扩散系数计算
扩散系数计算

扩散系数计算WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】扩散系数费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。
一、 气体中的扩散系数气体中的扩散系数与系统、温度和压力有关,其量级为5210/m s -。
通常对于二元气体A、B 的相互扩散,A在B 中的扩散系数和B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。
表7-1给出了某些二元气体在常压下(51.01310Pa ⨯)的扩散系数。
对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller )等提出的公式:1/31/32[()()]A B D P v v =+∑∑ (7-19)式中,D -A、B 二元气体的扩散系数,2/m s ;P -气体的总压,Pa ;T -气体的温度,K;A M 、B M -组分A、B 的摩尔质量,/kg kmol ;Av∑、Bv∑-组分A、B 分子扩散体积,3/cm mol 。
一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,某些简单物质则在表7-2种直接列出。
51.01310Pa ⨯式7-19的相对误差一般小于10%。
二、 液体中的扩散系数由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得多,其量级为9210/m s -。
表7-3给出了某些溶质在液体溶剂中的扩散系数。
式估算:150.6()7.410T B AB A M TD V -φ=⨯μ 2/m s (7-21)式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2/m s ;T -溶液的温度,K; μ-溶剂B的粘度,.Pa s ;B M -溶剂B的摩尔质量,/kg kmol ;φ-溶剂的缔合参数,具体值为:水;甲醇;乙醇;苯、乙醚等不缔合的溶剂为;A V -溶质A 在正常沸点下的分子体积,3/cm mol ,由正常沸点下的液体密度来计算。
扩散半径计算公式

扩散半径计算公式
扩散半径是指物质在某种物理过程中所扩散的距离。
扩散半径的计算公式取决于所使用的物理模型,下面列出了常见的几种模型的扩散半径计算公式:
扩散半径公式(扩散面积计算):R = √(Dt/π)
其中,R 是扩散半径,D 是扩散系数,t 是扩散时间。
扩散半径公式(扩散体积计算):R = √(3Dt)
其中,R 是扩散半径,D 是扩散系数,t 是扩散时间。
扩散半径公式(空气中扩散):R = √(πDt/6)
其中,R 是扩散半径,D 是扩散系数,t 是扩散时间。
请注意,上述公式均假设扩散的物质的浓度分布呈现高斯分布,并且扩散过程受到无阻力的影响。
扩散系数计算

7.2.2扩散系数费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。
一、 气体中的扩散系数气体中的扩散系数与系统、温度和压力有关,其量级为5210/m s -。
通常对于二元气体A、B的相互扩散,A在B 中的扩散系数和B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。
表7-1给出了某些二元气体在常压下(51.01310Pa ⨯)的扩散系数。
150.67.410B AB A D V -=⨯μ 2/m s (7-21)式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2/m s ;T -溶液的温度,K;μ-溶剂B的粘度,.Pa s ;B M -溶剂B的摩尔质量,/kg kmol ;φ-溶剂的缔合参数,具体值为:水2.6;甲醇1.9;乙醇1.5;苯、乙醚等不缔合的溶剂为1.0;A V -溶质A 在正常沸点下的分子体积,3/cm mol ,由正常沸点下的液体密度来计算。
若缺乏此密度数据,则可采用Tyn-Calus 方法估算: 1.0480.285c V V =,其中c V 为物质的临界体积(属于基本物性),单位为3/cm mol ,见表7-4。
从(7-21)可见,溶质A在溶剂B中的扩散系数AB D 与溶质B在溶质A中的扩散系数BAD 不相等,这一点与气体扩散系数的特性明显不同,需引起注意。
对给定的系统,可由温度1T 下的扩散系数1D 推算2T 下的2D (要求1T 和2T 相差不大),如下:21211()T D D T 2μ=μ (7-22)三、 生物物质的扩散系数表7-5给出了一些生物溶质在水溶液中的扩散系数。
表7—5 生物溶质在水溶液中的扩散系数PM其中,.atm)。
** P M的单位:m3溶质(标准状态)/(s?m2?atm/m)。
扩散系数总结

扩散系数总结扩散系数是指在单位时间内,单位浓度的物质通过单位面积的扩散路径而传递的量。
它是描述物质传递速度和效率的重要参数,被广泛应用于液体、气体和固体中的物质传质过程的研究和工程应用中。
下面是一些参考内容,总结扩散系数的相关知识。
一、扩散现象及其特点1.扩散现象:扩散是指物质在自由空间中由高浓度区向低浓度区传递的过程,是热力学平衡过程的一部分。
2.扩散特点:分子无序运动、高浓度区向低浓度区自发性传递、不需要外力和施加的浓度差。
二、扩散过程的数学描述1.弗里德曼第一定律:描述了扩散物质浓度的变化随时间变化的关系。
2.弗里德曼第二定律:描述了扩散物质浓度随空间变化的关系。
三、扩散系数的定义和计算方法1.定义:扩散系数(D)是描述扩散速率的比例常数,定义为单位面积、单位时间和单位浓度的物质通过单位面积传递的量。
2.计算方法:扩散系数可以通过实验测定、分子动力学模拟、理论计算等多种方法得到。
四、扩散系数的影响因素1.温度:温度升高可以增加扩散系数,因为它能增加分子的热运动速度。
2.浓度:浓度差越大,则扩散系数越大。
3.介质性质:扩散系数与物质的相互作用力相关,不同物质在不同介质中的扩散系数会有所不同。
4.孔隙结构:介质中存在的孔隙结构、孔隙大小、孔隙连通性等因素都会影响扩散系数。
五、扩散系数的应用1.生物医学领域:扩散系数可用于描述药物在生物体内的传输过程,对于药物的合理选用和治疗方案的制定具有重要意义。
2.土壤科学和环境工程:扩散系数可用于描述土壤中的污染物传输过程,对于环境修复和污染物迁移模拟具有指导作用。
3.化工工程领域:扩散系数可用于反应器设计和离子交换等过程中的传质分离过程的研究。
4.材料学领域:扩散系数可用于描述材料中原子或分子的迁移行为,对于材料性能和制备工艺的优化具有重要意义。
总之,扩散系数作为描述物质传递速度和效率的重要参数,对于理解和研究物质传质过程、工程应用以及环境修复等方面都具有重要意义。
扩散系数计算

7、2、2扩散系数费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,就是物质的一种传递性质。
一、气体中的扩散系数气体中的扩散系数与系统、温度与压力有关,其量级为5210/m s -。
通常对于二元气体A、B 的相互扩散,A在B 中的扩散系数与B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。
表7-1给出了某些二元气体在常压下(51.01310Pa ⨯)的扩散系数。
对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller)等提出的公式:1/31/32[()()]A B D P v v =+∑∑ (7-19)式中,D -A、B 二元气体的扩散系数,2/m s ;P -气体的总压,Pa ; T -气体的温度,K;A M 、B M -组分A、B 的摩尔质量,/kg kmol ;Av∑、Bv∑-组分A、B 分子扩散体积,3/cm mol 。
一般有机化合物可按分子式由表7-2查相应的原子扩散体积加与得到,某些简单物质则在表7-2种直接列出。
51.01310Pa ⨯式7-19的相对误差一般小于10%。
二、液体中的扩散系数由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得多,其量级为9210/m s -。
表7-3给出了某些溶质在液体溶剂中的扩散系数。
对于很稀的非电解质溶液(溶质A+溶剂B),其扩散系数常用Wilke-Chang 公式估算:150.6()7.410T B AB A M TD V -φ=⨯μ 2/m s (7-21)式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2/m s ;T -溶液的温度,K; μ-溶剂B的粘度,.Pa s ;B M -溶剂B的摩尔质量,/kg kmol ;φ-溶剂的缔合参数,具体值为:水2、6;甲醇1、9;乙醇1、5;苯、乙醚等不缔合的溶剂为1、0;A V -溶质A 在正常沸点下的分子体积,3/cm mol ,由正常沸点下的液体密度来计算。
扩散系数计算

它表达某个组分在介质中扩 0.0101T 1.75(7—19)722扩散系数费克定律中的扩散系数D 代表单位浓度梯度下的扩散通量, 散的快慢,是物质的一种传递性质。
一、气体中的扩散系数气体中的扩散系数与系统、温度和压力有关,其量级为10 m 2/s 。
通常对于二元气体A 、B 的相互扩散,A 在 B 中的扩散系数和 B 在A 中的扩散系数相等,因此可略去下标而用同一符号D 表示,即 D AB = D BA =D。
表7 — 1给出了某些二元气体在常压下(1.013 105Pa )的扩散系数。
对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller )等提出的公式:p[c V A )1/3 e V B )1/3]22式中,D —A 、B 二元气体的扩散系数,m /s ;P —气体的总压,Pa ;T —气体的温度,K ;MA 、MB —组分A 、B 的摩尔质量,kg/kmol ;7 V A 7 V B3、—组分A 、B 分子扩散体积,cm 3/mol 。
一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,某些简单物质则在表7-2种直接列出。
表7-1某些二元气体在常压下(5)的扩散系数系统温度/K 扩散系数/(10-5m 2/s)系统温度/K-5 2扩散系数/(10 m/s)H 2—空气 273 6.11 甲醇一空气 273 1.32 He —空气 317 7.56 乙醇一空气 273 1.0202—空气 273 1.78 正丁醇-空气 273 0.703 Cl 2 —空气 273 1.24 苯-空气 298 0.962 H 2O —空气273 2.20 甲醇一空气298 0.844 298 2.56 H 2— CO 273 6.513323.05 H 2— CO 2 273 5.50 NH 3 —空气 273 1.98H 2— N 2 273 6.89 CO 2 —空气273 1.38294 7.632981.64 H 2— NH 3 298 7.83 SO 2 —空气 2931.22He — Ar2987.297-2 原子扩散体积3v/(cm /mol) 分子扩散体积 3工 V /( cm /mol)原子扩散体积3v/(cm /mol)分子扩散体积3工 V /( cm /mol)C15.9 He 2.67 S22.9CO 18.0,其扩散系数常用 Wilke-Cha ng 公式估算:2 /m/S(7 — 21)AB= 7.4 10‘5(M B )T T 」V A 0.6式7 — 19的相对误差一般小于1 0%。
扩散系数的公式

扩散系数的公式扩散系数(Diffusion coefficient)是描述物质扩散能力的物理量。
一、菲克定律与扩散系数。
1. 菲克第一定律。
- 表达式为J = -D(dc)/(dx),这里J是扩散通量(单位时间内通过单位面积的物质的量),D就是扩散系数,(dc)/(dx)是浓度梯度(沿x方向的浓度变化率)。
- 由该定律可以推导出扩散系数D=(-J)/(frac{dc){dx}}(在已知扩散通量J和浓度梯度(dc)/(dx)的情况下)。
2. 菲克第二定律。
- 表达式为(∂ c)/(∂ t)=Dfrac{∂^2c}{∂ x^2}(在一维扩散情况下),其中c是浓度,t是时间,x是空间坐标。
- 在一些特定的初始条件和边界条件下,通过求解菲克第二定律的方程,可以得到扩散过程中浓度随时间和空间的分布,进而可以确定扩散系数D的值。
例如在简单的扩散问题中,假设扩散物质初始时局限于某一区域,随着时间的推移,根据浓度分布的变化情况来计算D。
- 如果已知浓度c随时间t和空间x的函数关系c(x,t),可以通过对(∂ c)/(∂ t)和frac{∂^2c}{∂ x^2}求导,然后根据菲克第二定律计算D=(frac{∂ c)/(∂ t)}{frac{∂^2c}{∂ x^2}}。
二、爱因斯坦 - 斯托克斯方程(适用于稀溶液中的球形粒子扩散)1. 公式为D = (kT)/(6πeta r),其中k是玻尔兹曼常量(k = 1.38×10^-23J/K),T 是绝对温度,eta是溶剂的粘度,r是球形粒子的半径。
2. 这个公式的推导基于分子运动论和流体力学原理。
它表明扩散系数与温度成正比,与溶剂粘度和粒子半径成反比。
例如,在研究胶体溶液中球形胶粒的扩散时,可以通过测量温度T、溶剂粘度eta以及已知胶粒半径r,利用该公式计算扩散系数D。
扩散系数计算

7.2.2扩散系数费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。
一、气体中的扩散系数气体中的扩散系数与系统、温度和压力有关,其量级为5210/m s -。
通常对于二元气体A、B 的相互扩散,A在B 中的扩散系数和B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。
表7-1给出了某些二元气体在常压下(51.01310Pa ⨯)的扩散系数。
对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller )等提出的公式:1/31/32[()()]A B D P v v =+∑∑ (7-19)式中,D -A、B 二元气体的扩散系数,2/m s ;P -气体的总压,Pa ; T -气体的温度,K;A M 、B M -组分A、B 的摩尔质量,/kg kmol ;Av∑、Bv∑-组分A、B 分子扩散体积,3/cm mol 。
一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,某些简单物质则在表7-2种直接列出。
51.01310Pa ⨯式7-19的相对误差一般小于10%。
二、液体中的扩散系数由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得多,其量级为9210/m s -。
表7-3给出了某些溶质在液体溶剂中的扩散系数。
表7-3 溶质在液体溶剂中的扩散系数(溶质浓度很低)对于很稀的非电解质溶液(溶质A+溶剂B),其扩散系数常用Wilke-Chang 公式估算:150.6()7.410T B AB A M TD V -φ=⨯μ 2/m s (7-21)式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2/m s ;T -溶液的温度,K; μ-溶剂B的粘度,.Pa s ;B M -溶剂B的摩尔质量,/kg kmol ;φ-溶剂的缔合参数,具体值为:水2.6;甲醇1.9;乙醇1.5;苯、乙醚等不缔合的溶剂为1.0;A V -溶质A 在正常沸点下的分子体积,3/cm mol ,由正常沸点下的液体密度来计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.2.2扩散系数
费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。
一、气体中的扩散系数
气体中的扩散系数与系统、温度和压力有关,其量级为52
10/m s -。
通常对于二元气体
A、B 的相互扩散,A在B 中的扩散系数和B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。
表7-1给出了某些二元气体在常压下(5
1.01310Pa ⨯)的扩散系数。
对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller )等提出的公式:
1/31/32
[()()]A B D P v v =
+∑∑ (7-19)
式中,D -A、B 二元气体的扩散系数,2
/m s ;
P -气体的总压,Pa ; T -气体的温度,K;
A M 、
B M -组分A、B 的摩尔质量,/kg kmol ;
A
v
∑、
B
v
∑-组分A、B 分子扩散体积,3
/cm mol 。
一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,某些简单物质则在表7-2种直接列出。
5
1.01310Pa ⨯
式7-19的相对误差一般小于10%。
二、液体中的扩散系数
由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得
多,其量级为92
10/m s 。
表7-3给出了某些溶质在液体溶剂中的扩散系数。
对于很稀的非电解质溶液(溶质A+溶剂B),其扩散系数常用Wilke-Chang 公式估算:
15
0.6()7.410
T B AB A M T
D V -φ=⨯μ 2/m s (7-21)
式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2
/m s ;
T -溶液的温度,K; μ-溶剂B的粘度,.Pa s ;
B M -溶剂B的摩尔质量,/kg kmol ;
φ-溶剂的缔合参数,具体值为:水2.6;甲醇1.9;乙醇1.5;苯、乙醚等不缔合的溶剂
为1.0;
A V -溶质A 在正常沸点下的分子体积,3/
cm mol ,由正常沸点下的液体密度来计
算。
若缺乏此密度数据,则可采用Tyn-Calus 方法估算: 1.048
0.285c V V =,其中c V 为物质
的临界体积(属于基本物性),单位为3
/cm mol ,见表7-4。
从(7-21)可见,溶质A在溶剂B中的扩散系数AB D 与溶质B在溶质A中的扩散系数BA D 不相等,这一点与气体扩散系数的特性明显不同,需引起注意。
对给定的系统,可由温度1T 下的扩散系数1D 推算2T 下的2D (要求1T 和2T 相差不大),如下:
21
211(
)
T D D T 2μ=μ (7-22)
三、生物物质的扩散系数
表7-5给出了一些生物溶质在水溶液中的扩散系数。
积小于5003
/cm mol 时,可用式(7-21);否则,宜用式(7-23)(Polson 方法),
151/39.4010()AB
A T
D M -⨯=
μ2/m s (7-23)
其中,μ-镕基的粘度,.Pa s ;
A M -生物溶质的摩尔质量。
四、四、固体中的扩散系数
表7-6给出了某些物质在固体中的扩散系数。
对于气体在固体中的扩散,一般是用渗透率M P (permeability )来代替扩散系数D ,两者间的关系为
M AB P D S = (7-24)
其中,S为气体溶质A在固相中的溶解度,/A A S c p =,单位为3m 溶质(标准状态)/(3
m
固体.atm )。
33
** P M的单位:m3溶质(标准状态)/(s•m2•atm/m)。