几何概型的概率与构成事件的区域形状无关几何概型的基本特点

合集下载

高中数学:第三章概率 小结 (21)

高中数学:第三章概率 小结 (21)
第24页
探究2 解与面积相关的几何概型问题的三个关键点. (1)根据题意确认是否是与面积有关的几何概型问题; (2)找出或构造出随机事件对应的几何图形,利用图形的几 何特征计算相关面积; (3)套用公式,从而求得随机事件的概率.
第25页
思考题2
(1)(高考真题·北京卷)设不等式组
0≤x≤2, 0≤y≤2
①求乘客到站候车时间大于10分钟的概率; ②求候车时间不超过10分钟的概率; ②求乘客到达车站立即上车的概率.
第12页
【思路】 分析概率模型 → 得其为几何概型 → 结果 【解析】 ①如下图所示,设相邻两班车的发出时间为 T1,T2,T1T2=15.
设T0T2=3,TT0=10,记“乘客到站候车时间大于10分 钟”为事件A.
【解析】 ∵区间[-1,2]的区间长度为3,随机数x的取值区
间[0,1]的区间长度为1,
∴由几何概型知x∈[0,1]的概率为13.
【答案】
1 3
第9页
(2)在等腰直角三角形ABC中,在斜边AB上任取一点M,求 AM的长大于AC的长的概率.
【思路】 点M随机地落在线段AB上,故试验所有点所在的 区域为线段AB,在AB上截取AC′=AC,则当点M位于线段BC′上 时,AM>AC.故“AM的长度大于AC的长度”的度量为BC′.
思考题1 某人向平面区域|x|+|y|≤ 2 内任意投掷一枚飞 镖,则飞镖恰好落在单位圆x2+y2=1内的概率为________.
第51页
【解析】 区域|x|+|y|≤ 2是边长为2的一个正方形区域(如 图),由图知所求概率为π4.
第44页
自助餐
第45页
与线性规划有关的几何概型问题 (仅供先学必修五的学校使用)

考点五十 几何概型学生

考点五十 几何概型学生

考点五十 几何概型知识梳理1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)3.几何概型的两个特点几何概型有两个特点:一是无限性;二是等可能性.4.几何概型与古典概型的区别古典概型与几何概型中基本事件发生的可能性都是相等的,但古典概型要求基本事件有有限个,而几何概型则是无限个.典例剖析题型一 与长度有关的几何概型例1 (2014·高考湖南卷)在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( ) A. 45 B. 35 C. 25 D. 15变式训练 (2015山东文)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝⎛⎭⎫x +12≤1”发生的概率为( )A. 34B. 23C. 13D. 14解题要点 基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.题型二 与面积有关的几何概型例2 (2014·高考辽宁卷) 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A. π2B. π4C. π6D. π8变式训练 (2015福建文)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A. 16B. 14C. 38D. 12解题要点 求解与面积有关的几何概型的注意点:求解与面积有关的几何概型时,关键是弄清某事件对应的面积以求面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解. 题型三 与体积有关的几何概型例3 在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A. π12 B .1-π12 C. π6 D .1-π6变式训练 有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.解题要点 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.当堂练习1.(2015陕西文)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A. 34+12π B. 12+1π C. 14-12π D. 12-1π2.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A. 4π81B. 81-4π81C. 127D. 8273. 在区间⎣⎡⎦⎤-π2,π2上随机取一个x ,sin x 的值介于-12与12之间的概率为( ) A. 13 B. 2π C. 12 D. 234.在[-2,3]上随机取一个数x ,则(x +1)(x -3)≤0的概率为( )A. 25B. 14C. 35D. 455.利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为__________.课后作业一、 选择题1.在长为10cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25cm 2与49cm 2之间的概率为( )A. 25 B .15、 C. 45 D .3102.在区间(10,20]内的所有实数中,随机取一个实数a ,则这个实数a <13的概率是( ) A. 13 B .17 C. 310 D .7103.在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为( )A. 16 B .13 C. 23 D .454.如图,一个矩形的长为5,宽为2,在矩形内随机的撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积约为( )A. 235 B .215 C. 195 D .1655.假设△ABC 为圆的内接正三角形,向该圆内投一点,则点落在△ABC 内的概率( )A. 334π B .2π C. 4π D .33π46.一只蚂蚁在一直角边长为1cm 的等腰直角三角形ABC (∠B =90°)的边上爬行,则蚂蚁距A 点不超过1cm 的概率为( )A .22B .23C .2- 3D .2- 2 7.(2015湖北文)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A .p 1<p 2<12 B .p 2<12<p 1 C.12<p 2<p 1 D .p 1<12<p 2 二、填空题8.在区间[20,80]内任取一个实数m ,则实数m 落在区间[50,75]内的概率为________.9.(2013·湖北卷)在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.10. (2014·福建文)如图所示,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.11.取一个边长为2a 的正方形及其内切圆如图,随机向正方形内丢一粒豆子,豆子落入圆内的概率为______________________.三、解答题12.已知关于x 的一元二次方程x 2-2(a -2)x -b 2+16=0.(1)若a ,b 是一枚骰子掷两次所得到的点数,求方程有两正根的概率;(2)若a ∈[2,6],b ∈[0,4],求方程没有实根的概率.13.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率;(2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于22的概率.。

必修3第三章-概率-知识点总结和强化练习:

必修3第三章-概率-知识点总结和强化练习:

高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。

专题62 几何概型(学生版)

专题62 几何概型(学生版)

专题62 几何概型【热点聚焦与扩展】纵观近几年的高考试题,概率是高考热点之一,以实际问题为背景,考查几何概型的计算以及分析、推理能力.难度控制在中等以下.本专题在分析研究近几年高考题及各地模拟题的基础上,举例说明.1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的两个基本特点(1)无限性:在一次试验中可能出现的结果有无限多个;(2)等可能性:每个试验结果的发生具有等可能性.3.几何概型的概率公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.4.几何概型常见的类型,可分为三个层次:(1)以几何图形为基础的题目:可直接寻找事件所表示的几何区域和总体的区域,从而求出比例即可得到概率.(2)以数轴,坐标系为基础的题目:可将所求事件转化为数轴上的线段(或坐标平面的可行域),从而可通过计算长度(或面积)的比例求的概率(将问题转化为第(1)类问题)(3)在题目叙述中,判断是否运用几何概型处理,并确定题目中所用变量个数.从而可依据变量个数确定几何模型:通常变量的个数与几何模型的维度相等:一个变量→数轴,两个变量→平面直角坐标系,三个变量→空间直角坐标系.从而将问题转化成为第(2)类问题求解5.与长度有关的几何概型如果试验的结果构成的区域的几何度量可用长度表示,可直接用概率的计算公式求解.6.与角度有关的几何概型当涉及射线的转动,扇形中有关落点区域问题时,应以角的大小作为区域度量来计算概率,且不可用线段的长度代替,这是两种不同的度量手段.7. 求解与面积有关的几何概型的关键点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.8. 求解与体积有关的几何概型的关键点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【经典例题】例1.(2020·四川成都·高三三模)已知x 、y 满足1x y +≤,则事件“2212x y +≤”的概率为( ) A .8π B .4π C .18π- D .14π- 例2.(2020·安徽高三三模)如图所示,在边长为4的正三角形中有一封闭曲线围成的阴影区域.在正三角形中随机撒一粒豆子,它落在阴影区域内的概率为34,则阴影区域的面积为( )A B .C .D .例3.(2020·贵州高三三模)在区间[-2,2]随机取一个数x ,则事件“2,(0)1,(0)x x y x x ⎧≤=⎨+>⎩,且1,22y ⎡⎤∈⎢⎥⎣⎦”发生的概率为( )A .78B .58C .38D .12例4.(2020·山西运城·高三三模)第24届国际数学大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且πsin 2sin 2θθ⎛⎫++= ⎪⎝⎭若在大正方形内随机取一点,则该点取自小正方形区域的概率为( ).A .14B .15C .25D .35例5.(2020·河南高三三模)《九章算术·商功》中有这样一段话:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.”其中“解”字的意思是用一个平面对某几何体进行切割.已知正方体1111ABCD A B C D -,随机在线段1AC 上取一点,过该点作垂直于1AC 的平面α,则平面α“解”正方体1111ABCD A B C D -所得的大、小两部分体积之比大于5的概率为( )A .16B .13C .12D .23例6.(2020·河南郑州一中高三三模)在[]1,1-上随机取一个数k ,则事件“直线y kx =与圆22(x 13)25y -+=相交”发生的概率为() A .12 B .513 C .512 D .34 例7.(2020·湖南衡阳市八中高三三模)在等腰直角三角形ABC 中,过直角顶点C 在ACB ∠内部任作一条直线CM ,交AB 边于点M ,则AM AC <的概率为( )A .12B .2C .13D .34例8.(2020·山西高三三模)圆的任何一对平行切线间的距离总是相等的,即圆在任意方向都有相同的宽度,具有这种性质的曲线叫做“等宽曲线”.事实上存在着大量的非圆等宽曲线,以工艺学家鲁列斯(Reuleaux )命名的鲁列斯曲边三角形,就是著名的非圆等宽曲线.它的画法(如图1):画一个等边三角形,,,ABC A B C 分别以为圆心,边长为半径,作圆弧,,BC CA AB ,这三段圆弧围成的图形就是鲁列斯曲边三角形.它的宽度等于原来等边三角形的边长.等宽曲线都可以放在边长等于曲线宽度的正方形内(如图2).在图2中的正方形内随机取一点,则这点落在鲁列斯曲边三角形内的概率是A .2π-B .24π-C D .8π 【精选精练】1.(2020·云南省个旧市第一高级中学高三三模)在区间[-2,2]上随机抽取一个数x ,则事件“-1≤ln (x +1)≤1”发生的概率为( )A .2e 13e -B .2e 14e -C .2e 2e 13e --D .2e 2e 14e-- 2.(2020·江西高三三模)如图,随机向大圆内投一粒豆子,则豆子落在阴影部分的概率为( )A .13B .4ππ- C .22ππ- D .22ππ+ 3.(2020·四川省仁寿第二中学高三三模)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( ) A .4π81 B .81-4π81 C .127 D .8274.(2019·四川南充·高三三模)已知函数,其中04?,?04b c ≤≤≤≤,记函数满足条件:(2)12{(2)4f f ≤-≤为事件A ,则事件A 发生的概率为A .14B .58 C .38 D .125.(2020·黑龙江哈师大附中高三三模)已知正方形ABCD ,以A 为顶点在BAD ∠内部作射线AP ,射线AP 与正方形ABCD 的边交于点M ,则2AM <的概率为( )A B .12 C D .236.(2020·福建高三三模)已知圆C :22210x y x +--=,直线:34120l x y -+=,圆C 上任意一点P 到直线l 的距离小于4的概率为( )A .13B .23C .34D .147.(2020·甘肃省静宁县第一中学高三三模)已知三个村庄A ,B ,C 构成一个三角形,且AB=5千米,BC=12千米,AC=13千米.为了方便市民生活,现在△ABC 内任取一点M 建一大型生活超市,则M 到A ,B ,C 的距离都不小于2千米的概率为A .25B .35C .115π-D .15π 8.(2020·安徽省颍上第二中学高三三模)已知正三棱柱有内切球,在该三棱柱内随机放入n 个点,有m 个落入其内切球内,则π的近似值为( )A .nB .nC .2nD .n9.(2020·湖南长郡中学高三三模)“勾股定理”在西方被称为“毕达哥拉斯定理”.三国时期,吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的锐角12πα=,现在向该正方形区域内随机地投掷100枚飞镖,则估计飞镖落在区域1的枚数最有可能是( )A .30B .40C .50D .6010.(2020·陕西铜川·高三三模)在区间[1,1]-上随机取一个数k ,则直线(2)y k x =-与圆221x y +=有两个不同公共点的概率为( )A .29BC .13D .311.(2020·合肥一六八中学高三三模)定义:{},,min ,,.a a b a b b a b ≤⎧=⎨>⎩在区域02,0 3.x y ≤≤⎧⎨≤≤⎩内任取一点(),P x y ,则点(),P x y 满足{}min 21,11x y x y x y -++-=+-的概率为( )A .12B .16C .18D .11212.(2020·四川成都·高三三模)关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(),x y;再统计两数能与1构成钝角三角形三边的数对(),x y的个数a;最后再根据统计数a估计π的值,那么可以估计π的值约为()A.4am B.2am+C.2a mm+D.42a mm+。

高考数学 考点一遍过 专题52 几何概型 理-人教版高三全册数学试题

高考数学 考点一遍过 专题52 几何概型 理-人教版高三全册数学试题

专题52 几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.一、几何概型1.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件发生的可能性相等.3.几何概型的概率计算公式() P AA构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).4.必记结论(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;(3)与体积有关的几何概型.二、随机模拟用计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法.这个方法的基本步骤是:(1)用计算器或计算机产生某个X围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN作为所求概率的近似值.注意,用随机模拟方法得到的结果只能是概率的近似值或估计值,每次试验得到的结果可能不同,而所求事件的概率是一个确定的数值.考向一与长度有关的几何概型求解与长度有关的几何概型的问题的关键是将所有基本事件及事件A包含的基本事件转化为相应长度,进而求解.此处的“长度”可以是线段的长短,也可以是时间的长短等.注意:在寻找事件A发生对应的区域时,确定边界点是问题的关键,但边界点能否取到不会影响事件A的概率.典例1某学校星期一至星期五每天上午都安排五节课,每节课的时间为40分钟.第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间到达教室,则他听第二节课的时间不少于10分钟的概率是A.12B.13C.23D.35【答案】A故所求概率为201402=,选A . 典例2 在区间[]0,2上随机抽取一个数x ,则事件“1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭”发生的概率为 A .34B .23 C .13D .14【答案】A【解析】区间[]0,2的长度为2, 由1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭可得302x ≤≤, 所以所求事件的概率为P =33224-=.1.公共汽车在7:00到7:20内随机到达某站,李老师从家里赶往学校上班,7:15到达该站,则她能等到公共汽车的概率为A .13B .23 C .14D .342.在长度为10的线段AB 上任取一点C (不同于A ,B ),则以AC ,BC 为半径的圆的面积之和小于58π的概率为A .B .C .D .考向二 与面积有关的几何概型求解与面积有关的几何概型的问题的关键是构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型的概率计算公式,从而求得随机事件的概率. 必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.“面积比”是求几何概型的一种重要的方法.典例3 在如图所示的扇形AOB中,∠AOB=,半圆C切AO于点D,与圆弧AB切于点B,若随机向扇形AOB内投一点,则该点落在半圆C外的概率为A.B.C.D.【答案】A则所求概率P=1-SS=1-,故选A.典例4 如图,已知A(a,0)(a>0),B是函数f(x)=2x2图象上的一点,C(0,2),若在矩形OABC内任取一点P,则点P落在阴影部分的概率为________.【答案】3.圆O 内有一内接正三角形,向圆O 内随机投一点,则该点落在正三角形内的概率为 A 33B .3C .33.34.已知1Ω是集合()22{,|1}x y x y +≤所表示的区域,2Ω是集合(){,|1}x y x y +≤所表示的区域,向区域1Ω内随机地投一个点,则该点落在区域2Ω内的概率为________.考向三 与体积有关的几何概型的求法用体积计算概率时,要注意所求概率与所求事件构成的区域的体积的关系,准确计算出所求事件构成的区域的体积,确定出基本事件构成的区域的体积,求体积比即可.一般当所给随机事件是用三个连续变量进行描述或当概率问题涉及体积时,可以考虑用此方法求解.典例5一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器六个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全,即始终保持与正方体玻璃容器六个表面的距离均大于10,飞行才是安全的.假设蜜蜂在正方体玻璃容器内飞行到任意位置的可能性相等,那么蜜蜂飞行安全的概率是A.512B.23C.127D.425【答案】C5.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食落在圆锥外面”的概率是A.π14B.π12C.π4D.π112-考向四随机模拟的应用利用随机模拟试验可以近似计算不规则图形A的面积,解题的依据是根据随机模拟估计概率()AP A=随机取的点落在中的随机取点频数的总次数,然后根据()随机取点构的成事全部件的区结果构成的区域面积域面积AP A=列等式求解.典例6 《周髀算经》中给出了勾股定理的绝妙证明,如图是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积分别称朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷3000颗图钉,则落在黄色图形内的图钉数约为(3≈1.732)A.134 B.268C.402 D.536【答案】C6.如图,在一不规则区域内,有一边长为1 m 的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为 375,以此试验数据为依据可以估计出该不规则图形的面积为A .83 m 2 B .2 m 2C .38m 2 D .3 m 21.在[]0,π内任取一个实数x ,则1sin 2x ≤的概率为 A .2 3B .1 2C .13D .1 42.若任取[]0,1、x y ∈,则点(),P x y 满足y x >的概率为A .23B .13 C .12D .343.在区间[]0,4上随机地选择一个数,p 则方程2380x px p -+-=有两个正根的概率为A .13B .23 C .12D .144.在直角坐标系中,任取n 个满足x 2+y 2≤1的点(x ,y ),其中满足|x|+|y|≤1的点有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4m n B .4nmC .2m n D .2nm5.某校航模小组在一个棱长为6米的正方体房间内试飞一种新型模型飞机,为保证模型飞机安全,模型飞机在飞行过程中要始终保持与天花板、地面和四周墙壁的距离均大于1米,则模型飞机“安全飞行”的概率为 A .127B .116C .38D .8276.如图,在矩形ABCD 中,AB =3,BC =1,以A 为圆心、1为半径作圆弧DE ,点E 在线段AB 上,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是A .1 4B .13C .25D .357.已知函数()2,01(e 1,1e x x f x x x⎧≤<⎪=⎨≤≤⎪⎩为自然对数的底数)的图象与直线e 、x x =轴围成的区域为E ,直线e 1、x y ==与x 轴、y 轴围成的区域为F ,在区域F 内任取一点,则该点落在区域E 内的概率为A .43e B .23e C .23D .2e8.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 A .3π 10B .3π 20C .3π110-D .3π120- 9.有一根长为1米的细绳,将细绳随机剪断,则两截的长度都大于18米的概率为__________. 10.一个正方体的外接球的表面积为48π,从这个正方体内任取一点,则该点取自正方体的内切球内的概率为__________.11.甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一天内随机到达,若两船同时到达则有一艘必须等待,试求这两艘轮船中有一艘在停靠泊位时必须等待的概率.12.某班早晨7:30开始上早读课,该班学生小陈和小李在早上7:10至7:30之间到班,且两人在此时间段的任何时刻到班是等可能的.(1)在平面直角坐标系中画出两人到班的所有可能结果表示的区域; (2)求小陈比小李至少晚5分钟到班的概率.13.已知函数()22(,f x ax bx a a b =-+∈R ).(1)若a 从集合{}0,1,2,3中任取一个元素,b 从集合{}0,1,2,3中任取一个元素,求方程()0f x =有实根的概率;(2)若b 从区间[]0,2中任取一个数,a 从区间[]0,3中任取一个数,求方程()0f x =没有实根的概率.1.(2017新课标全国Ⅰ理科)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π42.(2016新课标全国Ⅰ理科)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .343.(2017某某)记函数2()6f x x x =+-的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ .4.(2016某某理科)在[1,1]上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9xy 相交”发生的概率为 .1.【答案】 C2.【答案】C【解析】设AC =x ,则BC =10-x ,0<x <10,由题意πx 2+π(10-x )2<58π,得x 2-10x +21<0,得3<x <7, 故所求的概率为.3.【答案】C4.【答案】2π【解析】易知1Ω的面积1πS =,2 Ω的面积22S =, 根据几何概型可得所求事件的概率为P=2.π5.【答案】D【解析】由题意可知,正方体的体积V =8,圆锥的体积V 1=212ππ1233⨯⨯⨯=,所以“鱼食落在圆锥外面”的概率是P=1π112V V V -=-. 6.【答案】A变式拓展【解析】由几何概型的概率计算公式及题意可近似得到正方形不规则图形S S =3751000,所以该不规则图形的面积大约为1000375=83(m 2).1.【答案】C【解析】若1sin 2x ≤,则在[]0,π内π5π0π66或x x ≤≤≤≤, 所以所求概率为π216π03P ⨯==-.选C .2.【答案】C【解析】根据几何概型的概率计算公式可知P =11112112⨯⨯=⨯.故选C .3.【答案】A【解析】因为方程2380x px p -+-=有两个正根,所以()243800,380p p p p ∆⎧=--≥⎪>⎨⎪->⎩所以8p ≥或 84,3p <≤ 又因为[]0,4,p ∈所以所求概率为841343P -==. 4.【答案】D5.【答案】D【解析】依题意得,模型飞机“安全飞行”的概率为(626-)3=827,故选D.6.【答案】B【解析】连接AC,交圆弧DE于点M.在Rt△ABC中,AB3BC=1,所以tan∠BAC=3BCAB=即∠BAC=π6.要使直线AP与线段BC有公共点,则点P必须在圆弧EM上,于是所求概率为P=π16π32=.故选B.7.【答案】A【解析】由题意,区域F的面积为e;区域E的面积S=1e2011d dx x xx+⎰⎰=31e0114|ln|33x x+=,所以在区域F内任取一点,则该点落在区域E内的概率为43e.8.【答案】D【解析】由题意,直角三角形内切圆的半径r=8151732+-=,所以现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率P =18159π3π211208152⨯⨯-=-⨯⨯. 9.【答案】3410.【答案】【解析】因为一个正方体的外接球的表面积为48π,所以这个正方体的棱长为4,而棱长为4的正方体的体积为43,该正方体的内切球的半径为2,体积为×23,所以所求概率P =.11.【解析】设甲船到达的时间为x ,乙船到达的时间为y ,则0≤x <24,0≤y <24.若有一艘在停靠泊位时必须等待,则|y-x|<6,如图中阴影部分所示,所以所求概率为1-=1-=.12.【解析】(1)用,x y 分别表示小陈、小李到班的时间,则][10,3010,30,x y ⎡⎤∈∈⎣⎦,所有可能结果对应坐标平面内一个正方形区域ABCD ,如图所示.(2)小陈比小李至少晚到5分钟,即5x y -≥,对应区域为△BEF ,则所求概率为1151592202032△BEF ABCDS P S ⨯⨯===⨯.“b a ≥或0a =”.于是此时,a b 的取值情况为()()()()()()()()()()0,0,0,1,0,2,0,3,1,2,1,3,2,3,1,1,2,2,3,3,即A 包含的基本事件数为10.故 “方程()0f x =有实根”的概率为()105168P A ==. (2)从区间[]0,2中任取一个数,b 从区间[]0,3中任取一个数,a 则试验的全部结果构成区域(){,|03,02}a b a b ≤≤≤≤, 这是一个长方形区域,其面积为236⨯=,设“方程()0f x =没有实根”为事件B ,则事件B 所构成的区域为(){,|03,02,}a b a b a b ≤≤≤≤>,其面积为162242-⨯⨯=.由几何概型的概率计算公式可得“方程()0f x =没有实根”的概率为()4263P B ==.1.【答案】B秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B . 【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 2.【答案】B【解析】由题意,这是一个几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B . 【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等. 3.【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.直通高考4.【答案】34【解析】直线y =kx 与圆22(5)9x y相交,需要满足圆心到直线的距离小于半径,即3d =<,解得3344k -<<,而[1,1]k ,所以所求概率P =33224=.。

3.3 几何概型

3.3 几何概型

C.
3 4π
D.34π3
【解题探究】先明确是几何概型中的面积类型,分别求三
角形与圆的面积,然后求比值即可.
【答案】D
配人教版 数学 必修3
【解析】设落在阴影部分内接正三角形上的概率是 p.∵S 圆
=πR2,S 三角形=12×(
3R)2×sin
60°=3
4
3 3R2,∴p=S三 S角 圆形=
4 3R2 πR2
配人教版 数学 必修3
2.均匀分布 当X为区间[a,b]上的任意实数,并且是_等__可__能___的,我 们 称 X 服 从 [a , b] 上 的 均 匀 分 布 , X 为 [a , b] 上 的 均 匀 __随__机__数__.
配人教版 数学 必修3
1.判断正误(在括号内打“√”或“×”) (1)在几何概型中,每一个基本事件就是从某个特定的几何 区域内随机地取一点,该区域中的每一点被取到的机会相 等.( ) (2)在几何概型定义中的区域可以是线段、平面图形、立体 图形.( ) (3) 与 面 积 有 关 的 几 何 概 型 的 概 率 与 几 何 图 形 的 形 状 有 关.( ) (4)随机模拟方法是以事件发生的频率估计概率.( ) 【答案】(1)√ (2)√ (3)× (4)√
配人教版 数学 必修3
3.3 几何概型
配人教定义、特 1.了解随机数的意义,能 点,会用公式计算几何概率. 运用模拟方法估计概率;
难点:等可能性的判断与几何概 2.了解几何概型的意义. 型和古典概型的区别.
配人教版 数学 必修3
1.几何概型 (1)定义:如果每个事件发生的概率只与构成该事件区域的 __长__度____(面积或体积)成比例,则称这样的概率模型为几何概 率模型,简称为几何概型.

高二数学概率知识点总结

高二数学概率知识点总结

高二数学概率知识点总结
一、随机事件的概率
1. 随机事件:在一定条件下可能发生也可能不发生的事件。

2. 必然事件:在一定条件下必然发生的事件。

3. 不可能事件:在一定条件下不可能发生的事件。

4. 概率的定义:对于一个随机事件A,它发生的概率P(A)满足0 ≤ P(A) ≤ 1。

如果P(A)=1,则事件A 为必然事件;如果P(A)=0,则事件A 为不可能事件。

二、古典概型
1. 古典概型的特征:
-试验中所有可能出现的基本事件只有有限个。

-每个基本事件出现的可能性相等。

2. 古典概型的概率计算公式:P(A)=事件A 包含的基本事件数÷总的基本事件数。

三、几何概型
1. 几何概型的特征:
-试验中所有可能出现的结果(基本事件)有无限多个。

-每个基本事件出现的可能性相等。

2. 几何概型的概率计算公式:P(A)=构成事件A 的区域长度(面积或体积)
÷试验的全部结果所构成的区域长度(面积或体积)。

四、互斥事件和对立事件
1. 互斥事件:如果事件A 和事件B 不能同时发生,那么称事件A 和事件B 为互斥事件。

-互斥事件的概率加法公式:P(A∪B)=P(A)+P(B)(A、B 互斥)。

2. 对立事件:如果事件A 和事件B 必有一个发生,且仅有一个发生,那么称事件A 和事件 B 为对立事件。

-对立事件的概率计算公式:P(A)=1 - P(A 的对立事件)。

高中数学知识点统计概率与不等式知识点

高中数学知识点统计概率与不等式知识点

1 项为: T
r 1C
r n
a
nr
b
r
(0
r
n,
r
Z)
.
⑶二项式系数的性质.
①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;
②二项展开式的中间项二.项.式.系.数.最大.
I.

n
是偶数时,中间项是第
n 2
1
项,它的二项式系数
C
n 2 n
最大;
II. 当 n 是奇数时,中间项为两项,即第 n 1 项和第 n 1 1项,它们的二项式系
●1.几何概型的概念:如果每个事件发生的概率只与构成事件区域的长度(面 积或体积等)成比例,则这样的概率模型叫几何概型。
●2.几何概型计算:在几何概型中,事件 A 的概率为:
P
A
构成事件 A的区域长度(面积或体积) 试验的全部结果所构成的长度(面积或体积)
●3.基本方法 (1)适当地选择角度; (2)将基本事件转化为与之对应的区域; (3)将事件 A 转化为与之对应的区域; (4)一般如果所设及的问题是一个单变量,可能测度是长度,角度等,如
例如:已知数字 3、2、2,求其排列个数 n (1 2)! 3 又例如:数字 5、5、5、求
1!2!
其排列个数?其排列个数 n 3! 1.
3!
●3.组合. 1. ⑴组合:从 n 个不同的元素中任取 m(m≤n)个元素并成一组,叫做从 n 个不 同元素中取出 m 个元素的一个组合.
⑵组合数公式:
●7. 平均数计算的方法:
简单平均数 x x1 x2 L xn ;
n
●8.
方差: s2 1
n
n
(xi x )2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、几何概型的特点
(1)试验中所有可能出现的基本事件有无限多个。

(2)每个基本事件出现的可能性相等。

(3)几何概型求事件A的概率公式:
P(A)=构成事件A的区域长度(面积或体积)/实验的全部结果所构成的区域长度(面积或体积)
二、几何概型的概念:
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)称比例,则称这样的概率模型为几何概率模型,简称为几何概型。

三、几何概型的概率:
1.一般地,在几何区域D中随机地取一点,记事件"该点落在其内
部一个区域d内"为事件A,则事件A发生的概率。

说明:(1)D的测度不为0;
2.其中"测度"的意义依D确定,当D分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积;
3.区域为"开区域";
4.区域D内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.
四、几何概型的基本特点:
(1)试验中所有可能出现的结果(基本事件)有无限多个;
(2)每个基本事件出现的可能性相等.
五、古典概型的特点
(1)试验中所有可能出现的基本事件是有限的。

(2)每个基本事件出现的可能性相等。

(3)古典概型求事件A的概率公式:
P(A)=事件A可能发生的结果数/实验发生的所有等可能的结果数
六、思维拓展
例题:某人午觉醒来发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率。

分析:收音机每小时报时一次,某人午觉醒来的时刻在两次整点报时之间都是等可能的,且醒来的时刻有无限多个的,因而适合几何概型。

相关文档
最新文档