电力拖动自动控制系统实验报告
电力拖动自动控制系统实验报告

电⼒拖动⾃动控制系统实验报告电⼒拖动⾃动控制系统实验实验⼀转速反馈控制直流调速系统的仿真⼀、实验⽬的1、了解MATLAB下SIMULINK软件的操作环境和使⽤⽅法。
2、对转速反馈控制直流调速系统进⾏仿真和参数的调整。
⼆、转速反馈控制直流调速系统仿真根据课本的操作步骤可得到如下的仿真框图:图 1 仿真框图1、运⾏仿真模型结果如下:图2 电枢电流随时间变化的规律图3 电机转速随时间变化的规律2、调节参数Kp=0.25 1/τ=3 系统转速的响应⽆超调但调节时间长3、调节参数Kp=0.8 1/τ=15 系统转速的响应的超调较⼤,但快速性较好实验⼩结通过本次实验初步了解了MATLAB下SIMULINK的基本功能,对仿真图的建⽴了解了相关模块的作⽤和参数设置。
并可将其⽅法推⼴到其他类型控制系统的仿真中。
实验⼆转速、电流反馈控制直流调速系统仿真⼀、实验⽬的及内容了解使⽤调节器的⼯程设计⽅法,是设计⽅法规范化,⼤⼤减少⼯作计算量,但⼯程设计是在⼀定近似条件下得到的,⽤MATLAB仿真可根据仿真结果对设计参数进⾏必要的修正和调整。
转速、电流反馈控制的直流调速系统是静、动态性能优良、应⽤最⼴泛的直流调速系统,对于需要快速正、反转运⾏的调速系统,缩短起动、制动过程的时间成为提⾼⽣产效率的关键。
为了使转速和电流两种负反馈分别起作⽤,可在系统⾥设置两个调节器,组成串级控制。
⼀、双闭环直流调速系统两个调节器的作⽤1)转速调节器的作⽤(1)使转速n跟随给定电压*mU变化,当偏差电压为零时,实现稳态⽆静差。
(2)对负载变化起抗扰作⽤。
(3)其输出限幅值决定允许的最⼤电流。
2)电流调节器的作⽤(1)在转速调节过程中,使电流跟随其给定电压*iU变化。
(2)对电⽹电压波动起及时抗扰作⽤。
(3)起动时保证获得允许的最⼤电流,使系统获得最⼤加速度起动。
(4)当电机过载甚⾄于堵转时,限制电枢电流的最⼤值,从⽽起⼤快速的安全保护作⽤。
当故障消失时,系统能够⾃动恢复正常。
电力拖动实验报告

电力拖动实验报告————————————————————————————————作者:————————————————————————————————日期:本科生实验报告实验课程电力拖动与控制学院名称核技术与自动化工程学院专业名称电气工程及其自动化学生姓名学生学号指导教师刘伟实验地点6c603实验成绩二〇一六年五月二〇一六年六月实验一晶闸管直流调速系统开环机械特性测试一.实验目的1.熟悉晶闸管直流调速系统组成及各主要单元部件的原理。
2.掌握晶闸管可控整流电路和触发电路的调试方法。
3.掌握直流电动机机械特性的测试方法二.实验项目1.触发电路触发脉冲的测试2.触发电路初始相位a0的调试3.三相桥式全控整流电路的调试4.晶闸管主电路输出波形的测试5.直流电动机开环机械特性曲线的测试三.实验系统组成及工作原理1)主电路:三相电源,晶闸管桥式是可控整流调速装置,平波电抗器、电动机-发电机组,可调电阻负载等组成。
2)控制电路:据赤膊触发电路四.实验设备及仪器1.MCL系列教学实验台主控制屏。
2.MCL—31组件3.MCL—33组件4.MEL-11挂箱5.MEL—03三相可调电阻(或自配滑线变阻器)。
6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件,直流电动机M03。
7.双踪示波器。
五.注意事项1.直流电动机启动前必须先加上励磁2.测取静特性时,必须注意主电路电流不许超过直流电动机的额定电流。
3.不允许突加给定信号Ug启动电动机4.起动电机时,需把负载电阻RP1阻值调到最大,以免带负载起动。
5.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。
6.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。
六. 实验方法1.触发电路的测试。
(1)用示波器观察双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲(2)偏移电压的调整在Ug=0的情况下,用示波器测量同步电压观察孔的同步电压波形和脉冲波形的相位关系,调节偏移电压电位器,使脉冲初始相位a0=150°2.三相桥式全控整流电路的测试在Ug=0的情况下,闭合交流侧回路电源和电动机励磁电源,电动机处于静止状态,调节Ug 由0逐渐增大,直流电动机启动升速,当n=1000转/分左右时,用示波器测量直流电动机电枢两端或整流电路输出端电压波形,在360°中应有六个整流波头,必须间隔相等,波形稳定3.测定直流电动机特性1)控制特性改变Ug的大小,记录直流电动机电枢电压Ua和对应的控制电压UgUa (V) 1Ug (V) 1.65 1.8 1.9 2.4 2.9 32).开环机械特性反复调节Ug和直流发电机负载,使n0=1000r/min,I=1.1A,Ug保持恒定,逐渐减小发电机负载转速升高,记录直流电级转速n和电枢电流Ia的值,共5-7点n(r/min) 1I(A) 1.65 1.8 1.9 2.4 2.9 34.系统动态波形的观察用二踪慢扫描示波器观察动态波形,用光线示波器记录动态波形。
电力拖动自动控制系统实验

电力拖动自动控制系统实验指导书实验一晶闸管直流调速系统环节特性的测定实验一、实验目的掌握晶闸管直流调速系统环节特性的测定方法二、实验内容1、测定晶闸管触发电路及整流装置特性Ud=f(Ug)或Ud=f(Uct);2、测定测速发电机特性U TG=f(n);四、实验原理及接线图实验接线原理图1、测定出晶闸管整流电路输出电压Ud、移相控制电压Uct,便可得到晶闸管触发及整流特性Ud=f(Ug)或Ud=f(Uct);2、测定出测速发电机的输出U TG,电动机的转速n,即可得到测速发电机特性U TG=f(n);3、由Ud=f(Ug)或Ud=f(Uct)曲线可求得晶闸管整流装置的放大倍数曲线Ks=f(Ug),求Ks可用公式Ks =UgUd∆∆求得。
五、实验方法与步骤将电动机加额定励磁,使其空载运行,逐渐增加控制电压Ug(Uct),分别读取对应的Ug 、U TG 、Ud 、n 的数值若干组,即可描绘出特性曲线Ud =f (Ug )及U TG =f (n ),由Ud =f (Ug )或Ud =f (Uct )曲线可求得晶闸管整流装置的放大倍数曲线Ks =f(Ug),求Ks 可用公式Ks =UgUd∆∆求得。
六、数据记录与处理将数据记录于下表,并绘出Ud =f (Ug )、U TG =f (n )、Ks =f(Ug)三条曲线;七、注意事项1、给定单元的RP1从最小值处调起,每次停机前将RP1调回到最小值;2、由于电动机电枢回路、励磁回路未串接电阻,不要接短路;3、因U TG 、Ug(Uct)的数值较小,用万用表的直流电压10V 或50V 档测量。
4、由于实验时装置处于开环状态,电流和电压可能有波动,可取平均读数。
八、思考题比较三条曲线,各曲线有什么特点,为什么?实验二 晶闸管直流调速系统主要单元的测试一、实验目的熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求,学会按要求调试各单元 二、实验内容1、速度调节器的调试;2、电流调节器的调试;3、“零电平检测”及“转矩极性鉴别”单元的调试; 4 、反号器的调试;5、逻辑控制单元的调试; 三、实验所需挂件及附件四、实验原理及接线图在直流调速系统中,往往采用闭环控制,需要对电流、转速等信号进行反馈,以便稳速和限流,需要用到速度调节器和电流调节器,在可逆调速系统中,在电动机改变转向时,要对电枢电流、转矩极性进行鉴别,通过逻辑控制电路控制正、反桥电路的切换,以防止正、反桥同时工作,避免正、反桥之间出现环流,损坏电源,故要将“零电平检测”、“转矩极性鉴别”、“反号器”、“逻辑控制单元”状态调节好。
《电力拖动自动控制系统》课程设计报告

《电力拖动自动控制系统》课程设计报告(1)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊目录一﹑前言 (2)1. 1设计目的 (2)1. 2设计内容 (2)二﹑伺服系统的基本组成原理及电路设 (2)1.伺服系统基本原理及系统框图 (2)三﹑调试后的图 (8)四﹑设计心得与体会 (13)五﹑参考文献 (14)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊《电力拖动自动控制系统》课程设计报告一、前言1.1设计目的和要求1.使学生进一步掌握电力拖动自动控制系统的理论知识,培养学生工程设计能力和综合分析问题、解决问题的能力;2.使学生基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力;3.熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。
1.2设计内容1、分析和设计具有三环结构的伺服系统,用绘图软件(matlab)画原理图还有波形图;2、分析并理解具有三环结构的伺服系统原理。
二﹑伺服系统的基本组成原理及电路设计2.1伺服系统基本原理及系统框图伺服系统三环的PID控制原理以转台伺服系统为例,其控制结构如图2-1所示,其中r为框架参考角位置输入信号, 为输出角位置信号.┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图2-1 转台伺服系统框图伺服系统执行机构为典型的直流电动驱动机构,电机输出轴直接与负载-转动轴相连,为使系统具有较好的速度和加速度性能,引入测速机信号作为系统的速度反馈,直接构成模拟式速度回路.由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路.转台伺服系统单框的位置环,速度环和电流环框图如图2-2,图2-3和图2-4所示.图2-2 伺服系统位置环框图┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图2-3 伺服系统速度环框图图2-4 伺服系统电流框图图中符号含义如下:r为位置指令;θ为转台转角;u K为PWM功率放大倍数;d K为速度环放大倍数;v K为速度环反馈系数;i K为电流反馈系数;L为电枢电感;R为电枢电阻;m K为电机力矩系数;e C为电机反电动势系数;J为等效到转轴上的转动惯量;b为粘性阻尼系数,其中J=m J+L J,b=m b+L b,m J和L J分别为电机和负载的转动惯量,m b和L b分别为电机和负载的粘性阻尼系数;f T为扰动力矩,包括摩擦力矩和耦合力矩。
电机拖动实验报告小结(3篇)

第1篇一、实验背景与目的电机拖动实验是电气工程及其自动化专业一门重要的实践课程,旨在通过实验操作,使学生掌握电机的基本工作原理、运行特性及控制方法。
本次实验报告小结将对电机拖动实验过程中的操作、现象、数据及结论进行总结,以提高学生对电机拖动理论知识的理解和应用能力。
二、实验内容与过程1. 实验一:直流电动机的认识与特性测试(1)实验目的:掌握直流电动机的结构、工作原理和特性曲线。
(2)实验内容:观察直流电动机的构造,测量电动机的额定电压、额定电流、额定功率等参数,绘制电动机的机械特性曲线。
(3)实验过程:首先,观察直流电动机的构造,了解其主要部件及作用。
然后,连接实验电路,将电动机接入电路,测量电动机在不同电压下的电流、转速等参数,绘制电动机的机械特性曲线。
2. 实验二:三相异步电动机的工作特性(1)实验目的:掌握三相异步电动机的工作特性,了解电动机的启动、运行和制动过程。
(2)实验内容:观察三相异步电动机的启动、运行和制动过程,测量电动机在不同负载下的电流、转速、功率因数等参数。
(3)实验过程:首先,观察电动机的启动过程,分析启动过程中的电流、转速等参数变化。
然后,在电动机运行过程中,测量不同负载下的电流、转速、功率因数等参数,绘制电动机的工作特性曲线。
3. 实验三:三相异步电动机的启动与调速(1)实验目的:掌握三相异步电动机的启动与调速方法,了解不同调速方法的特点及应用。
(2)实验内容:观察三相异步电动机的启动与调速过程,分析不同调速方法的特点。
(3)实验过程:首先,观察电动机的启动过程,分析不同启动方法的特点。
然后,在电动机运行过程中,采用不同的调速方法,观察电动机的转速变化,分析调速方法的特点。
4. 实验四:电机拖动自动控制系统(1)实验目的:掌握电机拖动自动控制系统的原理和操作方法,提高学生的实际操作能力。
(2)实验内容:观察电机拖动自动控制系统的运行过程,分析控制系统的原理和操作方法。
电力拖动实验报告

电力拖动实验报告电力拖动实验报告学生实验报告课程名称:电力拖动基础实验教师:实验室名称:教学单位:电气信息工程学院专业:电气班级:091姓名:学号:实验日期:20xx.5.4实验成绩:批阅教师:日期:一、实验项目名称:电力拖动继电接触控制实验二、实验目的:1、通过对三相异步电动机点动控制、自锁控制线路、正反转控制线路、工作台自动往返循环控制线路、各种不同顺序控制线路、两地控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识。
2、通过实验进一步加深理解点动控制和自锁控制的特点以及在机床控制。
3、掌握三相异步电动机正反转的原理和方法。
4、掌握手动控制正反转控制、接触器联锁正反转、按钮联锁正反转控制及按钮和接触器双重联锁正反转控制线路的不同接法,并熟悉在操作过程中有哪些不同之处。
5、掌握行程控制中行程开关的作用、以及在机床电路中的应用。
6、掌握两地控制的特点,使学生对机床控制中两地控制有感性的认识。
三、实验设备及配套软件:DDSZ-1型电机及电气技术试验装置三相鼠笼异步电动机(DJ24)继电接触控制(一)(DJ61-2)继电接触控制(二)(DJ62-2)四、实验内容:实验前要检查控制屏左侧端面上的调压器旋钮须在零位。
开启“电源总开关”,按下启动按钮,旋转调压器旋钮将三相交流电源输出端U、V、W 的线电压调到220V。
再按下控制屏上的“关”按钮以切断三相交流电源。
以后在实验接线之前都应如此。
1、三相异步电动机既可点动又可自锁控制线路如图13①FU为过电流保护用(电流过大FU熔断器断路),FR1过热保护用(电路过热开关FR1断开,则电动机停止工作),Q1电源总开关②接通Q1,按下SB2,KM1线圈得电,则KM1常开主开关闭合,电动机转,同时KM1常开辅佐开光闭合,当SB2断开,KM1线圈继续得电,达到自锁控制。
③按下SB3,常开开光闭合,KM1线圈继续得电,常闭开光断开,自锁支路断开,松开SB3,则KM1线圈断电,电机停止转动。
电力拖动自动控制系统实验报告

电力拖动自动控制系统仿真实验报告课程名称:电力拖动自动控制系统课程编号:年级/专业/班:姓名:学号:任课老师:实验总成绩:电力拖动自动控制系统仿真实验报告实验项目名称:转速反馈控制直流调速系统实验指导老师:一、实验目的:1、进一步学习利用MA TLAB下的SIMULINK来对控制系统进行仿真。
2、掌握转速、电流反馈控制直流调速系统的原理。
3、学会利用工程的方法设计ACR、ASR调节器的方法。
二、仿真实验电路模型:比例积分控制的无静差直流调速系统的仿真模型三、实验设备及使用仪器:安装windows系统和MATLAB软件的计算机一台四、仿真实验步骤(按照实际建模操作过程填写):1、打开模型相关编辑窗口:通过单击SIMULINK工具栏中新模型的图标或选择File —New—Model菜单项实现。
复制相关原器件:双击所需要子模块图标,以鼠标左键选中所需的子模块,拖入模型编辑窗口。
2、模块连接:以鼠标左键单击起点模块输出端,拖动鼠标至终点模块输入端处,则在两模块间产生—>线。
修改相关参数:双击模型图案,则出现关于该图案的对话框,通过修改对话框内容来设定模块的参数。
3、仿真过程的启动:单击启动仿真工具的按钮或选择Simulation—Strat菜单栏,则可启动仿真过程,再双击Scope模块就可以显示仿真结果。
4、仿真参数的设置:为了清晰地观测仿真结果,需要对示波器显示格式作一个修改,对示波器的默认值注意改动,这里把Strat time和Stop time栏分别填写仿真的起始时间和结束时间,把默认时间从10.0s修改为0.6s。
重新启动仿真。
5、调节其参数的调整:根据工程的要求,选择一个合适的PI参数。
Kp=0.25,1/t=3,系统转速的相应无超调,但调节时间很长;当Kp=0.8,1/t=15,系统转速的相应的超调较大,但快速性较好。
五、实验数据、图表或计算等:修改控制参数后的仿真结果Kp=0.25,1/t=3,系统转速的相应无超调,但调节Kp=0.8,1/t=15,系统转速的相应的超调较大,但快速性较好。
2024年电力拖动实训报告总结

2024年电力拖动实训报告总结一、引言电力拖动技术是一种将电力用于传动机械装置的技术,具有能耗低、效率高、控制方便等优势。
随着科技的不断发展,电力拖动技术在各个领域得到了广泛应用。
为了提高学生对电力拖动技术的理论和实践能力,本次实训旨在通过设计和制作一个电力拖动装置,让学生深入了解该技术。
二、实训目的和意义1.提高学生对电力拖动技术的理论和实践能力。
2.培养学生的创新思维和动手实践能力。
3.增强学生的团队合作意识和沟通能力。
三、实训内容和方法1.实训内容:设计和制作一个电力拖动装置,包括电机、变频器、传动装置等。
2.实训方法:理论学习、实验操作、数据分析等。
四、实训过程1.理论学习:学生首先通过教材学习电力拖动技术的基本原理和设计方法。
2.实验操作:学生按照设计要求,选择电机、变频器等相关设备,并组装成一个完整的电力拖动装置。
3.数据分析:学生通过实验操作,获取装置的运行数据,并进行分析和总结。
五、实训成果和收获1.实训成果:学生成功设计和制作了一个电力拖动装置,并进行了实验测试。
2.实训收获:(1)提高了学生对电力拖动技术的理解和应用能力。
(2)培养了学生的创新思维和动手实践能力。
(3)增强了学生的团队合作意识和沟通能力。
六、实训存在的问题和改进意见1.存在的问题:部分学生对电力拖动技术的理解和应用能力还有待提高。
2.改进意见:增加更多的实践环节,加强对电力拖动技术的实际操作和应用。
七、实训心得和感受本次电力拖动实训让我深入了解了电力拖动技术的原理和应用,通过设计和制作一个电力拖动装置,我不仅加深了对理论知识的理解,还提高了动手实践的能力。
在实训过程中,我遇到了许多问题,但通过团队合作和师生互动,我成功解决了这些问题。
实训结束后,我对电力拖动技术有了更深入的认识,也对团队合作有了更深刻的体会。
八、总结通过本次电力拖动实训,我不仅掌握了电力拖动技术的基本原理和设计方法,还提高了动手实践和团队合作能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息工程学院
电力拖动与控制系统课程设计报告书题目: 电力拖动与自动控制实验设计
信息工程学院课程设计任务书
目录
1 转速反馈控制直流调速系统的仿真 (3)
1.1实验目的 (3)
1.2转速反馈控制直流调速系统仿真 (3)
实验小结 (5)
2 转速、电流反馈控制直流调速系统仿真 (6)
1.1实验目的及内容 (7)
1.2双闭环直流调速系统两个调节器的作用 (7)
1.3电流环仿真模型设计 (7)
1.4转速环仿真模型设计 (7)
1.5转速环的系统仿真 (8)
实验小结 (9)
3 基于MATLAB的SIMULINK下的3/2变换 (11)
1.1根据步骤可得仿真图 (11)
实验小结 (13)
4双闭环晶闸管不可逆直流调速系统实验 (14)
1.1实验目的 (14)
1.2实验原理 (14)
1.3实验内容 (14)
1.4实验仿真 (15)
1.5系统的仿真、仿真结果和输出及结果分析 (16)
实验小结 (18)
5参考文献 (19)
1 转速反馈控制直流调速系统的仿真
1.1实验目的
(1)了解MA TLAB下SIMULINK软件的操作环境和使用方法。
(2)对转速反馈控制直流调速系统进行仿真和参数的调整。
1.2转速反馈控制直流调速系统仿真
根据课本的操作步骤可得到如下的仿真框图:
图 1 仿真框图
(1)运行仿真模型结果如下:
图2 电枢电流随时间变化的规律
图3 电机转速随时间变化的规律
(2)调节参数Kp=0.25 1/τ=3 系统转速的响应无超调但调节时间长
(3)调节参数Kp=0.8 1/τ=15 系统转速的响应的超调较大,但快速性较好
实验小结
通过本次实验初步了解了MATLAB下SIMULINK的基本功能,对仿真图的建立了解了相关模块的作用和参数设置。
并可将其方法推广到其他类型控制系统的仿真中。
2转速、电流反馈控制直流调速系统仿真
1.1实验目的及内容
了解使用调节器的工程设计方法,是设计方法规范化,大大减少工作计算量,但工程设计是在一定近似条件下得到的,用MA TLAB仿真可根据仿真结果对设计参数进行必要的修正和调整。
转速、电流反馈控制的直流调速系统是静、动态性能优良、应用最广泛的直流调速系统,对于需要快速正、反转运行的调速系统,缩短起动、制动过程的时间成为提高生产效率的关键。
为了使转速和电流两种负反馈分别起作用,可在系统里设置两个调节器,组成串级控制。
1.2双闭环直流调速系统两个调节器的作用
1)转速调节器的作用
(1)使转速n跟随给定电压
*
m
U
变化,当偏差电压为零时,实现稳态无静差。
(2)对负载变化起抗扰作用。
(3)其输出限幅值决定允许的最大电流。
2)电流调节器的作用
(1)在转速调节过程中,使电流跟随其给定电压
*
i
U
变化。
(2)对电网电压波动起及时抗扰作用。
(3)起动时保证获得允许的最大电流,使系统获得最大加速度起动。
(4)当电机过载甚至于堵转时,限制电枢电流的最大值,从而起大快速的安全保护作用。
当故障消失时,系统能够自动恢复正常。
1.3电流环仿真模型设计
图2.1 电流环仿真模型
1.4转速环仿真模型设计
图2.2转速环仿真模型
1.5转速环的系统仿真
1)PI 调节器按照计算出来的结果:s
W ASR 48
.1347.11+
=。
空载起动时波形为:
图2.3 转速环空载起动输出波形
2)满载运行时起动的波形:
图2.4 转速环满载高速起动输出波形3)抗干扰性的测试:
图2.5 转速环的抗干扰输出波形
实验小结
通过本次实验了解到了在工程设计下近似计算的优点和缺点,并了解了如何根据仿真结果对设计参数的修正和调整,同时,对SIMULINK的模块也更加熟悉了。
3 基于MATLAB的SIMULINK下的3/2变换1.1根据步骤可得仿真图
图3.1 3/2变换仿真图
(1)仿真结果
实验小结
通过本次次试验对于3/2变换有了基本的了解,通过x、y和z坐标到d、q坐标的变换可节省大量的计算,并是结构图简化,简明易读。
4双闭环晶闸管不可逆直流调速系统实验
1.1实验目的
(1)了解闭环不可逆直流调速系统的原理,其组成及各主要单元部件的原理。
(2)掌握双闭环不可逆直流系统的调试步骤、方法及参数的整定。
(3)研究调节器参数对系统动态性能的影响。
1.2实验原理
由于加工和运行的要求,许多生产机械的电动机经常处于启动、制动、反转的过渡过程中,因此启动和制动过程的时间在很大程度上决定了生产机械的生产效率。
为缩短这一部分时间,仅采用比例积分调节器的转速反馈单闭环调速系统,其性能还不能令人满意。
双闭环直流调速系统是由电流和转速两个调节器进行结合调节的,可获得良好的动、静态性能(两个调节器均采用比例积分调节器)。
由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。
实验系统的原理图如图5.17所示。
启动时,加入给定电压g U ,速度调节和电流调节器即以饱和限幅值输出,使电动机以限的最大启动电流加速启动电流加速启动,值到电动机转速达到给定转速(g U =U fn )并在出现超调。
此时,速度调节器和电流调节器退出饱和,使电动机最后稳定在略低于给定转速值的状态中运行。
在系统工作时,要先给电动机加励磁,改变给定电压g U 的大小即可改变电动机的转速。
电流调节器、速度调节器的输出限幅可达到限制启动电流的目的。
电流调节器的输出作为触发电路得控制电压U ct ,利用电流调节器的输出限幅可达到限制max α的目的。
1.3实验内容
(1) 各控制单元调试。
(2) 测定电流反馈系数β、转速负反馈系数α。
(3) 测定开环机械特性及高、低转速时系统的闭环静态特性n=f(I d )
(4) 测定闭环控制特性n=f(U g ).
(5) 观察、记录系统动态波形。
1.4实验仿真
多环直流调速系统与开环、单环直流调速系统的主电路模型是一样的,主电路仍然是由交流电源、同步脉冲出发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。
其差别反映在控制电路上,多环系统的控制电路更复杂。
双闭环直流调速系统的原理框图如图5.17所示。
图5.18是采用面向电气原理结构图方法构成的双闭环系统仿真模型。
图5.18
1)系统的建模和模型参数设置
(1)主电路的建模和参数设置
转速、电流双闭环直流调速系统主电路的建模和模型参数设置与单闭环直流调速系统的建模和模型参数设置绝大部分程序相同,只是通过仿真实验将平波电抗器的电感值修改为9e-3(1093⨯-)H.
(2)控制电路的建模和参数设置
转速、电流双闭环系统的控制电路包括给定环节、速度调节器ACR 、限幅器、偏置电路、反相器、电流反馈环节、速度反馈环节等。
其中限幅器、偏置电路、反相器的作用、建模和参数设置与第六章第二节实验相同。
给定环节的参数设置为120Rad/s ,电流反馈系数设为0.1,转速负反馈系数为1.双闭环系统有两个比例积分调节器,分别为ACR 和ASR 。
这两个调节器的参数设置为,对ACR ,K pi =2,τi =100,上下幅限值为[120,-120];对于ASR ,K pi =1.2,τi =10,上下幅限值为[40,-40]。
(3)系统的仿真参数设置
通过仿真算法的比较实验,本系统选择的仿真算法为ode23tb ,仿真“Start time ”设为0,“Stop time ”设为2.5其他与第五章第二节相同。
1.5系统的仿真、仿真结果和输出及结果分析
当建模和参数设置完成后,即可开始进行仿真。
图5。
19所示是转速、电流双闭环直流调速系统的电流曲线和转速曲线。
从仿真的结果可以看出,它非常接近于理论分析的波形。
图5.19(a)转速/电流双闭环调速系统的电流曲线和转速曲线
5.19(b)电动机角频率 与电枢电流a I关系曲线
下面分析一下仿真的结果。
启动过程的第一阶段是电流上升阶段,由于突加给定电压,ASR的输入很大,其输出很快达到限幅值,电流也很快上升,接近其最大值。
第二阶段,ASR饱和,转速控制环相当于开环状态,系统表现为恒定电流给定作用下的电流调速系统,电流调节器的给定电压于反馈电压平衡,输入偏差为零,但是由于积分的作用,其输出还很大,所以出现超调。
转速超调之后,ASR输入端出现负偏差电压,使它退出饱和状态,进入线性调解阶段,使速度保持恒定,实际结果也基本反映了这一点。
实验小结
通过本实验的仿真,对双闭环晶闸管不可逆直流调速系统实验有了更好的了解,参数及波形的进一步认识,也对模型的进一步熟悉。
波形的判别和功能也得到了确定。
5参考文献
[1]康华光,陈大钦. 电子技术基础—模拟部分(第五版)[M]. 北京:高等教育出版社2005
[2]皮文兵. 一种宽输入范围的模拟乘法器设计[J]. 电子设计应用.2007.13(1):88-90
[3] 焦春生.新型绿色能效D类音频放大器设计应用[EB/OL].
[4] 张筑生. 微分半动力系统的不变集[D]. 北京: 北京大学数学系数学研究所, 1983。