第08讲 拓展一:分离变量法解决导数问题 (精讲+精练)(学生版)

合集下载

数学物理方程经典教案 分离变量法(研究生,高校本科生)

数学物理方程经典教案 分离变量法(研究生,高校本科生)

§2.2.1 齐次方程定解问题的解法
§2.2.1 齐次方程定解问题的解法 end
§2.2.1 齐次方程定解问题的解法
§2.2.1 齐次方程定解问题的解法
§2.2.1 齐次方程定解问题的解法
§2.2.1 齐次方程定解问题的解法
§2.2.1 齐次方程定解问题的解法
§2.2.1 齐次方程定解问题的解法
wt
§2.2.3 非齐次边界条件的齐次化
边界条件已经齐次化
§2.2.3 非齐次边界条件的齐次化
§2.2.4 高维定解问题的解法
• 目前,数学物理方程中一般都仅给出了 一维空间的波动方程或热传导方程的分 离变量法的解,很少见到如何用分离变 量法求解高维空间的边值或混合问题, 本节讨论高维空间下求解偏微分方程的 分离变量法的技巧。
§2.4 Sturm-Liouville问题
§2.4 Sturm-Liouville问题
§2.4 分离变量法 总结
固有值问题
分离变量法中典型齐次问题的一些结论
分离变量法中典型齐次问题的一些结论
§2.2.1 齐次方程定解问题的解法
§2.2.1 齐次方程定解问题的解法
§2.2.1 齐次方程定解问题的解法
§2.2.1 齐次方程定解问题的解法
§2.2.2 非齐次方程定解问题的解法
• 对于非齐次方程的定解问题,不能直接使 用分离变量法,可以采用下列几种办法求 解这种问题:
• (一)、 固有函数法 • (二) 、冲量定理法 • (三) 、积分变换法(第四章讲)
§2.2.1 齐次方程定解问题的解法
§2.2.1 齐次方程定解问题的解法
§2.2.1 齐次方程定解问题的解法
§2.2.1 齐次方程定解问题的解法

数理方程-分离变量法

数理方程-分离变量法

第八章 分离变量法⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 对于这样的定解问题,我们将介绍分离变量法求解,首先回忆高数中我们如何处理的求解的,高数中处理微分或重积分是把函数分成单元函数分离变量法的思路:对于二阶线性微分方程变换成单元函数来求解,也就是通过分离变量法把x 、t 两个变量分开来,即把常微分方程变化为两个偏微分方程来求解。

分离变量法的思想:先求出具有分离形式且满足边界条件的特解,然后由叠加原理做出这些解的线性组合,最后由其余的定解条件确定叠加系数(叠加后这些特解满足边界条件不满足初始条件,再由初始条件确定通解中的未知的数)。

叠加原理:线性偏微分方程的解的线性组合仍是这个方程的解。

特点:(1)数学上 解的唯一性来做作保证。

(2)物理上 由叠加原理作保证。

例:有界弦的自由振动1.求两端固定的弦的自由振动的规律⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 第一步:分离变量(建立常微分方程定解问题) 令)()(),(t T x X t x u =这个思想可从实际的物理现象可抽象出来,比如我现在说话的声音,它的振幅肯定随时间变化,但到达每个同学的位置不同,振幅又是随位置变化,可把声音分成两部分,一部分认为它随时间变化,一部分随位置变化。

第二步:代入方程(偏微分就可写成微分的形式,对于u 有两个变量,但对于X 、T 都只有一个变量))()()()(2t T x X a t T x X ''=''变形得)()()()(2t T a t T x X x X ''=''= λ- 左边与t 无关,右边与x 无关,左右两边相互独立,要想相等,必定等于一个常数。

《分离变量法》课件

《分离变量法》课件
《分离变量法》 ppt课件
目 录
• 分离变量法简介 • 分离变量法的步骤 • 分离变量法的应用实例 • 分离变量法的优缺点 • 分离变量法的改进方向 • 分离变量法的未来展望
01
分离变量法简介
定义与特点
定义
分离变量法是一种求解偏微分方 程的方法,通过将多变量问题转 化为多个单变量问题,从而简化 求解过程。
交叉学科应用
探索分离变量法在交叉学 科中的应用,如生物医学 工程、环境科学等。
与其他方法的结合使用
与数值方法的结合
将分离变量法与其他数值方法(如有限元法、有限差分法等)结 合使用,形成更有效的数值计算方法。
与机器学习算法的结合
将分离变量法与机器学习算法相结合,用于数据分析和模式识别等 领域。
与优化算法的结合
工程与技术领域
分离变量法在解决工程与技术领域中的偏微 分方程问题方面具有优势,如结构分析、电 磁波传播、信号处理等。随着工程与技术的 不断发展,分离变量法有望在解决实际问题 中发挥更大的作用。
THANK YOU
感谢观看
立。
近似解
分离变量法得到的解是近似解,而 不是精确解。因为这种方法忽略了 各个变量之间的相互作用和影响。
数值稳定性
分离变量法在数值计算中可能存在 数值稳定性问题,例如数值误差的 累积和传播可能导致计算结果失真 或误差较大。
05
分离变量法的改进方向
算法优化
01
02
03
算法效率提升
通过改进算法结构,减少 计算复杂度,提高分离变 量法的计算速度。
精度控制
优化算法中的数值计算方 法,提高结果的精度和稳 定性,减少误差。
自适应调整
根据不同问题的特性,自 适应地调整算法参数,提 高分离变量法的适用性和 可靠性。

数学物理方法分离变量法

数学物理方法分离变量法
0xn21(22lnx2l1)n1aAnBsnins(i2nn(22ln1)2l1x)x
21
由傅里叶正弦级数式展系开数公式可求出
A n2 l 0 l(x22lx )si(n 2n2 l1)xd x(2n3 1 l)2 233
C1 C2 0
C1 C2 0
C1el C2e l 0
此时X(x)=0,只有零解,不合题意;
(2) 0
X(x)C1xC2
C 2 0 C1lC2 0
C1 C2 0
同样只有零解,不合题意;
8
(3) 0
X (x)C 1cosxC 2sinx
X(0) 0 X(l) 0
6、 分离变量法概要:
(3)确定形式解(级数形式解) (4)确定级数解中的待定常数(利用初始条件)
16
例:求解
utt a2uxx 0
u(x,t) x00
ut0 x22lx
(0xl,t0)
u x xl 0 u t t0 0
(第二类齐次边界条件)
解: 设 u(x,t)X(x)T(t)
Bnsinl
)sin l
11
此时要满足初始条件,则





(
(x)

x)
n1

An sin
n1
na
l

Bn

nx
l
nx
sin l
故 An和 Bnnla分别 (x为 )和 (x)的傅里叶正式 弦系 级数
BnAnn22la0l0l(x()xs)isninnlnxl xddxx

Bn0
故定解问题的最终解为
u (x ,t) 3 l 3 22 n 1 (2 n 1 1 )3 c( o 2 n 2 s l 1 )a ts i( n 2 n 2 l1 ) π x

导数分离变量法知识点

导数分离变量法知识点

导数分离变量法知识点一、知识概述“导数分离变量法知识点”①基本定义:导数分离变量法就是在解决含有导数的方程或不等式时,把含有变量的式子放在等号或不等号的一边,把不含变量的式子放在另一边,这样可以方便我们进一步分析和求解。

就像是把一群羊和一群牛分开,好分别照顾它们一样。

②重要程度:在数学学科里,尤其是涉及导数的问题中,它是一种非常有用的方法。

很多看似复杂的导数等式或不等式,一用这个方法就条理清晰了,是解决很多导数相关问题的一把“钥匙”。

③前置知识:得先掌握导数的基本概念和求导公式,像幂函数的求导公式(x^n)' = nx^(n - 1)等。

还得了解一些基本的等式和不等式运算规则,不然即便分离了变量,后面也做不了。

④应用价值:在研究函数的单调性、极值、最值等方面有着广泛的应用。

比如在物理学里研究速度随时间的变化规律时可能就会用到,或者经济学里分析成本随产量的变化时也可能涉及。

二、知识体系①知识图谱:在导数这一块知识中,它是属于利用导数解决问题的一个很重要的方法,就像大树上的一个重要树枝。

②关联知识:和求导公式、函数的单调性、函数的极值等知识都有联系。

如果求不出函数的导数,就没办法有效使用分离变量法;而求出的导数也是为了进一步了解函数特性,和函数单调性、极值等相关。

③重难点分析:掌握难度不算特别大,关键是要能准确地把变量分离出来,有时候那些式子看起来乱糟糟的就很棘手。

重难点主要就在准确识别哪些部分是含有变量可以分到一边的,哪些是常数能分到另一边的。

④考点分析:在考试里是比较常考的内容。

可能会单独出一道用分离变量法解导数方程或者不等式的题目,也可能在综合题里涉及。

考查方式就是让你求解变量的取值范围、证明某个不等式什么的。

三、详细讲解【方法技能类】①基本步骤:先把含有导数的等式或者不等式列出来,比如f'(x)+g(x)h(x)=k(x)这种式子(这只是个例子啊)。

然后把含有x这个变量的式子尽可能全地放到一边,假设就是含g(x)h(x)这部分的放到一边,另一边就是k(x)- f'(x)。

分离变量法的精神和解题要领PPT教案

分离变量法的精神和解题要领PPT教案
x(l x) ,试写出相应的定解问题。 2
答案:
ut a2uxx (0 x l,t 0)
u(0,t) 0
ux
(l,t)
q k
u(x,0)
x(l 2
x)
第2页/共17页
解题方法:
1.建立方程, 2.定解条件:边界条件,初始条件 3.定解问题
建立方程——解题思路: • 由能量守恒定律
特征值问题同热导相同
第7页/共17页
u(x,t) uk (x,t) X k (x)Tk (t)
k 1
k 1
ka
ka k
k 1
(Ak cos
l
t Bk sin
l
t ) sin
l
x
Ak
2 l
l
( ) sin
0
n l
d
形式不变
Bk
2 ka
l
(
)
sin
n
0
l
d
第8页/共17页
有界杆上的热传导
u(x,t) X (x)T(t)
形式不变
特征值问题同振动方程相同
第9页/共17页
第10页/共17页
u(utx,0a) 2x2u(2x,),
x(0,l),t 0 x [0, l]
u(0,t) ux(l,t) 0, t 0
本征值 和本征
函数
n
n
1 2
l
2
,
X n (x)
sin
n
l
流沿x轴正向,强度为 c ρut = k uxx
u
q(x,t),温度分布为
ut = a2 uxx
u(x,t),则
第3页/共17页

《分离变量法》课件

《分离变量法》课件
法的计算效率。
06
总结与展望
总结
内容回顾
详细梳理了分离变量法的基本概 念、应用场景、实施步骤和注意 事项,帮助学习者全面理解这一
方法。
案例分析
通过具体的案例分析,展示了分离 变量法在解决实际问题中的应用, 加深学习者对方法的理解和掌握。
互动问答
鼓励学习者在课程结束前提出疑问 ,并对常见问题进行了解答,有助 于巩固学习效果。
展望
新应用领域
实践应用建议
探讨分离变量法在未来可能的应用领 域,如人工智能、大数据分析等,为 学习者提供新的思路和方向。
为学习者提供将分离变量法应用于实 际问题的建议和指导,帮助他们更好 地实现学以致用。
方法改进
介绍分离变量法的最新研究进展和可 能的改进方向,激发学习者进一步探 索和研究。
谢谢您的聆听
02
分离变量法的原理
原理概述
分离变量法是一种求解偏微分方程的 方法,通过将多个变量分离,将复杂 的偏微分方程简化为一系列简单的常 微分方程,从而求解。
该方法适用于具有多个变量的偏微分 方程,特别是当各变量之间相互独立 时。
数学模型建立
首先,需要建立偏微分方程,并确定变量 的个数。
然后,通过适当的变换,将偏微分方程转 化为全微分方程。
求解过程
通过分离变量法,可以将 $u(x, t) = X(x) T(t)$,从而将波动方程 转化为 $X''(x) = -lambda X(x)$ 和 $T''(t) = -omega^2 T(t)$, 其中 $lambda$ 和 $omega$ 是常数。
应用实例二:化学反应动力学模型
总结词
描述化学反应速率
THANKS

偏微分课件分离变量法

偏微分课件分离变量法
应用
分离变量法的数学推导
第四章
推导过程和公式
引入分离变量法: 将偏微分方程中的 变量分离,得到两 个方程
求解两个方程:分 别求解两个方程, 得到两个解
合并解:将两个解 合并,得到偏微分 方程的解
公式:分离变量法 的公式为: u(x,y)=X(x)Y(y), 其中X(x)和Y(y)分 别为两个方程的解
物理背景:Sturm-Liouville问题是描述振动系统的基本方程,广泛应用于力学、电磁学等 领域。
物理意义:Sturm-Liouville问题描述了振动系统的频率、振幅和相位等物理量,是研究振 动系统的重要工具。
解释:Sturm-Liouville问题通过求解特征值和特征函数,得到振动系统的频率和振幅,从 而描述振动系统的物理特性。
感谢您的观看
汇报人:
应用:Sturm-Liouville问题在力学、电磁学等领域有着广泛的应用,如振动分析、电磁场 分析等。
分离变量法的扩展和推广
第六章
扩展到高维空间的情况
高维空间中的分离变量法:将一维问题推广到高维空间,解决更高维的问题 推广到高维空间的条件:满足一定的条件,如对称性、周期性等 高维空间中的分离变量法应用:在物理、工程等领域有广泛应用
应用:分离变量法广泛应用于求解 各种类型的偏微分方程,如热传导 方程、波动方程等。
添加标题
添加标题
添加标题
添加标题
原理:将偏微分方程中的未知函数 分解为多个部分,每个部分只包含 一个变量,然后分别求解,最后再 组合起来得到原方程的解。
注意事项:在使用分离变量法求解 偏微分方程时,需要注意方程的边 界条件和初值条件,以及解的连续 性和光滑性。
Sturm-Liouville问题的求解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第08讲拓展一:分离变量法解决导数问题(精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:恒成立(存在问题)求解参数a范围①完全分离参数法②部分分离参数法高频考点二:已知零点个数求解参数a范围①完全分离参数法②部分分离参数法第四部分:高考真题感悟第五部分:第08讲拓展一:分离变量法解决导数问题(精练)1、分离变量法在处理含参a 的函数(,)f x a 不等式和方程问题时,有时可以将变量分离出来,如将方程(,)0f x a =,转化为()()g x h a =这样就将把研究含参函数(,)f x a 与x 轴的位置关系的问题转化为不含参的函数()g x 与动直线()y h a =的位置关系问题,这种处理方法就叫分离变量法。

(1)优点:分离变量法可以将含参函数中的参数分离出去,避免直接讨论,从而简化运算; (2)解题过程中可能遇到的问题: ①参数无法分离;②参数分离后的函数()y g x =过于复杂;③讨论位置关系时可能用到()y g x =的函数极限,造成说理困难.2、分类:分离参数法有完全分离参数法(全分参)和部分分离参数法(半分参)两种 注意事项:无论哪种分参方法,分参过程中需注意变量的正负对不等号的影响!3、常见题型1:恒成立/存在问题求解参数a 范围核心知识点:将()a x f ,与0的大小关系转化成()x g 和()a h 的大小关系 ①,()()x D h a g x ∀∈≥恒成立⇔max ()()h a g x ≥ ②,()()x D h a g x ∀∈≤恒成立⇔min ()()h a g x ≤ ③,()()x D h a g x ∃∈≥恒成立⇔min ()()h a g x ≥ ④,()()x D h a g x ∃∈≤恒成立⇔max ()()h a g x ≤4、常见题型2:已知零点个数求解参数a 范围核心知识点:将()0,=a x f 转化成()()x g a h =,应用导数方法绘制()x g 函数的大致图象(注意绘制图象时,可能需要用到极限思想,才能精确确定图象的轮廓).1.(2021·江苏·高二单元测试)若函数()1ln f x x a x=+-在区间()1,e 上只有一个零点,则常数a 的取值范围为( ) A .1a ≤B .a e >C .111a e<<+ D .11a e<<2.(2009·福建·高考真题(文))若曲线2()ln f x ax x =+存在垂直于y 轴的切线,则实数a 的取值范围是_________ 3.(2015·浙江金华·高二期中(理))1kx ≤-对[1,)x ∈+∞恒成立,则实数k 的取值范围是:___________.4.(2022·全国·高三专题练习)若存在[]0,1x ∈,使得13713x x m +≥+成立,则实数m 的取值范围是___________. 5.(2022·四川省泸县第四中学高二阶段练习(理))若函数()32133f x x x x a =---有三个不同的零点,则实数a 的取值范围是__________.6.(2021·全国·高三专题练习)已知函数()()ln 1af x x a R x =-∈+.若函数()y f x =在定义域上单调递增,求实数a 的取值范围.高频考点一:恒成立(存在问题)求解参数a 范围①完全分离参数法1.(2022·江西·临川一中高二期末(文))已知不等式ln 0x mx ->只有一个整数解,则m 的取值范围是( ) A .10,ln 22⎛⎫ ⎪⎝⎭B .11ln 2,ln 323⎡⎫⎪⎢⎣⎭C .11ln 2,2e ⎡⎫⎪⎢⎣⎭D .11ln 3,3e ⎡⎫⎪⎢⎣⎭2.(2022·新疆昌吉·高三阶段练习(理))若存在正实数x ,y ,使得等式()()243e ln ln 0x a y x y x +--=成立,其中e 为自然对数的底数,则a 的取值范围为( ) A .210,e ⎛⎤ ⎥⎝⎦B .21,e ⎡⎫+∞⎪⎢⎣⎭C .(),0∞-D .()21,0,e ⎡⎫-∞⋃+∞⎪⎢⎣⎭3.(2022·陕西·西安中学模拟预测(文))已知函数()e ln x f x x x x =--,若不等式()f x a ≥恒成立,则a 的最大值为( ) A .1B .e 1-C .2D .e4.(2022·山东省东明县第一中学高二阶段练习)已知函数()()1ln 0f x ax x a x=+>.(1)当1a =时,()f x 的极小值为______;(2)若()f x ax ≥,在()0,∞+上恒成立,则实数a 的取值范围为______.5.(2022·上海·华师大二附中高二阶段练习)若32223328e 4e e x x x x x a x a a ++<++对x ∈R 恒成立,则a 的取值范围是__________;6.(2022·江苏·金陵中学高二期末)已知函数f (x )=ax -2ln x . (1)讨论f (x )的单调性;(2)设函数g (x )=x -2,若存在31,e x ⎡⎤∈⎣⎦,使得f (x )≤g (x ),求a 的取值范围.7.(2022·广西·宾阳中学高二阶段练习(理))已知函数()()e ,R x f x x a a =+∈. (1)若函数()f x 在区间[3,)-+∞上是增函数,求实数a 的取值范围. (2)若2()e f x ≥在[]0,2x ∈时恒成立,求实数a 的取值范围.8.(2022·陕西榆林·三模(理))已知函数()e 1,()ln x f x a g x x =+=. (1)讨论函数()()()e xxf x xh x g x -=+的单调性; (2)若()()1xf x g x <+,求a 的取值范围.9.(2022·湖南·长郡中学高三阶段练习)已知函数()2ln f x ax x =-,R a ∈. (1)讨论()f x 的单调性; (2)若对任意()0,x ∈+∞,不等式()2ex x xf x -+≥恒成立,求实数a 的取值范围.②部分分离参数法1.(2022·广东·铁一中学高二阶段练习)已知函数()4ln 8f x x kx k =--+,若关于x 的不等式()0f x ≤恒成立,则k 的取值范围为( ) A .[1,)+∞B .[e,)+∞C .[4,)+∞D .)2,e ⎡+∞⎣2.(2022·全国·高三专题练习)已知不等式()21xkx k e x +<+恰有2个整数解,求实数k 的取值范围( )A .23243k e e≤< B .23243k e e<≤ C .324354k e e <≤ D .324354k e e ≤< 3.(2022·河南·新蔡县第一高级中学高二阶段练习(理))设函数()()()3213853f x x x a x a a R =-+---∈,若存在唯一的正整数0x ,使得()00f x <,则实数a 的取值范围是( ) A .11,156⎛⎤ ⎥⎝⎦B .11,154⎛⎤ ⎥⎝⎦C .11,123⎛⎤ ⎥⎝⎦D .11,125⎛⎤ ⎥⎝⎦4.(2022·全国·高三专题练习)函数()()e 13xf x x ax a =-+-,其中1a <,若有且只有一个整数0x ,使得()00f x >,则a 的取值范围是( ) A .23,e 4⎡⎫⎪⎢⎣⎭B .23,e 4⎛⎫ ⎪⎝⎭C .2,1e ⎡⎫⎪⎢⎣⎭D .2,1e ⎛⎫ ⎪⎝⎭5.(2022·全国·高三专题练习)已知函数()()31e x f x a x x =+-,若存在唯一的正整数0x ,使得()00f x <,则实数a的取值范围是( ) A .218,2e 3e ⎡⎫⎪⎢⎣⎭B .436427,5e 4e ⎡⎫⎪⎢⎣⎭C .32278,4e 3e ⎡⎫⎪⎢⎣⎭D .10,2e ⎡⎫⎪⎢⎣⎭6.(2022·全国·高三专题练习)已知函数2()2ln ||28f x x x ax a =-+-,其中0a . (1)当0a =时,求函数()f x 的最值;(2)若存在唯一整数0x ,使得0()0f x ,求实数a 的取值范围.高频考点二:已知零点个数求解参数a 范围①完全分离参数法1.(2022·全国·高二期末)已知函数()2ln ,0,1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤B .11ek -<<C .e 0k -<<D .10ek -<<2.(2022·江苏省苏州实验中学高二阶段练习)已知函数(),12,1x xe x f x x x ⎧<=⎨-≥⎩,若()f x k -有三个不同的零点,则实数k 的取值范围为( ) A .[)1,-+∞B .[)1,0-C .1,0e ⎛⎫- ⎪⎝⎭D .1,e ⎛⎫-+∞ ⎪⎝⎭3.(多选)(2022·重庆·模拟预测)已知函数()e 1xaf x x =--有唯一零点,则实数a 的值可以是( ) A .1-B .12-C .0D .14.(2022·河南·南阳市第二完全学校高级中学高二阶段练习(理))若函数()e ln xy x a x x =+-存在零点,则实数a的取值范围是______.5.(2022·福建·启悟中学高二阶段练习)函数3()3f x x x a =--仅有一个零点,则实数a 的取值范围是_________.6.(2022·四川宜宾·二模(文))已知函数()ln f x a x =- (1)若2a =,求曲线()y f x =在1x =处的切线方程; (2)若函数()f x 在(]0,16上有两个零点,求a 的取值范围.7.(2022·内蒙古包头·一模(文))已知函数32()31f x x ax x =-++. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求a 的取值范围.(注:3232(2)(1)x x x x --=-+)8.(2022·湖南·长沙一中高三阶段练习)已知函数()21e ,0e 2,0x x x f x x x x ⎧+≤⎪=⎨⎪->⎩,则方程()0f x =的根为________.若函数()()y f f x a =-有三个零点,则实数a 的取值范围是________.②部分分离参数法1.(2022·河南·模拟预测(文))已知函数()()2e 1,0ln 1,0xx f x x x -⎧-<⎪=⎨+≥⎪⎩,若关于x 的方程()0f x kx -=有两个不同的实数根,则k 的取值范围为( ) A .()(),20,1-∞-⋃ B .()(),10,1-∞-⋃ C .()(),00,1-∞⋃D .()(),00,∞-+∞2.(2022·全国·模拟预测(理))已知定义为R 的奇函数()f x 满足:()()ln ,0121,1x x x f x f x x <≤⎧=⎨->⎩,若方程()12f x kx =-在[]1,2-上恰有三个根,则实数k 的取值范围是( )A .1,1ln 24⎡⎫-⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .1e ,122⎛⎤- ⎥⎝⎦D .11ln 2,2⎛⎫- ⎪⎝⎭3.(2021·江苏·高二单元测试)已知函数()y f x =是R 上的奇函数,且当0x >时,()223f x x x =--,若关于x 的方程()f x x a =+恰有四个互不相等的实数根,则实数a 的取值范围是___________. 4.(2022·全国·模拟预测)已知函数()24ex x f x =,若存在1x ,2x ,…,()*n x n ∈N ,使得()()()1212222n nf x f x f x x x x ---==⋅⋅⋅=,则n 的最大值为______. 5.(2022·河南·高二阶段练习(文))已知()2,112e ,1x x f x x x ⎧>⎪=-⎨⎪-⎩若方程()2f x mx =+有一个实数根,则实数m 的取值范围是___________.1.(2021·北京·高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,()f x 恰 有2个零点; ②存在负数k ,使得()f x 恰有个1零点; ③存在负数k ,使得()f x 恰有个3零点; ④存在正数k ,使得()f x 恰有个3零点. 其中所有正确结论的序号是_______.2.(2020·全国·高考真题(理))已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.3.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)ax x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.4.(2020·浙江·高考真题)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点;5.(2020·全国·高考真题(文))已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.一、单选题1.(2022·全国·高三专题练习)已知关于x 的不等式3221e xax x axx +++≥在0,上恒成立,则实数a 的取值范围为( ) A .(],e -∞B .1,e 2⎛⎤-∞- ⎥⎝⎦C .(],e 1-∞-D .(],e 2-∞-2.(2022·全国·高三专题练习)已知函数1()ln ,()12f x xg x x ==+,直线()y t t R =∈与函数(),()f x g x 的图象分别交于点()()1122,,,A x y B x y ,若对任意t R ∈,不等式2121x x a -≥+成立,则实数a 的取值范围为 A .ln 21,4+⎛⎤-∞ ⎥⎝⎦ B .ln 23,4+⎛⎫-∞ ⎪⎝⎭C .ln 2,4⎛⎤-∞ ⎥⎝⎦ D .(,ln21]-∞-3.(2022·福建省龙岩第一中学高二阶段练习)若函数()2x e ax a g x x-+=在[]2,3内单调递增,则实数a 的取值范围是( )A .)3,e ⎡-+∞⎣B .)2,e ⎡-+∞⎣C .()3,e -+∞D .()2,e -+∞4.(2022·全国·高二)若关于x 的不等式22ln 4ax a x x ->--有且只有两个整数解,则实数a 的取值范围是( ) A .(]2ln3,2ln 2-- B .(),2ln 2-∞- C .(],2ln3-∞-D .(),2ln3-∞-5.(2022·全国·高二)若关于x 的方程ln 0x ax -=有且只有2个零点,则a 的取值范围是( ) A .1(,]e-∞B .1(,)e -∞C .1(0,]eD .1(0,)e6.(2022·黑龙江双鸭山·高二期末)函数()1ln()f x x k x=+-有两个不同的零点,则实数k 的取值范围是( )A .ln 2k ≠B .ln2k >C .ln 2k ≥D .0ln 2k <<7.(2022·广东肇庆·模拟预测)已知当,()0x ∈+∞时,函数()e x f x k =的图象与函数2()21xg x x =+的图象有且只有两个交点,则实数k 的取值范围是( ) A .⎛ ⎝⎭B .10,e ⎛⎫⎪⎝⎭C .1,e ⎛⎫+∞ ⎪⎝⎭D .⎫+∞⎪⎪⎝⎭8.(2022·全国·高三专题练习)已知函数()1,0,0x x f x xe x -⎧->⎪=⎨⎪≤⎩且关于x 的方程()0f x ax -=有三个不等实根,则实数a 的取值范围为( )A .(],e -∞-B .(),e -∞-C .(),1-∞-D .(],1-∞- 二、填空题9.(2022·全国·高三专题练习)方程1ln cos 3x x +=在(0,1)上的实数根的个数为___________.10.(2022·河南·高三阶段练习(理))若不等式()()23e 2x x a x -<-在(),2-∞上仅有一个整数解,则a 的取值范围是______.11.(2022·全国·高三专题练习)已知函数()e (31)x f x x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则实数a 的取值范围是____.12.(2022·全国·高三专题练习)已知()|sin(2)6h x m x π=+-+的最小值为0,则正实数m 的值为__. 三、解答题13.(2022·河南·汝州市第一高级中学模拟预测(文))已知函数()()21e x f x x x -=-+⋅. (1)求()f x 的单调区间;(2)若不等式()22f x x x m ≥-++对任意的[)0,x ∈+∞恒成立,求实数m 的取值范围.14.(2022·全国·高三专题练习)若存在x ∈1,e e ⎡⎤⎢⎥⎣⎦,不等式2x ln x +x 2-mx +3≥0成立,求实数m 的取值范围.15.(2022·宁夏银川·一模(文))已知函数()e 3x f x ax =+-在0x =处的切线为2y =-.(1)求实数a 的值及函数()f x 的单调区间;(2)用[]t 表示不超过实数t 的最大整数,如:[]0.80=,[]1.42-=-,若0x >时,()e 2x t x t -<+,求[]t 的最大值.16.(2022·河南·温县第一高级中学高三阶段练习(文))已知()()2x x m f x m R e+=∈. (1)若34m =,求()f x 的极值.(2)若方程()8ln x e f x x ⋅=在[]1,e 上有两个不同的实数根,求实数m 的取值范围.。

相关文档
最新文档