 示 , 的 区 域 为 Q .
取点和 区间上 取值 是常见类 型 , 这一类 问题 常常结合 不等式 、 平 面几何等知识点进行考查 . 例2 . ( 2 0 1 3年高考 山东卷 ) 在 区间 [ 一 3 , 3 ] 上 随机
析吧.

准确 把握 概 念 本 质 . 分 清 概 率模 型
几何概型 的概念如下 :如果每个事件发生 的概率 只与构成该事件 区域 的长 度( 面积或体积 ) 成 比例 。 则

概率论与数理统计公式大全

概率论与数理统计公式大全

第1章随机事件及其概率第二章随机变量及其分布Ihl ttamitai'l例1.16设某人从一副扑克中(52张)任取13张,设A为 至少有一张红桃”,B 为恰有2张红桃”,张方块”,求条件概率P( B| A), P( B| C) 解 P(A)1 P(A)P(BA)P(AB) P(A)1 c;3CTG ;c3;C 13 C52C52C39—C13一C 13 C 13C 52 C 39—血39P(AB)P(C)C 13C 39 c ;3P(BC)5 26C13C 13C 2652P(B C )P ( BC ) P(C)C13 C 13 C 2613 --------- C 52C 5 C 8C13 C 39C13~ —C 522 6C 13 C 26C 8C39C 为恰有5 C 23C 3113T -某种动物出生后活到20岁的概率为0.7,活到25岁的概率为0.56,求现 年为20岁的这种动物活到25岁的概率.解 设A 表示事件 活到20岁以上”,B 表示 事件活到25岁以上”, P(A) 0.7 P(B) 0.56P(B A)P(AB) P(A)显然P(AB) 0.56 0.7P(B) 0.560.81例 1.21例1.21 某工厂生产的产品以 超过 4件,且具有如下的概率: 一批产品中的次品数 0概率 0.1 0.2现进行抽样检验,从每批中随机抽取 为该批产品不合格。

求一批产品通过检验的概率。

解设B 表示事件 “一批产品通过检验 品”100 1 2 0.4 0.2 件为一批,假定每一批产品中的次品最多不 3 0.1 10件来检验,若发现其中有次品,则认 ”,A (=0,1,234) 表示 ,贝U A 0 ,A 1 , A 2, A 3, A 4组成样本空间的一个划分, C 10C99 C 10C100P(A) 0.1P(B|") 1P(A) 0.2,P (B |A )0.900 P(A)'一批产品含有 0.4,P(B A 2)i 件次P(A 3) 0.2, P(B A 3)c 10崗 0.727 C 100P(A 4)0.1 , P(B A 4)C 10C 96C 10 C0.652C 1098C 101000.8094P ( A k )P ( B |A k ) k 0 顾客买到的一批合格品中,含次品数为0的概率是类似可以计算顾客买到的一 批合格品中,含次品数为 1、2、 3、 4件的概率分别约 为 0.221 、0.398 、0.179 、 0.080贝叶斯公式(Bayes)P(B) P (A 。

高中数学:几何概型 (11)

高中数学:几何概型 (11)

几何概型3.3.1& 3.3.2几何概型均匀随机数的产生[新知初探]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)试验中所有可能出现的结果有无限多个.(2)每个结果出现的可能性相等.3.几何概型概率公式在几何概型中,事件A的概率的计算公式为:P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).4.均匀随机数的产生(1)计算器上产生[0,1]的均匀随机数的函数是RAND 函数. (2)Excel 软件产生[0,1]区间上均匀随机数的函数为“rand(_)”. 5.用模拟的方法近似计算某事件概率的方法(1)试验模拟的方法:制作两个转盘模型,进行模拟试验,并统计试验结果. (2)计算机模拟的方法:用Excel 的软件产生[0,1]区间上均匀随机数进行模拟.注意操作步骤.[小试身手]1.一个靶子如右图所示,随机地掷一个飞镖扎在靶子上,假设飞镖既不会落在靶心,也不会落在阴影部分与空白的交线上,现随机向靶掷飞镖30次,则飞镖落在阴影部分的次数约为( )A .5B .10C .15D .20解析:选A 阴影部分对应的圆心角度数和为60°,所以飞镖落在阴影内的概率为60°360°=16,飞镖落在阴影内的次数约为30×16=5. 2.已知集合M ={x |-2≤x ≤6},N ={x |0≤2-x ≤1},在集合M 中任取一个元素x ,则x ∈M ∩N 的概率是( )A.19B.18C.14D.38解析:选B 因为N ={x |0≤2-x ≤1}={x |1≤x ≤2},又M ={x |-2≤x ≤6},所以M ∩N ={x |1≤x ≤2},所以所求的概率为2-16+2=18.3.如图所示,半径为4的圆中有一个小狗图案,在圆中随机撒一粒豆子,它落在小狗图案内的概率是13,则小狗图案的面积是( )A.π3B.4π3C.8π3D.16π3解析:选D 设小狗图案的面积为S 1,圆的面积S =π×42=16π,由几何概型的计算公式得S 1S =13,得S 1=16π3.故选D.4.在区间[-1,1]上随机取一个数x ,则x ∈[0,1]的概率为________.解析:根据几何概型的概率的计算公式,可得所求概率为1-01-(-1)=12.★答案★:12与长度有关的几何概型[典例] (1)(2016·全国卷Ⅰ)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13 B.12 C.23D.34(2)在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________. [解析] (1)如图,7:50至8:30之间的时间长度为40 分钟,而小明等车时间不超过10 分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20 分钟,由几何概型概率公式知所求概率为P =2040=12.故选B.(2)∵区间[-1,2]的长度为3,由|x |≤1,得x ∈[-1,1],而区间[-1,1]的长度为2,x 取每个值为随机的,∴在[-1,2]上取一个数x,|x|≤1的概率P=2 3.[★答案★](1)B(2)231.解几何概型概率问题的一般步骤(1)选择适当的观察角度(一定要注意观察角度的等可能性);(2)把基本事件转化为与之对应的区域D;(3)把所求随机事件A转化为与之对应的区域I;(4)利用概率公式计算.2.与长度有关的几何概型问题的计算公式如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为:P(A)=构成事件A的区域长度试验的全部结果所构成的区域长度.[活学活用]一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯亮;(2)黄灯亮;(3)不是红灯亮.解:在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型.(1)P=红灯亮的时间全部时间=3030+40+5=25.(2)P =黄灯亮的时间全部时间=575=115. (3)法一:P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35.法二:P =1-P (红灯亮)=1-25=35.与面积和体积有关的几何概型[典例] (1)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16 B.14 C.38D.12(2)有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.[解析] (1)依题意得,点C 的坐标为(1,2),所以点D 的坐标为(-2,2),所以矩形ABCD 的面积S 矩形ABCD =3×2=6,阴影部分的面积S 阴影=12×3×1=32,根据几何概型的概率求解公式,得所求的概率P =S 阴影S 矩形ABCD =326=14,故选B.(2)先求点P 到点O 的距离小于1或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=23π.则点P 到点O 的距离小于1或等于1的概率为:23π2π=13,故点P 到点O 的距离大于1的概率为:1-13=23.[★答案★] (1)B (2)231.与面积有关的几何概型的概率公式如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为:P(A)=构成事件A的区域面积试验的全部结果所构成的区域面积.2.与体积有关的几何概型概率的求法如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为P(A)=构成事件A的区域体积试验的全部结果所构成的区域体积.[活学活用]1.在一球内有一棱长为1的内接正方体,一点在球内运动,则此点落在正方体内部的概率为()A.6π B.32πC.3π D.233π解析:选D由题意可得正方体的体积为V1=1.又球的直径是正方体的体对角线,故球的半径R=32.球的体积V2=43πR3=32π.则此点落在正方体内的概率为P=V1V2=132π=233π.2.(2017·全国卷Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4解析:选B 不妨设正方形的边长为2,则正方形的面积为4,正方形的内切圆的半径为1,面积为π.由题意,得S 黑=12S 圆=π2,故此点取自黑色部分的概率P =π24=π8.用随机模拟估计面积型的几何概型[典例] 解放军某部队进行特种兵跳伞演习,如图所示,在长为16 m ,宽为14 m 的矩形内有大、中、小三个同心圆,其半径分别为1 m 、2 m 、5 m .若着陆点在圆环B 内,则跳伞成绩为合格;若着陆点在环状的阴影部分,则跳伞成绩为良好;若跳伞者的着陆点在小圆A 内,则跳伞成绩为优秀;否则为不合格.若一位特种兵随意跳下,假设他的着陆点在矩形内,利用随机模拟的方法求他的成绩为良好的概率.[解] 设事件A 表示“该特种兵跳伞的成绩为良好”.(1)利用计算器或计算机产生两组[0,1]上的均匀随机数,a 1=RAND ,b 1=RAND. (2)经过伸缩和平移变换,a =16a 1-8,b =14b 1-7,得到[-8,8]与[-7,7]上的均匀随机数.(3)统计满足-8<a <8,-7<b <7的点(a ,b )的个数N .满足1<a 2+b 2<4的点(a ,b )的个数N 1.(4)计算频率f n (A )=N 1N即为所求概率的近似值.用随机模拟方法估计长度型与面积型几何概型的概率的联系与区别(1)联系:二者模拟试验的方法和步骤基本相同,都需产生随机数;(2)区别:长度型几何概型只要产生一组均匀随机数即可,所求事件的概率为表示事件的长度之比,对面积型几何概型问题,一般需要确定点的位置,而一组随机数是不能在平面上确定点的位置的,故需要利用两组均匀随机数分别表示点的横纵坐标,从而确定点的位置,所求事件的概率为点的个数比.[活学活用]现向图中所示正方形内随机地投掷飞镖,试用随机模拟的方法求飞镖落在阴影部分的概率.解:(1)利用计算器或计算机产生两组0至1区间内的均匀随机数a1,b1(共N组);(2)经过平移和伸缩变换,a=2(a1-0.5),b=2(b1-0.5);(3)数出满足不等式b<2a-43,即6a-3b>4的数组数N1.所求概率P≈N1N.可以发现,试验次数越多,概率P越接近25144.[层级一 学业水平达标]1.已知集合M ={x |-2≤x ≤6},N ={x |0≤2-x ≤1},在集合M 中任取一个元素x ,则x ∈M ∩N 的概率是( )A.19 B.18 C.14D.38解析:选B 因为N ={x |0≤2-x ≤1}={x |1≤x ≤2},又M ={x |-2≤x ≤6},所以M ∩N ={x |1≤x ≤2},所以所求的概率为2-16+2=18.2.“抖空竹”是我国的一种传统杂技,表演者在两根直径为8~12 mm 的杆上系一根长度为1 m 的绳子,并在绳子上放一个空竹,则空竹与绳子两端的距离都大于0.4 m 的概率为( )A.25B.15C.13D.23解析:选B 空竹与绳子两端的距离都大于0.4 m ,即空竹的运行范围为1-2×0.4=0.2(m),故所求事件的概率为P =0.21=15. 3.已知函数f (x )=log 2x ,x ∈⎣⎡⎦⎤12,2,在区间⎣⎡⎦⎤12,2上任取一点x 0,则使f (x 0)≥0的概率为________.解析:欲使f (x )=log 2x ≥0,则x ≥1,而x ∈⎣⎡⎦⎤12,2,∴x 0∈[1,2],从而由几何概型概率公式知所求概率P =2-12-12=23. ★答案★:234.已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P -ABC <12V S -ABC的概率是________. 解析:由V P -ABC <12V S -ABC知,P 点在三棱锥S -ABC 的中截面A 0B 0C 0的下方,P =1-VS -A 0B 0C 0V S -ABC=1-18=78. ★答案★:78[层级二 应试能力达标]1.如图,在平面直角坐标系中,射线OT 为60°角的终边,在任意角集合中任取一个角,则该角终边落在∠xOT 内的概率是( )A.16B.23C.13D.160解析:选A ∵在任意角集合中任取一个角,则该角终边落在∠xOT 内对应的角度为60度,而整个角集合对应的角度为圆周角,∴该角终边落在∠xOT 内的概率P =60360=16,故选A.2.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.23 解析:选C △ABE 的面积是矩形ABCD 面积的一半,由几何概型知,点Q 取自△ABE内部的概率为12. 3.如图所示,一半径为2的扇形(其中扇形中心角为90°),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为( )A.2πB.1πC.12D.1-2π解析:选D S 扇形=14×π×22=π, S 阴影=S 扇形-S △OAB =π-12×2×2=π-2, ∴P =π-2π=1-2π. 4.如图,A 是圆O 上固定的一点,在圆上其他位置任取一点A ′,连接AA ′,它是一条弦,它的长度小于或等于半径长度的概率为( )A.12B.32C.13D.14解析:选C 如图,当AA ′的长度等于半径长度时,∠AOA ′=60°,由圆的对称性及几何概型得P =120360=13.故选C. 5.(2017·江苏高考)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.解析:由6+x -x 2≥0,解得-2≤x ≤3,则D =[-2,3],则所求概率P =3-(-2)5-(-4)=59. ★答案★:596.(2016·山东高考)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.解析:由直线y =kx 与圆(x -5)2+y 2=9相交,得|5k |k 2+1<3,即16k 2<9,解得-34<k <34.由几何概型的概率计算公式可知P =34-⎝⎛⎭⎫-342=34. ★答案★:347.在棱长为a 的正方体ABCD -A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离小于等于a 的概率为________解析:点P 到点A 的距离小于等于a 可以看做是随机的,点P 到点A 的距离小于等于a 可视作构成事件的区域,棱长为a 的正方体ABCD -A 1B 1C 1D 1可视做试验的所有结果构成的区域,可用“体积比”公式计算概率.P =18×43πa 3a 3=16π. ★答案★:16π 8.如图,射箭比赛的箭靶涂有五个彩色的分环.从外向内依次为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm ,靶心直径为12.2 cm.运动员在70 m 外射箭.假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?解:记“射中黄心”为事件B ,由于中靶点随机地落在面积为14×π×1222 cm 2的大圆内,而当中靶点落在面积为14×π×12.22 cm 2的黄心时,事件B 发生,于是事件B 发生的概率为P (B )=14×π×12.2214×π×1222=0.01. 即“射中黄心”的概率是0.01.9.已知圆C:x2+y2=12,直线l:4x+3y=25.(1)求圆C的圆心到直线l的距离;(2)求圆C上任意一点A到直线l的距离小于2的概率.解:(1)由点到直线l的距离公式可得d=2542+32=5.(2)由(1)可知圆心到直线l的距离为5,要使圆上的点到直线的距离小于2,设与圆相交且与直线l平行的直线为l1,其方程为4x+3y=15.则符合题意的点应在l1:4x+3y=15与圆相交所得劣弧上,由半径为23,圆心到直线l1的距离为3可知劣弧所对圆心角为60°.故所求概率为P=60°360°=1 6.。

3.3.1几何概型(2)

3.3.1几何概型(2)

分析:因为电台每隔1小时报时一次,他在0~60之 间任何一个时刻打开收音机是等可能的,但0~60之 间有无穷个时刻,不能用古典概型的公式计算随机 事件发生的概率。所以他在哪个时间段打开收音机 的概率只与该时间段的长度有关,而与该时间段的 位置无关,这符合几何概型的条件。
解:
设A= 等待的时间不多于10分钟
3.3.1 几何概型(2)
1、几何概型
复习回顾
如果每个事件发生的概率只与构成该事件区域的长度 (面积或体积)成比例,则称这样的概率模型为几何概率模型, 简称为几何概型. 2、几何概型的特点: (1)试验中所有可能出现的结果(基本事件)有无限多个. (2)每个基本事件出现的所在扇形的面积 10 1 P( A) ; 整个圆的面积 60 6
1 答:等待的时间不多于10分钟的概率为 6
例1 某人午觉醒来,发现表停了,他打开收音机,想听 电台报时,求他等待的时间不多于10分钟的概率.
解:设A={等待的时间不多于10分钟}.事件A恰好 是打开收音机的时刻位于[50,60]时间段内发生。
则事件A发生恰好是打开收音机的 时刻位于[50,60]时间段内,因此 由几何概型的求概率公式得
P(A)=
60-50 60
=
1 6
即“等待报时的时间不多于10分钟”的概率为
1 6
.
例1 某人午觉醒来,发现表停了,他打开收音机,想听 电台报时,求他等待的时间不多于10分钟的概率. 解:设A={等待的时间不多于10分钟}.事件A恰好 是打开收音机的时刻位于[50,60]时间段内发生。 法二:(利用[50,60]时间段所占的面积):
法三:(利用利用[50,60]时间段所占的弧长):
A所在扇形区域的弧长 1 P( A) ; 整个圆的弧长 6

归纳与技巧:几何概型(含解析)

归纳与技巧:几何概型(含解析)

归纳与技巧:几何概型基础知识归纳1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的概率公式在几何概型中,事件A 的概率的计算公式如下: P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).基础题必做1.(教材习题改编)设A (0,0),B (4,0),在线段AB 上任投一点P ,则|P A |<1的概率为( ) A.12 B.13 C.14D.15解析:选C 满足|P A |<1的区间长度为1,故所求其概率为14.2. 有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A 中奖的概率依次为P (A )=38,P (B )=28,P (C )=26,P (D )=13.3.分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为( )A.4-π2B.π-22C.4-π4D.π-24解析:选B 设正方形边长为2,阴影区域的面积的一半等于半径为1的圆减去圆内接正方形的面积,即为π-2,则阴影区域的面积为2π-4,所以所求概率为P =2π-44=π-22.4.有一杯2升的水,其中含一个细菌,用一个小杯从水中取0.1升水,则此小杯中含有这个细菌的概率是________.解析:试验的全部结果构成的区域体积为2升,所求事件的区域体积为0.1升,故P =0.05.答案:0.055.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠yOT 内的概率为________.解析:如题图,因为射线OA 在坐标系内是等可能分布的,则OA 落在∠yOT 内的概率为60360=16.答案:16解题方法归纳1.几何概型的特点:几何概型与古典概型的区别是几何概型试验中的可能结果不是有限个,它的特点是试验结果在一个区域内均匀分布,故随机事件的概率大小与随机事件所在区域的形状位置无关,只与该区域的大小有关.2.几何概型中,线段的端点、图形的边界是否包含在事件之内不影响所求结果.与长度、角度有关的几何概型典题导入[例1] 已知圆C :x 2+y 2=12,直线l :4x +3y =25. (1)圆C 的圆心到直线l 的距离为________;(2)圆C 上任意一点A 到直线l 的距离小于2的概率为________. [自主解答] (1)根据点到直线的距离公式得d =255=5;(2)设直线4x +3y =c 到圆心的距离为3,则|c |5=3,取c =15,则直线4x +3y =15把圆所截得的劣弧的长度和整个圆的周长的比值即是所求的概率,由于圆半径是23,则可得直线4x +3y =15截得的圆弧所对的圆心角为60°,故所求的概率是16.[答案] 5 16本例条件变为:“已知圆C :x 2+y 2=12,设M 为此圆周上一定点,在圆周上等可能地任取一点N ,连接MN .”求弦MN 的长超过26的概率.解:如图,在图上过圆心O 作OM ⊥直径CD .则MD =MC =2 6. 当N 点不在半圆弧CM D 上时,MN >2 6. 所以P (A )=π×232π×23=12.解题方法归纳求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.确定点的边界位置是解题的关键.以题试法1.(1) 已知A 是圆上固定的一点,在圆上其他位置上任取一点A ′,则AA ′的长度小于半径的概率为________.(2)在Rt △ABC 中,∠BAC =90°,AB =1,BC =2.在BC 边上任取一点M ,则∠AMB ≥90°的概率为________.解析:(1)如图,满足AA ′的长度小于半径的点A ′位于劣弧BA C 上,其中△ABO 和△ACO 为等边三角形,可知∠BOC =2π3,故所求事件的概率P=2π32π=13. (2)如图,在Rt △ABC 中,作AD ⊥BC ,D 为垂足,由题意可得BD =12,且点M 在BD 上时,满足∠AMB ≥90°,故所求概率P =BD BC =122=14. 答案:(1)13 (2)14与面积有关的几何概型典题导入[例2] (1) 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-2πB.12-1πC.2πD.1π(2)已知不等式组⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,x ≤a (a >0)表示平面区域M ,若点P (x ,y )在所给的平面区域M 内,则点P 落在M 的内切圆内的概率为( )A.(2-1)4πB .(3-22)πC .(22-2)πD.2-12π [自主解答] (1)法一:设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC .不妨令OA =OB =2,则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝⎛⎭⎫π4-12×1×1=1,所以整体图形中空白部分面积S 2=2.又因为S 扇形OAB=14×π×22=π,所以阴影部分面积为S 3=π-2. 所以P =π-2π=1-2π.法二:连接AB ,设分别以OA ,OB 为直径的两个半圆交于点C ,令OA =2. 由题意知C ∈AB 且S 弓形AC =S 弓形B C =S 弓形O C , 所以S 空白=S △OAB =12×2×2=2.又因为S 扇形OAB =14×π×22=π,所以S 阴影=π-2.所以P =S 阴影S 扇形OAB=π-2π=1-2π.(2)由题知平面区域M 为一个三角形,且其面积为S =a 2.设M 的内切圆的半径为r ,则12(2a +22a )r =a 2,解得r =(2-1)a .所以内切圆的面积S 内切圆=πr 2=π[(2-1)·a ]2=(3-22)πa 2.故所求概率P =S 内切圆S=(3-22)π.[答案] (1)A (2)B解题方法归纳求解与面积有关的几何概型首先要确定试验的全部结果和构成事件的全部结果形成的平面图形,然后再利用面积的比值来计算事件发生的概率.这类问题常与线性规划[(理)定积分]知识联系在一起.以题试法2. 点P 在边长为1的正方形ABCD 内运动,则动点P 到顶点A 的距离|P A |≤1的概率为( )A.14B.12C.π4D .π解析:选C 如图,满足|P A |≤1的点P 在如图所示阴影部分运动,则动点P 到顶点A 的距离|P A |≤1的概率为S 阴影S 正方形=14×π×121×1=π4.与体积有关的几何概型典题导入[例3] (1) 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD —A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12C.π6D .1-π6(2)一只蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中始终保持与正方体玻璃容器的6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一个位置的可能性相同,那么蜜蜂飞行是安全的概率为( )A.18B.116C.127D.38[自主解答] (1)点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球的外部.记点P 到点O 的距离大于1为事件A ,则P (A )=23-12×4π3×1323=1-π12. (2)由题意,可知当蜜蜂在棱长为10的正方体区域内飞行时才是安全的,所以由几何概型的概率计算公式,知蜜蜂飞行是安全的概率为103303=127.[答案] (1)B (2)C解题方法归纳与体积有关的几何概型是与面积有关的几何概型类似的,只是将题中的几何概型转化为立体模式,至此,我们可以总结如下:对于一个具体问题能否应用几何概型概率公式,关键在于能否将问题几何化;也可根据实际问题的具体情况,选取合适的参数,建立适当的坐标系,在此基础上,将试验的每一个结果一一对应于该坐标系中的一个点,使得全体结果构成一个可度量区域.以题试法3. 在体积为V 的三棱锥S —ABC 的棱AB 上任取一点P ,则三棱锥S —APC 的体积大于V3的概率是________. 解析:如图,三棱锥S —ABC 的高与三棱锥S —APC 的高相同.作PM ⊥AC 于M ,BN ⊥AC 于N ,则PM 、BN 分别为△APC 与△ABC 的高,所以V S —APC V S —ABC =S △APC S △ABC =PM BN ,又PM BN =AP AB ,所以AP AB >13时,满足条件.设AD AB =13,则P 在BD 上,所求的概率P =BD BA =23. 答案:231. 在区间⎣⎡⎦⎤-π2,π2上随机取一个x ,sin x 的值介于-12与12之间的概率为( ) A.13 B.2π C.12D.23解析:选A 由-12<sin x <12,x ∈⎣⎡⎦⎤-π2,π2, 得-π6<x <π6.所求概率为π6-⎝⎛⎭⎫-π6π2-⎝⎛⎭⎫-π2=13.2. 在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( )A.16B.13C.23D.45解析:选C 设AC =x cm ,CB =(12-x )cm,0<x <12,所以矩形面积小于32 cm 2即为x (12-x )<32⇒0<x <4或8<x <12,故所求概率为812=23.3. 在区间[0,1]上任取两个数a ,b ,则函数f (x )=x 2+ax +b 2无零点的概率为( ) A.12 B.23 C.34D.14解析:选C 要使该函数无零点,只需a 2-4b 2<0,即(a +2b )(a -2b )<0. ∵a ,b ∈[0,1],a +2b >0, ∴a -2b <0. 作出⎩⎪⎨⎪⎧0≤a ≤1,0≤b ≤1,a -2b <0的可行域,易得该函数无零点的概率P =1-12×1×121×1=34.4. 已知函数f (x )=kx +1,其中实数k 随机选自区间[-2,1].∀x ∈[0,1],f (x )≥0的概率是( )A.13 B.12 C.23D.34解析:选C 由∀x ∈[0,1],f (x )≥0得⎩⎪⎨⎪⎧f (0)≥0,f (1)≥0,有-1≤k ≤1,所以所求概率为1-(-1)1-(-2)=23. 5. 在水平放置的长为5米的木杆上挂一盏灯,则悬挂点与木杆两端的距离都大于2米的概率为( )A.15B.25C.35D.12解析:选A 如图,线段AB 长为5米,线段AC 、BD 长均为2米,线段CD 长为1米,满足题意的悬挂点E 在线段CD 上,故所求事件的概率P =15.6. 一只昆虫在边长分别为6,8,10的三角形区域内随机爬行,则其到三角形任一顶点的距离小于2的概率为( )A.π12 B.π10 C.π6D.π24解析:选A 记昆虫所在三角形区域为△ABC ,且AB =6,BC =8,CA =10,则有AB 2+BC 2=CA 2,AB ⊥BC ,该三角形是一个直角三角形,其面积等于12×6×8=24.在该三角形区域内,到三角形任一顶点的距离小于2的区域的面积等于A +B +C 2π×π×22=π2×22=2π,因此所求的概率等于2π24=π12.7. 若不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,2x -y -3≤0表示的平面区域为M ,x 2+y 2≤1所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.解析:∵y =x 与y =-x 互相垂直,∴M 的面积为3,而N 的面积为π4,所以概率为π43=π12.答案:π128. 如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向图2中虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.解析:设题图1长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h(2h +2)(2h +1)=14,解得h =3或h =-12(舍去),故长方体的体积为1×1×3=3. 答案:39. 投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为12米的小方块.试验是向板中投镖,事件A 表示投中阴影部分,则事件A 发生的概率为________.解析:∵事件A 所包含的基本事件与阴影正方形中的点一一对应,事件组中每一个基本事件与大正方形区域中的每一个点一一对应.∴由几何概型的概率公式得P (A )=⎝⎛⎭⎫12212=14. 答案:1410.已知|x |≤2,|y |≤2,点P 的坐标为(x ,y ),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.解:如图,点P 所在的区域为正方形ABCD 的内部(含边界),满足(x -2)2+(y -2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).故所求的概率P 1=14π×224×4=π16.11.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率; (2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于22的概率. 解:(1)集合M 内的点形成的区域面积S =8.因x 2+y 2=1的面积S 1=π,故所求概率为P 1=S 1S =π8.(2)由题意|x +y |2≤22即-1≤x +y ≤1,形成的区域如图中阴影部分,面积S 2=4,所求概率为P =S 2S =12.12. 已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a·b <0的概率.解:(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36个;由a·b =-1有-2x +y =-1,所以满足a·b =-1的基本事件为(1,1),(2,3),(3,5)共3个.故满足a·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6};满足a·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6,且-2x +y <0}; 画出图形, 矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a·b <0的概率为2125.1.在区间[0,π]上随机取一个数x ,则事件“sin x +3cos x ≤1”发生的概率为( ) A.14 B.13 C.12D.23解析:选C 由sin x +3cos x ≤1得2sin ⎝⎛⎭⎫x +π3≤1, 即sin ⎝⎛⎭⎫x +π3≤12. 由于x ∈[0,π],故x +π3∈⎣⎡⎦⎤π3,4π3,因此当sin ⎝⎛⎭⎫x +π3≤12时,x +π3∈⎣⎡⎦⎤5π6,4π3,于是x ∈⎣⎡⎦⎤π2,π. 由几何概型公式知事件“sin x +3cos x ≤1”发生的概率为P =π-π2π-0=12.2.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.解析:先求点P 到点O 的距离小于或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=2π3.则点P 到点O 的距离小于或等于1的概率为2π32π=13,故点P 到点O 的距离大于1的概率为1-13=23.答案:233. 设AB =6,在线段AB 上任取两点(端点A 、B 除外),将线段AB 分成了三条线段. (1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率; (2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率. 解:(1)若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能情况是1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段长为2,2,2时,能构成三角形,故构成三角形的概率为P =13.(2)设其中两条线段长度分别为x ,y ,则第三条线段长度为6-x -y ,故全部试验结果所构成的区域为⎩⎪⎨⎪⎧0<x <6,0<y <6,0<6-x -y <6,即⎩⎪⎨⎪⎧0<x <6,0<y <6,0<x +y <6所表示的平面区域为△OAB .若三条线段x ,y,6-x -y 能构成三角形, 则还要满足⎩⎪⎨⎪⎧x +y >6-x -y ,x +6-x -y >y ,y +6-x -y >x ,即为⎩⎪⎨⎪⎧x +y >3,y <3,x <3所表示的平面区域为△DEF ,由几何概型知,所求概率为P =S △DEF S △AOB =14.1.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.23解析:选C 由题意知,可设事件A 为“点Q 落在△ABE 内”,构成试验的全部结果为矩形ABCD 内所有点,事件A 为△ABE 内的所有点,又因为E 是CD 的中点,所以S △ABE =12AD ×AB ,S 矩形ABCD =AD ×AB ,所以P (A )=12.2.在区间[0,1]上任取两个数a ,b ,则关于x 的方程x 2+2ax +b 2=0有实数根的概率为________.解析:由题意得Δ=4a 2-4b 2≥0, ∵a ,b ∈[0,1],∴a ≥b . ∴⎩⎪⎨⎪⎧0≤a ≤1,0≤b ≤1,a ≥b ,画出该不等式组表示的可行域(如图中阴影部分所示).故所求概率等于三角形面积与正方形面积之比,即所求概率为12.答案:123. 设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4 B.π-22C.π6D.4-π4解析:选D 不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示坐标平面内的一个正方形区域,设区域内点的坐标为(x ,y ),则随机事件:在区域D 内取点,此点到坐标原点的距离大于2表示的区域就是圆x 2+y 2=4的外部,即图中的阴影部分,故所求的概率为4-π4.为( )A.14 B.34 C.964D.2764解析:选C 设事件A 在每次试验中发生的概率为x ,由题意有1-C 33(1-x )3=6364,得x =34,则事件A 恰好发生一次的概率为C 13×34×⎝⎛⎭⎫1-342=964.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)事件A:从中摸出一个放回后再摸出1个,两次摸
出的球是一白一黑; (2)事件B:从中摸出一个黑球,放回后再摸出一个白球; (3)事件C:从中摸出两个球,恰好是一白一黑两球; 倍 (4)事件D:从中摸出两个球,先摸出的是黑球,后 速 摸出的是白球。 课 时 (5)事件E:从中摸出两个球,后一个球是白球。 学 练
练习1: 沿某大街在甲、乙、丙三个地方设有红、绿灯 交通信号,汽车在甲、乙、丙三个地方通过(即通过绿
1 1 2 灯)的概率分别为 , , ,对于该大街上行驶的 3 2 3
汽车,则:
1 (1)在三个地方都不停车的概率为______ ; 9 1 (2)在三个地方都停车的概率为______ ; 9 7 (3)只在一个地方停车的概率为________ 18
倍 速 课 时 学 练
(2)恰有一个译出密码的概率; (3)至多一个人译出密码的概率;
(4)若要达到译出密码的概率为0.99,则至少需要多 少个乙这样的人。
4.古典概型
在一次试验中可能出现的每一个基本结果称为基本事件 基本事件满足如下特点称为古典概型 (1)所有的基本事件只有有限个 (2)每个基本事件的发生都是等可能的
3.概率的基本性质:
和事件(记作AUB):事件A或事件B发生;
互斥事件:若事件A,B不可能同时发生(A∩B=Ø)
体现在概率上:P(AUB)=P(A)+P(B) 对立事件:事件A,B为整个事件的两个对立面; 即:若A∩B=Ø,A∪B=全集。 体现在概率上:P(AUB)=P(A)+P(B)=1
倍 速 课 时 学 练
积事件(记作A ∩ B):事件A与事件B同时发生;
独立事件:事件A发生的概率不会影响事件B发生;
体现在概率上:P(A∩B)=P(A)· P(B)。
例题:(先析事;再计算)
1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对 立的两个事件是( )
A.至少有1个白球与都是白球.B.至少有1个白球与至少有1个红球 C.恰有1个白球与恰有2个白球.D.至少有1个白球与都是红球
3.频率与概率的区别、联系
如果随机事件A在n次试验中发生了m次,当试验的次数n很大时 可以将事件A发生的频率作为事件A发生的概率的近似值.即 P(A)=m/n。
倍 速 课 时 学 练
实例分析: 1.掷一枚硬币,连续出现5次正面向上。张欣认为下次出现反面 向上的概率大于1/2,你同意吗?为什么? 2.某医院治疗一种疾病的治愈率为10%,那么,前9个病人都没 治愈第10个人就一定能治愈吗?
5.几何概型
(1)几何概型:如果某个事件发生的概率只与该事件的长 度(面积或体积)成正例,则称这样的概率模型为几何概型 (2)几何概型的特点:试验中所有出现的结果(基本事件) 有无限多个; 每个基本事件出现的可能性相等.
倍 速 课 时 学 练
(3)古典概型与几何概型的区别:两种模型的基本事件发 生的可能性相等.古典概型要求基本事件发生是有限个 而几何概型要求基本事件有无限多个. (4)几何概型的概率计算公式:
第26章 概率初步 复 习
1.事件
必然事件:在条件S下,一定会发生的事件叫做相对于条 件S的必然事件. 不可能事件:在条件S下.一定不会发生的事件叫做相对 于条件S的不可能事件.
随机事件:在条件S下可能发生也可能不发生的事件叫 做相对于条件S的随机事件
倍 速 课 时 学 练
2 .频率与概率
对于给定的随机事件A,如果随着试验次数的增加,事件 A发生的频率稳定在某个常数上,把这个常数记作 P(A),称为事件A的概率.
倍 速 课 时 学 练
练习2:有100件产品,其中5件次品.从中连取两次,
(1)若取后不放回,则两次都取得合格品的概率分别 为 。 (2)若取后放回,则两次都取得合格品的概率分别 为 。 3:甲乙两人独立地破译一个密码,他们能译出密码 1 1 的概率分别为 和 。求: 3 4 (1)两个人都译出密码的概率;
例2.某种饮料每箱100听,如果其中有2听不合格,问质检 人员从中随机抽2听. (1)检测不合格产品的概率有多大? (2)恰好有1听正品1听次品的概率是多少?
倍 速 课 时 学 练
练习:一次数学测验共有10道选择题,每题都有四个 选择项,其中有且仅有一个是正确的。考生要求选出 其中正确的选择项。评分标准:答对一题得4分,答错 倒扣1分。某考生确定6题是解答正确的;有3题的各四 个选择项可确定有一个不正确,应此该考生从余下的 三个选择项中猜选出一个答案;另外有一题因为题目 根本读不懂,只好乱猜。在上述情况下,试问: (1)该考生这次测验中得20分的概率为多少? (2)该考生这次测验中得30分的概率为多少?
练习:
(1)[0,1]均匀随机数X、Y的平方和超过1的概率为多少
倍 速 课 时 学 练
如果一次试验的等可能事件共有n个,那么每一个等到可能基 本事件发生的概率都是1/n。如果某个事件A包含了其中m个等 可能基本事件,那么事件A发生的概率为
m A包含的基本事件的个数 P( A) n 基本事件的总数
例1:一个口袋内有7个白球的3个黑球共10个球,分别求下列 事件的概率:
2.某射手在一次射击中射中10环,9环,8环的概率分别是0.24,0.28 0.19,计算这个射手在一次射击中。 (1)射中10环或9环的概率 (2)不够8环的概率. 倍 速 课 时 学 练
3.甲、乙2人各进行1次射击,如果2人击中目 标的概率都是 0.6 ,计算:
(1)2人都击中目标的概率; (2)其中恰有1人击中目标的概率; (3)至少有1人击中目标的概率;
P(A)=构成事件A的区域长度(面积或体积)/试验 的全部结果所构成的区域长度(面积或体积)
例 1.在等腰直角三角形ABC中,在斜边AB上任取一点 M,求AM小于AC的概率.
关键在于正确转化!
A M
C
C
&
例2.甲乙两人约定6时至7时在某处会面,并约定先到者 等候一刻钟,过时即可离开,求两人能会面的概率. 例3.在1升高产小麦种子中混入了一粒带麦锈病的种 子,从中随机取出10毫升,则取出的种子中含有麦锈病 的种子的概率是多少?
相关文档
最新文档