2013-2014学年度八年级下期半期考试形)
盐城市第一初级中学教育集团2013~2014学年度第二学期期中考试 八年级语文

盐城市第一初级中学教育集团2013~2014学年度第二学期期中考试八年级语文试卷考试时间:100分钟卷面总分:120分考试形式:闭卷一、积累·运用(35分)1.名句默写。
(10分)⑴读书破万卷,。
杜甫《奉赠韦左丞丈二十二韵》⑵,相伴过年华。
葛天民《迎燕》⑶无边落木萧萧下,。
杜甫《登高》⑷,欲上青天揽明月。
李白《宣州谢朓楼饯别校书叔云》⑸世有伯乐,。
韩愈《马说》⑹一个人能力有大小,但只要有这点精神,就是一个高尚的人,一个纯粹的人,一个有道德的人,,一个有益于人民的人。
毛泽东《纪念白求恩》⑺刘禹锡在《陋室铭》中描写“陋室”环境清幽、草色翠绿的句子是:,⑻范仲淹《渔家傲》中慨叹功业未立和思念家乡复杂心情的诗句是:,2.阅读下面一段文字,按要求答题。
(7分)阅读好的文学作品,能够给读者带来心灵的震憾,思想的洗dí和精神的愉悦。
在现代快节奏和高压力的生活下,倘.若静下心来,欣赏一篇好散文,就会享受到qiè意之优美;朗诵一首好诗歌,就会领略到意境之深远;,。
我们从阅读中可以获得知识,可以开阔视野,可以启迪人生,可以汲.取智慧。
——摘自《用文学作品激发心灵的正能量》(有删改)⑴给加点的字注音或根据拼音写汉字。
(4分)倘.若汲.取洗dí qiè意⑵划横线的句子中有一个错别字,请找出并改正。
(1分)改为⑶在文中的空格处,再续写一个句子,使之与前面划波浪线的句子构成排比句。
(2分),3.下列各句中,加点的成语使用不恰当的一项是(2分)()A.电影《阿凡达》之所以深受观众喜爱,是因为它给我们展现的是一幅幅光怪陆离....的奇景!B.最近,乌克兰的国内形势发生了剧烈的变化,在扑朔迷离....的乌克兰政局中,前反对派代表季莫申科的出狱被视为标志性事件。
C.重庆画手黄仁文妙手回春....复活三百六十六位皇帝,完成了一套中国历代帝王图。
D.我们应该以正心的无私态度为他人着想,并且应该持之以恒的怀有这种想法,以后看见别人困难就不会袖手旁观....了。
北京市房山区2013-2014学年度第二学期期末考试八年级数学试卷(WORD版,含答案)

房山区2013—2014学年度第二学期期末考试八年级数学试卷一.选择题:(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个....是符合题意的,把“答题卡”上相应的字母处涂黑. 1.下列图形中,是中心对称图形的是A. B. C. D.2.在平面直角坐标中,点P (-3,5)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 若一个多边形的内角和等于720°,则这个多边形的边数是A. 8B. 7C. 6D. 54. 在一个不透明的盒子中放有2个黄色乒乓球和4个白色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出白色乒乓球的概率为A .12 B .13 C . 23 D .165. 在函数31-=x y 中,自变量x 的取值范围是( ) A. x ≠3 B.x ≠0 C. x >3 D. x ≠-36. 正方形具有而矩形没有的性质是( )A.对角线互相平分 B . 对边相等C .对角线相等D .每条对角线平分一组对角7. 如图,函数y =a x -1的图象过点(1,2),则不等式a x -1>2的解集是 A. x <1 B. x >1 C. x <2 D. x >2PMCBBDA8.如图,矩形ABCD中,AB=1,AD=2,M是A D的中点,点P在矩形的边上,从点A出发沿DCBA→→→运动,到达点D运动终止.设APM△的面积为y,点P经过的路程为x,那么能正确表示y与x之间函数关系的图象是 ( )C. D.二.填空题(本题共16分,每小题4分)9. 如图,在□ABCD中,已知∠B=50°,那么∠C的度数是.10. 已知一个菱形的两条对角线的长度分别为6和8,那么这个菱形的周长是.11. 甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.通常新手的成绩不太稳定,那么根据图中的信息,估计甲和乙两人中的新手是;他们这10次射击成绩的方差的大小关系是s2甲s2乙(填“<”、“>”或“=”).12. 如图所示,在平面直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…OP n(n为正整数).那么点P6的坐标是,点P2014的坐标是 .三.解答题:(本题共30分)13.用指定的方法解下列方程:(每小题5分,本题共10分)(1)x 2+4x -1=0(用配方法) (2)2x 2-8x +3=0(用公式法)14. (本题5分)已知:如图,E 、F 是□ABCD 对角线AC 上两点,AF=CE . 求证:BE ∥DF .15. (本题5分)已知2514x x -=,求代数式()()()212111x x x ---++的值.16. (本题5分) 如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点.(1)判断四边形EFGH 是何种特殊的四边形,并说明你的理由;(2)要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件HGF DCBEA17. (本题5分)已知:关于x 的一元二次方程()02122=-+--m x m mx (m >0).(1)求证:方程总有两个不相等的实数根;(2)m取何整数值时,此方程的两个实数根都为整数?四.解答题(本题共21分)18. (本题5分)判断A(1,3)、B(-2,0)、C(-4,-2)三点是否在同一直线上,并说明理由.19. (本题5分)据统计,2014年3月(共31天)北京市空气质量等级天数如下表所示:(1)请根据所给信息补全统计表;(2)请你根据“2014年3月北京市空气质量等级天数统计表”,计算2014年3月空气质量等级为优和良的天数出现的频率一共是多少?(精确到0.01)(3)市环保局正式发布了北京PM2.5来源的最新研究成果,专家通过论证已经分析出汽车尾气排放是本地主要污染源.在北京市小客车数量调控方案中,将逐年增加新能源小客车的指标. 已知2014年的指标为2万辆,计划2016年的指标为6万辆,假设2014~2016年新能源小客车指标的年增长率相同且均为x,求这个年增长率x. (参考数据:≈2≈.1≈414,),≈,.23.244923665732.120. (本题5分)已知:在平面直角坐标系中,点A、B分别在x轴正半轴上,且线段OA、OB(OA<OB)的长分别等于方程x2-5x+4=0的两个根,点C在y轴正半轴上,且OB=2OC.(1)试确定直线BC的解析式;(2)求出△ABC的面积.DCBADCBA DCBAOEDHCGBFA21. (本题6分)如图,正方形ABCD的两条对角线把正方形分割成四个等腰直角三角形,将这四个三角形分别沿正方形ABCD的边向外翻折,可得到一个新正方形EFGH.请你在矩形ABCD中画出分割线,将矩形分割成四个三角形,然后分别将这四个三角形沿矩形的边向外翻折,使得图1得到菱形,图2得到矩形,图3得到一般的平行四边形(只在矩形ABCD中画出分割线,说明分割线的作法,不画出翻折后的图形).图 1 图 2 图3五.解答题(本题共21分)22. (本题6分)如图,直线5+-=xy分别与x轴、y轴交于A、B两点.(1)求A、B两点的坐标;(2)已知点C坐标为(4,0),设点C关于直线AB的对称点为D,请直接写出点D的坐标;(3)请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在平面直角坐标系中作出图形,并求出点N的坐标.23. (本题7分)如图所示,在□ABCD 中,BC =2AB ,点M 是AD 的中点,CE ⊥AB 于E ,如果∠AEM =50°,求∠B 的度数.MDCBE A24. (本题8分)直线434+-=x y 与x 轴交于点A ,与y 轴交于点B ,菱形ABCD 如图所示放置在平面直角坐标系中,其中点D 在x 轴负半轴上,直线m x y +=经过点C ,交x轴于点E .①请直接写出点C 、点D 的坐标,并求出m 的值;②点P (0,)是线段OB 上的一个动点(点P 不与0、B 重合),经过点P 且平行于x 轴的直线交AB 于M 、交CE 于N.设线段MN 的长度为d ,求d 与之间的函数关系式(不要求写自变量的取值范围);③点P (0,)是y 轴正半轴上的一个动点,为何值时点P 、C 、D 恰好能组成一个等腰三角形?房山区2013—2014学年度第二学期终结性试卷参考答案和评分参考八年级数学一、选择题(本题共32分,每小题4分)1.A2.B3.C4.C 5.A 6.D 7.B 8.A二、填空题(本题共16分,每小题4分)9. 130° 10. 20 11. 乙 ;s2甲< s 2乙 (此题每空2分)12. (0,-64)或(0,-26) ;(0,-22014)(此题每空2分)三、解答题(本题共30分,每小题5分)13.(1)解: 142=+x x ……………………………1分5442=++x x ……………………………2分()522=+x ……………………………3分52±=+x ……………………………4分521+-=x 522--=x ……………………………5分(2) 解: 3,8,2=-==c b a ……………………………1分ac b 42-=∆∴()32482⨯⨯--=40=>0 ……………………………2分 代入求根公式,得()4102822408242±=⨯±--=-±-=a ac b b x ……………………………4分 ∴方程的根是2104,210421-=+=x x ……………………………5分14.证明:∵□ABCDHGFDCBEA∴AB ∥DC, AB=CD ……………………………2分 ∴∠BAE=∠DCF ……………………………3分 在△ABE 和△CDF 中∵⎪⎩⎪⎨⎧=∠=∠=CF AE DCF BAE CD AB ∴△ABE ≌ △CDF ……………………………4分 ∴BE =DF ……………………………5分15.解:原式=()11212222+++-+--x x x x x ……………………………2分=11213222+---+-x x x x ……………………………3分 =152+-x x ……………………………4分∵1452=-x x∴原式=15 ……………………………5分16.(1)四边形EFGH 是平行四边形 ;……………………………1分证明: 在△ACD 中 ∵G 、H 分别是CD 、AC 的中点,∴GH ∥AD ,GH=21AD 在△ABC 中 ∵E 、F 分别是AB 、BD 的中点,∴EF ∥AD ,EF=21AD ……………………………2分 ∴EF ∥GH ,EF=GH ……………………………3分 ∴四边形EFGH 是平行四边形. ………………………4分……………………………5分17.解:(1) ()2,12,-=--==m c m b m aac b 42-=∆∴()[]()24122----=m m mm m m m 8448422+-+-=4=>0……………………………1分∴此方程总有两个不等实根……………………………2分(2) 由求根公式得mm m x x 212,121-=-==……………………………3分 ∵方程的两个根均为整数且m 是整数 ∴m 2-1是整数,即m2是整数 ∵m >0 ∴m =1或2……………………………5分FE FEADCBADCBBCDA18.解:设A (1,3)、B (-2,0)两点所在直线解析式为b kx y +=∴⎩⎨⎧+-=+=b k bk 203…………………1分解得⎩⎨⎧==21b k ……………………………3分∴2+=x y ……………………………4分 当=x -4时,2-=y∴点C 在直线AB 上,即点A 、B 、C 三点在同一条直线上.……………5分19.(1) 3 ……………………………1分(2) (5+11)÷31≈0.52,∴空气质量等级为优和良的天数出现的频率一共是0.52…………………………2分 (3)列方程得:()6122=+x ,…………………………3分解得311+-=x ,3-12-=x (不合题意,舍去)…………………4分 ∴732.0≈x 或2.73≈x %答:年增长率为73.2% …………………………5分20.解: (1) ∵OA 、OB 的长是方程x 2-5x +4=0的两个根,且OA <OB ,解得1,421==x x …………………………1分∴OA =1,OB=4∵A 、B 分别在x 轴正半轴上,∴A (1,0)、B (4,0)…………………………2分 又∵OB =2OC ,且点C 在y 轴正半轴上 ∴OC =2,C (0,2)…………………………3分 设直线BC 的解析式为b kx y +=∴⎩⎨⎧=+=b b k 240,解得⎪⎩⎪⎨⎧=-=221b k∴直线BC 的解析式为221-+=x y …………………………4分 (2)∵A (1,0)、B (4,0) ∴AB =3∵OC =2,且点C 在y 轴上 ∴3232121=⨯⨯=⋅=∆OC AB S ABC…………………………5分21.图1 图2 图3得到菱形的分割线做法:联结矩形ABCD 的对角线AC 、BD (把原矩形分割为四个全等的等腰三角形);得到矩形的分割线做法:联结矩形ABCD 的对角线BD ,分别过点A 、C 作AE ⊥BD 于E ,CF ⊥BD 于F (把原矩形分割为四个直角三角形);得到平行四边形的分割线做法:联结矩形ABCD 的对角线BD ,分别过点A 、C 作AE ∥CF ,分别交BD 于E 、 F (把原矩形分割为四个三角形).每图分割线画法正确各1分,每图分割线作法叙述基本正确各1分,共6分. 22. 解:(1) ∵直线5+-=x y 分别与x 轴、y 轴交于A 、B 两点令0=x ,则5=y ;令0=y ,则5=x∴点A 坐标为(5,0)、点B 坐标为(0, 5);…………………………2分 (2) 点C 关于直线AB 的对称点D 的坐标为(5,1)…………………………3分 (3)作点C 关于y 轴的对称点C ′,则C ′的坐标为(-4,0)联结C ′D 交AB 于点M ,交y 轴于点N ,…………………………4分 ∵点C 、C ′关于y 轴对称 ∴NC = NC ′,又∵点C 、D 关于直线AB 对称,∴CM=DM ,此时,△CMN 的周长=CM+MN+NC= DM +MN+ NC ′= DC ′周长最短;设直线C ′D 的解析式为b kx y +=∵点C ′的坐标为(-4,0),点D 的坐标为(5,1)∴⎩⎨⎧+=+=b k b k 4-051,解得⎪⎪⎩⎪⎪⎨⎧==9491b k ∴直线C ′D 的解析式为9491+=x y ,…………………………5分 与y 轴的交点N 的坐标为 (0,94) …………6分23.解:联结并延长CM ,交BA 的延长线于点N∵□ABCD∴AB ∥CD, AB=CD …………………1分∴∠NAM=∠D∵点M 是的AD 中点,∴AM=DM在△NAM 和△CDM 中 ∵⎪⎩⎪⎨⎧∠=∠=∠=∠DMC AMN DMAM DNMA ∴△NAM ≌ △CDM ……………………2分∴NM=CM,NA=CD …………………………4分∵AB=CD∴NA= AB, 即BN=2AB∵BC=2AB ∴BC= BN, ∠N=∠NCB …………………………5分∵CE ⊥AB 于E,即 ∠NEC=90°且NM=CM∴EM=21NC=NM …………………………6分 ∴∠N=∠NEM =50°=∠NCB∴∠B=80° …………………………7分24. 解:(1)点C 的坐标为(-5,4),点D 的坐标为(-2,0)…………………………2分∵直线m x y +=经过点C ,∴=m 9 …………………………3分(2) ∵MN 经过点P (0,t )且平行于x 轴∴可设点M 的坐标为(t x M ,),点N 的坐标为(t x N ,)…………………………4分D∵点M 在直线AB 上,直线AB 的解析式为434+-=x y , ∴t 434+-=M x ,得343+-=t x M 同理点N 在直线CE 上,直线CE 的解析式为9+=x y ,∴t 9+=N x ,得9-t x N =∵MN ∥x 轴且线段MN 的长度为d , ∴()1247-9-343+=-+-=-=t t t x x d N M …………………………5分(3) ∵直线AB 的解析式为434+-=x y ∴点A 的坐标为(3,0),点B 的坐标为(0,4)AB=5∵菱形ABCD∴AB=BC=CD=5∴点P 运动到点B 时,△PCD 即为△BCD 是一个等腰三角形,此时t =4;…………………………6分∵点P (0,t )是y 轴正半轴上的一个动点,∴OP =t ,PB =4-t∵点D 的坐标为(-2,0)∴OD=2,由勾股定理得22224t OP OD PD +=+=同理,()2222425-+=+=t BP BC CP 当PD=CD=5时, 224t PD +==25,∴21=t (舍负)…………………7分当PD=CP 时,PD 2=CP 2, 24t +()2425-+=t ∴t 837=……………………8分综上所述,t =4,21=t ,t 837=时,△PCD 均为等腰三角形. 备注:此评分标准仅提供一种解法,其他解法仿此标准酌情给分。
2013-2014学年度下期期末质量测试卷 八年级数学

2013-2014学年度下期期末质量测试卷 八年级数学一,选择题(每小题3分,共24分)1、下列二次根式中,是简二次根式是( )A 、51 B 、5.0 C 、5 D 、50 2、已知a 、b 、c 是△ABC 的三边长,且满足a+b=24,a-b=6,c=12那么△ABC 的形状是( )A 、等腰三角形B 、直角三角形C 、等边三角形D 、等腰直角三角形3、下列条件中,不能判定一个四边形是平行四边形的是( )A 、一组对边平行,另一组对边相等B 、两组对边分别相等C 、两组对边分别平行D 、两组对角分别相等4、若点A (a+2;2-a )在一次函数y=2x+1的图象上,则a 的值是( )A 、2B 、1C 、0D 、-15、已知一组数据2,3,4,3的平均数是a ,中位数是b ,众数是c ,那么数据abc 的方差是( )A 、0B 、1C 、2D 、36、若xy 〉0,则化简2xy x -⋅得:( ) A 、y B 、y - C 、y - D 、y --7、如图,在正方形网格图中,有四条线段AB 、CD 、EF 、GH ,已知小正方形的边长都为1,则这四条线段中,能作为一个直角三角形三边的线段是( )A 、CD 、EF 、GHB 、AB 、EF 、GHC 、AB 、CD 、GH D 、AB 、CD 、EF 、8、已知四边形ABCD 是平行四边形,则下列结论正确的是( )A 、当AC =BD 时,四边形ABCD 是菱形B 、当AB =AC 时,四边形ABCD 是菱形C 、当∠ABC =60º时,四边形ABCD 是菱形 D 、当△ABC 是等边三角形时,四边形ABCD 是菱形二、填空题(每小题3分,共21分)9、已知点P (x,y )是第一象限内任意一点,且x+y=8,点A 的坐标为(6,0),设POA 的面积为S ,用含x 的式子表示S 得________________________,x 的取值范围是________________。
宜春市2013-2014学年下期期终考试八年级数学试卷

宜春市2013—2014学年第二学期期末统考八年级数学试卷命题人:吕晚生 李希亮 审题人:李希亮 潘国荣说明:1.试卷共4页,答题卡共4页。
考试时间100分钟,满分100分。
2.请在答题卡指定位置填写好学校、班级、姓名、座位号,不得在其它地方作任何标记。
3.答案必须写在答题卡指定区域,否则不给分。
一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项 1、下列各式中,属于最简二次根式的是( ) A 、B 、C 、D 、2、下列以线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是 ( ) A 、 40,41,9===c b a B 、25,5,5===c b aC 、 5:4:3::=c b aD 、13,12,11===c b a 3、将直线x y 2=向下平移一个单位后所得的直线解析式为( )A 、12+=x yB 、22-=x yC 、12-=x yD 、22+=x y 4、甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如右表: 某同学分析上表后得出如下结论: ①甲、乙两班学生成绩平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀); ③甲班成绩的波动比乙班大。
上述结论正确的是( ) A 、①②③ B 、 ①② C 、①③ D 、②③5、如图,在矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A 、3 B 、4 C 、5 D 、66、如图,把一枚边长为1的正方形印章涂上红色印泥,在4×4的正方形网格纸上盖一下,被盖上印泥的正方形网格个数最多是( )A 、6B 、5C 、4D 、3(第5题图)(第6题图)印章二、填空题(本大题共8个小题,每小题3分,共24分) 7、计算=⋅)2731()312( ; 8、写出一个图象经过点(-2,0)且函数y 随x 增大而增大的一次函数解析式 ;9、已知2<x <5,化简=-+-2252)()(x x _________ .10、如图,每个小正方形的边长为1.在∆ABC 中,点D 为AB 的中点,则线段CD 的长为 ; 11、如图,直线b kx y +=交坐标轴于A 、B 两点,则不等式0>+b kx 的解集是 ; 12、某商店出售一种瓜子,其售价y (元)与瓜子质量x (千克)之间的关系如下表,分) 15、计算:5022145.03821+--16、 若15+=a , 15-=b ,求22ab b a +的值.17、如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题(1)当行驶8千米时,收费应为 元(2)求出收费y(元)与行使x(千米)(x ≥3)之间的函数关系式。
2013—2014学年第二学期八年级数学期末试题(含答案)

2013—2014学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.) 1x 的取值范围是A.3x 2≥B. 3x 2>C. 2x 3≥ D. 2x 3>2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是 A.平行四边形 B. 菱形 C.正方形 D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限 7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是 A .1.65米是该班学生身高的平均水平 B .班上比小华高的学生人数不会超过25人 C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米10.如图,已知ABCD的面积为48,E 为AB连接DE ,则△ODE 的面积为 A.8 B.6 C.4 D.3第4题图第10题图 B D二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。
天津市五区县2013-2014学年度第二学期期末考试八年级数学试卷(WORD解析版)

天津市五区县2013~2014学年度第二学期期末考试八年级数学试卷一、单选题(每小题3分,共30分) . . ,即﹣<查了二次根式的意义和性质.概念:式子(2.(3分)下列根式2,,,,中,最简二次根式的个数是( )2=2是最简二次根式,=﹣)+2﹣)+2),解得,8.(3分)八年级一班与二班各选出10名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,一班成绩的方差为12.5,二班成绩的方9.(3分)如图,在四边形ABCD中,AB=1,BC=1,CD=2,DA=,且∠ABC=90°,则四边形ABCD的面积是().=,AD=×.10.(3分)(2007•呼伦贝尔)如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()..EF=二、填空题(每小题3分,共24分)11.(3分)二次根式有意义的条件是x≥.查了二次根式的意义和性质.概念:式子(12.(3分)在▱ABCD中,添加条件AB=BC可得四边形ABCD是菱形.13.(3分)计算:+﹣=0.+314.(3分)(2011•天津)已知一次函数的图象经过点(0,1),且满足y随x的增大而增大,则该一次函数的解析式可以为y=x+1(答案不唯一,可以是形如y=kx+1,k>0的一次函数).15.(3分)(2010•上海)将直线y=2x﹣4向上平移5个单位后,所得直线的表达式是y=2x+1.16.(3分)如图在四边形ABCD中,已知AB=CD,AD=BC,AC,BD相交于O,若AC=6,则AO的长度等于3.17.(3分)如图所示,将四根木条组成的矩形木框变成▱ABCD的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是30°.18.(3分)如图设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,此时正方形AEGH的边长为2,如此下去,则第n个正方形的边长为()n﹣1.据正方形的对角线等于边长的倍依次求解,再根据指数的变化规律求出第AC=AE=(((三、解答题(本大题共46分)19.(6分)计算:(1)3﹣+﹣;(2)(2+5)(2﹣5)﹣(﹣)2.=32﹣;2237+220.(6分)为了在甲乙两名运动员中选拔一人参加市运动会跳远比赛,对他们的跳远技能(1)甲成绩的平均数是4,乙成绩的平均数是4;(2)计算甲、乙成绩的方差;(3)你认为选谁去参加比赛更合适?简单说明理由.)甲的方差是:[7[421.(6分)如图所示,▱ABCD中,对角线AC,BD相交于O,OE⊥AD,OF⊥BC,垂足分别是E,F.求证:OE=OF.22.(6分)已知一次函数图象经过(﹣2,1)和(1,3)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.3+=,即的值是.23.(6分)把两个完全相同的矩形纸片ABCD,BFDE如图放置,已知AB=BF,求证:四边形BHDG是菱形.24.(8分)四川雅安发生地震后,某校学生会向全校700名学生发起了爱心捐款活动,为了解捐款情况,随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次随机抽样调查的学生人数为50,图①中m的值是32;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款为10元的学生人数.25.(8分)甲、乙两家超市平时以同样价格出售相同的商品,“十一”黄金周期间,两家超市都让利酬宾,其中甲超市对一次购物中超过300元后的价格打6折,乙超市所有商品按8折出售.(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)黄金周期间如何选择这两家超市去购物更省钱?。
2013--2014学年度八年级数学第二学期期末质量检测试卷
2013--2014学年度八年级数学第二学期期末质量检测试卷一、你一定能选对!(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )2.如果关于x 的方程2-x x -5=m5-x 无解,那么m 的值为( )A .-2B .5C .2D .33.函数y =x1-x的自变量x 的取值范围是( )A .x ≠0B .x ≠1C .x >1D .x<1且x ≠0 4.菱形具有但矩形不具有的性质是( ) A .四边都相等 B .对边相等 C .对角线互相平分 D .对角相等5.如图,已知函数y=kx+b 和y=kx 的图像交于点P ,则根据图像可得关于x,y 的二元一次方程组的解是( )A. x=-2 B . x=-4y=-4 y=-2C . x=2D . x=-4 y=-4 y=26.依次连接等腰梯形各边中点所得到的四边形是( ) A .梯形 B .菱形 C .矩形 D .正方形7.如图,矩形ABCD 中,AB =1,AD =2,M 是CD 的中点,点P 在矩形的边上沿A →B →C →M 运动,则△APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )BCPABCD8某次考试,5名学生的平均分是82,除学生甲外,其余4名学生的平均分是80,那么学生甲的得分是( )A .84B .86C .88D .909.如图,在△ABC 中,已知∠ABC 和∠ACB 的角平分线相交于点F ,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E ,若BD+CE=9,则DE 的长为( )A.9B.8C.7D.610“五一”期间,几名同学租一辆面包前去旅游,面包车的租价为80元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费,若设参加旅游的学生总数共有x 人,则依题意所列方程为( )A 、32180180=+-x x B 、31802180=-+x x C 、32180180=- D 、31802180=--xx二、你能填得又快又准吗?(每小题3分,共计24分)11.点M(a,2)是一次函数y=2x-3图像上的一点,则a=________.12.一个多边形的内角和和它外角和相等,那么这个多边形是______边形。
2013-2014学度年第二学期期末质量检测八年级数学试卷
2013-2014学度年第二学期期末质量检测八年级数学试卷注意事项:1.本试卷考试时间为100分钟,试卷满分120分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 要使分式51x+有意义,则x的取值范围是x≠1B.x>1 C.x<1 D.x≠-12. 给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为A.12B.13C.16D.233. 如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于A.5:8 B.3:8 C.3:5 D.2:54. 下列4个点,不在反比例函数y=6x-图象上的是A.(2,-3)B.(-3,2)C.(3,-2)D.(3,2)5. 一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为A.5 B.5或6 C.5或7 D.5或6或76. 若y是x的反比例函数,那么x是y的A.正比例函数B.一次函数C.反比例函数D.二次函数7. 美是一种感觉,当人体的下半身长与身高的比值越接近0.618时越给人一种美感.已知某女士身高160cm,下半身长与身高的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度约为A.6cm B.10cm C.4cm D.8cm8. 如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数y=2510k kx-+(x>0)的图象上.若点B的坐标为(-4,-4),则k的值为A.2 B.6 C.2或3 D.-1或6二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)不等式2x<4x-6的解集为▲ .10. 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是▲ .命题“等腰三角形两底角的平分线相等”的逆命题是▲ .12. 将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为▲ .13. 当x= ▲ _.某同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则x满足的方程是▲ .15. 将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为▲ .16. a,b,c为△ABC的三边,且分式无意义,则△ABC为▲ 三角形.如图所示,正方形OEFG和正方形ABCD是位似图形,点F的坐标为(-1,1),点C 的坐标为(-4,2),则这两个正方形位似中心的坐标是▲ .如图,O为矩形ABCD的中心,M 为BC边上一点,N为DC边上一点,ON⊥OM,若AB=6,AD=4,设OM=x,ON=y,则y与x的函数关系式为▲ .分.请在答题卡指定区域内作答,解答时应写出19. (本题满分5分)解方程:111224xx x++=--20. (本题满5分)计算:)0,0a b⎛>>⎝222abca b c ab bc ac++---(第8题图) (第17题图)B(第18题图)OMNCDA21. (本题满6分)如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC 就是格点三角形.在建立平面直角坐标系后,点B 的坐标为(-1,-1).(1)把△ABC 向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;(2)在如图的方格纸中把△ABC 以点B 为位似中心缩小,使缩小前后的位似比为2:1,画出△AB2C2.22. (本题满8分)2012年1月15日,广西龙江河发生严重的重金属镉污染事件.据专家介绍,重金属镉具有毒性,长期过量接触镉会引起慢性中毒,影响人体肾功能.为了解这次镉污染的程度,国务院派出的龙江河调查组抽取上层江水制成标本a1、a2,抽取中层江水制成标本b1、b2,抽取下层江水制成标本c1、c2.(1)若调查组从抽取的六个样本中送选两个样本到国家环境监测实验室进行检验,求刚好选送一个上层江水标本和一个下层江水标本的概率;(2)若每个样本的质量为500g ,检测出镉的含量(单位:mg )分别为:0.3、0.2、0.7、0.5、 0.3、0.4,请算出每500g 河水样本中金属镉的平均含量;(3)据估计,受污染的龙江河河水共计2500万吨,请根据(2)的计算结果,估算出2500万吨河水中含镉量约为多少吨?(本题满8分)试用举反例的方法说明下列命题是假命题.举例:如果ab <0,那么a+b <0反例:设a=4,b=-3,ab=4×(-3)=-12<0,而a+b=4+(-3)=1>0所以,这个命题是假命题.A B C O y x如果a+b >0,那么ab >0;反例: ▲ .(2)如果a 是无理数,b 是无理数,那么a+b 是无理数.反例: ▲ .(3)两个三角形中,两边及其中一边的对角对应相等,则这两个三角形全等.反例: (画出图形,并加以说明)24. (本题满8分)如图,在平面直角坐标系内,已知OA =OB =2,∠AOB =30°.(1)点A 的坐标为( ▲ , ▲ );(2)将△AOB 绕点O 顺时针旋转a 度(0<a<90).①当a =30时,点B 恰好落在反比例函数y =kx (x>0)的图象上,求k 的值;②在旋转过程中,点A 、B 能否同时落在上述反比例函数的图象上,若能,求出a 的值;若不能,请说明理由.25. (本题满6分) 如图,某一时刻垂直于地面的大楼AC 的影子一部分在地上知坡角,∠DBE =45°,BC =20米,BD=1米的标杆的影长恰好也为1米,求大楼的高度AC .(本题满10分)如图1,已知直线y =-2x +4与两坐标轴分别交于点A 、B ,点C 为线段OA 上一动点,连结BC ,作BC 的中垂线分别交OB 、AB 交于点(l)当点C 与点O 重合时,DE = ▲ ; B E(2)当CE∥OB时,证明此时四边形BDCE为菱形;(3)在点C的运动过程中,直接写出OD的取值范围.(本题满10分)如图①,将直角梯形OABC放在平面直角坐标系中,已知OA=5,OC=4,BC∥OA,BC =3,点E在OA上,且OE=1,连结OB、BE.(1)求证:∠OBC=∠ABE;(2)如图②,过点B作BD⊥x轴于D,点P在直线BD上运动,连结PC、P、PA和CE.①当△PCE的周长最短时,求点P的坐标;②如果点P在x轴上方,且满足S△CEP:S△ABP=2:1,求DP的长.(本题满10分)探究与应用:在学习几何时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,K字形是非常重要的基本图形,可以建立如下的“模块”(如图①):(1)请就图①证明上述“模块”的合理性;(2)请直接利用上述“模块”的结论解决下面两个问题:①如图②,已知点A(-2,1),点B在直线y=-2x+3上运动,若∠AOB=90°,求此时点B的坐标;②如图③,过点A(-2,1)作x轴与y轴的平行线,交直线y=-2x+3于点C、D,求点A 关于直线CD的对称点E的坐标.。
2013-2014学年下学期八年级数学期中考试(含答案)
242--x x yx x+52013-2014学年下学期八年级数学期中考试总分:120 分1、在 x 1 ,21、212+x 、πxy 3、y x +3中分式的个数有( )A 、2个B 、3个C 、4个D 、5个2.若分式 的值为0,则x 的取值是( ) A 、2x = B 、2x ≠ C 、2x =- D 、2x ≠-3. 如果把 中的x 与y 都扩大10倍,那么这个分式的值( )A . 不变B 。
扩大为原来的50倍C 。
缩小为原来的10倍D 。
缩小为原来的4.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是 ( )A .3、4、5 B .6、8、10 C .1.5、2、3 D .5、12、135、轮船顺流航行50千米和逆流航行40千米所需时间相等,已知水流速度为2km/h ,求船在静水中的速度。
设轮船在静水中的速度为xkm/h ,则可列方程为( )()32222---⋅b a b a A 、240250-=+x x B 、240250+=-x x C 、24050+=xx D 、240250+=-x x6.下列各点中,在函数xy 2-=的图像上的是( )A 、(2,1)B 、(-2,1)C 、(2,-2)D 、(1,2)7、已知22(1)m y m x-=- 是反比例函数,则它的图象在( )A 、第一、三象限B 、第二、四象限C 、第一、二象限D 、第三、四象限8、如图,函数k kxy +=与ky x=在同一坐标系中,图象可能是下图中( )9.点1(3)y -,、2(2)y -,、3(1)y ,在反比例函数2y x=的图像上,则下列结论 正确的是( ) A .123y y y >> B .213y y y >> C . 321y y y >> D . 312y y y >>二. 填空 (每题3分,共33分)10、氧原子的直径约为0.00 000 000 16 m ,用科学记数法表示为 ______m11.当x 时,分式 51-x 有意义12、如图所示,设A 为反比例函数xky =图象上一点,且矩形ABOC 的面积为3,则这个反比例函数解析式为 。
2013-2014学年度下期期末学业质量监测八年级数学试题
2013-2014学年度下期期末学业质量监测八年级数学试题注意事项:1、全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2、考生必须在答题卷上作答,答在试卷上、草稿纸上无效。
3、试卷中横线上及方框内注有“▲”的地方,是需要考生在答题卷上作答的内容或问题。
请按照题号在答题卷上各题目对应的答题区域内作答,超出答题区域书写的答案无效。
A 卷(100分)一、选择题(每小题3分,共30分)下列各小题给出的四个选项中,只有一个符合题目要求,请将正确选项前的字母填在答题卷上对应的表格内。
1. 已知关于x 的一元二次方程02=+-k x x 的一个根是2,则k 的值是( ▲ )A .-2B .2C .1D .-12. 在平行四边形、等腰三角形、矩形、菱形、正方形五个图形中,既是中心对称图形又是轴对称图形的有( ▲ )A .1个B .2个C .3个D .4个3. 若等腰三角形的两边长分别为4和8,则它的周长为( ▲ )A .12B .16C .20D .16或20 4. 下列各式中能用完全平方公式进行因式分解的是( ▲ )A .12++x xB .122-+x xC .12-xD .962+-x x 5. 若分式9392+-x x 的值为0,则x 的值是( ▲ ) A .9 B .±3 C .-3 D .36. 如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( ▲ ) A.51 B. 41 C. 31 D. 1036题图 7题图 8题图7. 如图,在平行四边形ABCD 中,已知∠ODA=90°,AC=10cm ,BD=6cm ,则AD 的长为( ▲ )A .4cmB .5cmC .6cmD .8cm8. 如图,∠ACB=90°,AC=BC ,AE ⊥CE 于E ,BD ⊥CE 于D ,AE=5cm ,BD=2cm ,则DE 的长是( ▲ )A .8B .5C .3D .29. 若关于x 的一元二次方程0122=--x kx 有两个不相等的实数根,则实数k 的取值范围是( ▲ )A .k>-1B .k<1且k≠0C .k≥-1且k≠0D .k>-1且k≠010. 炎炎夏日,甲安装队为A 小区安装60台空调,乙安装队为B 小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( ▲ ) A.25060-=x x B. x x 50260=- C. 25060+=x x D. xx 50260=+ 二、填空题(每小题4分,共16分)11. 分解因式:x x 43-= ▲ 12. 如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD交AC 于点D ,AD=3,BC=10,则△BDC 的面积是 ▲ .13. 若一个多边形内角和等于1260°,则该多边形边数是 ▲ 12题图14. 已知关于x 的分式方程121=+-x a 有增根,则a= ▲ 三、解答题(每小题5分,共20分)15.解方程(1)12422=-+-x x x(2)0142=+-x x16.(1)已知a 、b 、c 是△ABC 的三边且满足022=-+-bc ac b a ,请判断△ABC 的形状.(2)先化简2211112-÷⎪⎭⎫ ⎝⎛+--a a a a ,然后从1、2、-1中选取一个你认为合适的数作为a 的值代入求值.四、解答题(17题9分,18题7分,共16分)17. 如图,已知△ABC 的三个顶点的坐标分别为A (-2,3)、B (-6,0)、C (-1,0).(1)将△ABC 绕坐标原点O 逆时针旋转90度,得到△A ′B ′C ′,画出图形,直接写出点B 的对应点B ′的坐标;(2)将△ABC 向右平移6个单位,再向上平移2个单位,得到△A ″B ″C ″,画出图形.直接写出点C 的对应点C ″的坐标.(3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.18. 已知:如图,四边形ABCD 是周长为52cm 的菱形,其中对角线BD 长10cm .求:(1)对角线AC 的长度;(2)菱形ABCD 的面积.五、解答题(19题8分,20题10分,共18分)19. 关于x 的一元二次方程()01212=++--m mx x m (1)求证:方程有两个不相等的实数根;(2)m 为何整数时,此方程的两个根都为正整数.20. 如图,△ABC 是等腰直角三角形,∠BAC =90º,BC =2,D 是线段BC 上一点,以AD 为边,在AD 的右侧作正方形ADEF .直线AE 与直线BC 交于点G ,连接CF .(1)猜想线段CF 与线段BD 的数量关系和位置关系,并说明理由;(2)连接FG ,当△CFG 是等腰三角形,且BD <1时,求BD 的长.B 卷(50分)一、填空题(每小题4分,共20分)21. 已知x 1、x 2为方程0132=++x x 的两实根,则208231++x x = ▲ 22. 若11=+c b ,11=+a c ,则bab 1+= ▲ 23. 如图,将等腰直角△ABC 沿斜边BC 方向平移得到△A 1B 1C 1.若AB=3,若△ABC 与△A 1B 1C 1重叠部分面积为2,则BB 1的长为 ▲24. 如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点.请你添加一个条件,使四边形EFGH 为矩形,应添加的条件是 ▲ .23题图 24题图 25题图25. 如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2013-2014学年度八年级下期半期考试
数 学 试 题
考试时间:120分钟 试卷满分:150分
(试题范围:二次根式、勾股定理、平行四边形)
一、选择题(共12小题,每小题4分,共48分)
下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项
前的代号填在答卷指定位置.
1、 计算24- 38 的结果是( ).
A.2 B.±2 C.-2或0 D.0.
2、如图,把矩形ABCD沿EF对折后使两部分重合,
若150,则AEF=( )
A.110° B.115°
C.120° D.130°
3、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,
则Rt△ABC的面积是( )
A.24cm2 B.36cm2 C.48cm2 D.60cm2
4、下列各式不是最简二次根式的是( )
A. 21a B. 21x C. 24b D. 0.1y
5、 已知:如图,菱形ABCD中,对角线AC与BD
相交于点O,OE∥DC交BC于点E,AD=6cm,
则OE的长为( ).
A.6 cm B.4 cm C.3 cm D.2 cm
6、给出下列几组数:①6,7,8;②8,15,6;③n2-1 ,2n,n2+1;
④21,21,6 .其中能组成直角三角形三条边长的是( )
A.①③ B.②④ C.①② D.③④
7、 如图,正方形ABCD中,以对角线AC为一边作
菱形AEFC,则∠FAB等于( )
A.22.5° B.45° C.30° D.135°
第2题
C
A
B
2
1
A
0
-1-2
1
8、若0
9、如图,在平行四边形ABCD中(AB≠BC),直 线EF经过其对角线的
交点O,且分别交AD、BC于点M、N, 交BA、
DC的延长线于点E、F,下列结论:
①AO=BO;②OE=OF;③△EAM≌△CFN;
④△EAO≌△CNO,其中正确的是( )
A. ①② B. ②③ C. ②④ D.③④
10、小刚准备测量河水的深度,他把一根竹竿插到
离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的
顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( ).
A.2m B.2.5cm C.2.25m D.3m
11、如图,数轴上的点A所表示的数为x,则x2—10的立方根为( )
A.2-10 B.-2-10 C.2 D.-2
12、已知:如图,在正方形ABCD外取一点E,
连接AE、BE、DE.过点A作AE的垂线
交DE于点P.若AE=AP=1,PB=.下列结论:
①△APD≌△AEB;②点B到直线AE的距离为;
③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.
其中正确结论的序号是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
二、填空题(共6小题,每小题4分,共24分)
下列不需要写出解答过程,请将结果直接填写在答卷指定的位置.
13、(-4)2的算术平方根是______,25的平方根是______.
14、函数y= x+2x-1 中自变量x的取值范围是 。
15、 如图,在四边形ABCD中,AD∥BC,
∠ABC=90°,∠C=60°,BC=2AD=32,
点E是BC边的中点,△DEF是等边三角形,
DF交AB于点G,则△BFG的周长为 。
16、已知322xxy,则xy - 364 的值为 。
A
B
C
D
E
F
M
N
O
3
17、如图,若将四根木条钉成的矩形木框变成
平行四边形ABCD的形状,并使其面积
为矩形面积的一半,则这个平行四边形
的最小内角等于 。
18、现安排一批工人完成一项工作,如果这批工人同时开始工作,且每个人
工作效率相同,则9小时完工;如果开始先安排1人做,以后每隔t小
时(t为整数)增加1人,且每个人都一直做到工作完成,结果最后一个
人做的时间是第1人时间的15,则第一个人做的时间是 小时.
三、解答题(共2小题,每小题7分,共14分)
下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.
19、计算:
3 13 ×(― 12 48 )-(- 12 ) -2+[(-1)2014+(3 -2)0-|3-2| ]÷ 12
20、已知:如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,
点C落在点C′的位置上.若∠1=60°,AE=1.
(1)求∠2、∠3的度数;
(2)求长方形纸片ABCD的面积S.
4
四、解答题(共4小题,每小题10分,共40分)
下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.
21、先化简,再求值: 已知13x,求xxxxxxx112122的值.
22、如图,在□ ABCD中,点E、F在BD上,且BF=DE.
(1)写出图中所有你认为全等的三角形;
(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H
(请补全图形), 证明四边形AGCH是平行四边形.
5
23、如图,在∠ABC中,AB = BC,D、E、F分别是BC、AC、AB边
上的中点;
(1)求证:四边形BDEF是菱形;
(2)若AB = cm12,求菱形BDEF的周长.
6
24、如图,已知矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于
点F,FG∥DA与AB交于点G.
⑴ 求证:BF=BC;
⑵ 若AB=4 cm,AD=3cm,求CF.
A
B
C
D
E
F
G
7
五、解答题(共2小题,每小题12分,共24分)
下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.
25.如图1,在△ABC中,AB=BC,P为AB边上一点,连接CP,
以PA、PC为邻边作□APCD,AC与PD相交于点E,
已知∠ABC=∠AEP=α(0°<α<90°).
(1)求证:∠EAP=∠EPA;
(2)□APCD是否为矩形?请说明理由;
(3)如图2,F为BC中点,连接FP,将∠AEP绕点E顺时针旋转
适当的角度,得到∠MEN(点M、N分别是∠MEN的两边与
BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,
并证明你的结论.
C
B A D P
E
图2
N
M
F
C
B A D P
E
图1
8
26、如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G
在BA的延长线上,且CE=BK=AG.
(1)求证:①DE=DG; ②DE⊥DG
(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留
作图痕迹,不写作法和证明);
(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,
并证明你的猜想:
(4)当CE1CBn时,求ABCDDEFGSS正方形正方形的值.