武汉市江岸区2020—2021学年度上学期期末考试初二数学试题及答案
【区级联考】武汉市江岸区2020-2021年八年级上学期期末数学试题

14.如图,将下列四个图形拼成一个大长方形,再据此写出一个多项式的因式分解:_________.
15.关于x的分式方程 无解,则m=_________.
16.如图,已知∠AOB=α( 0°<α<60° ),射线OA上一点M,以OM为边在OA下方作等边△OMN,点P为射线OB上一点,若∠MNP=α,则∠OMP=_________.
【详解】
(1)①∵PD⊥AC,PE⊥BC,P为AB的中点,
∴△ADP≌△BEP(AAS)
∴PD=PE;
②如图,作PM∥BC交AC于M.
△ABC为等边三角形,则△APM为等边三角形.
∠DPM+∠DPA=60°,∠APD+∠BPE=60°,
则∠DPM=∠EPB
又∵P为AB的中点,
∴MP=BP
∴△DPM≌△EPB
故扩大为原来的10倍,选C.
【点睛】
此题主要考查分式的性质,解题的关键是根据题意进行变形.
7.D
【分析】
根据幂的运算法则、分式的性质及整式的乘法公式进行计算判断.
【详解】
A. ,故错误;
B. ,c≠0,故错误;
C. (a+b)(a-b),故错误;
D. ,正确,
故选D.
【点睛】
此题主要考查整式、分式的运算,解题的关键是熟知整式运算的公式计算及分式的性质.
先根据分式方程的解法去掉分母,再代入增根x=2或x=0,分别求出m的值.
【详解】
去分母得mx-8=2(x-2)
得mx=2x+4,
∵方程无解,∴m=2,
方程有增根x=0,或x=2,代入解出m=4,
∴
【点睛】
此题主要考查分式方程的解,解题的关键是熟知分式方程有增根的解法.
2020-2021武汉市八年级数学上期末模拟试卷(带答案)

2020-2021武汉市八年级数学上期末模拟试卷(带答案)一、选择题1.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 2.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是A .(0,0)B .(0,1)C .(0,2)D .(0,3)3.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD .则下列说法错误的是A .射线OE 是∠AOB 的平分线B .△COD 是等腰三角形C .C 、D 两点关于OE 所在直线对称D .O 、E 两点关于CD 所在直线对称4.如图,已知每个小方格的边长为1,A ,B 两点都在小方格的顶点上,请在图中找一个顶点C ,使△ABC 为等腰三角形,则这样的顶点C 有( )A .8个B .7个C .6个D .5个5.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中,不是轴对称图形的是( )A .B .C .D .6.下列运算正确的是( )A .236326a a a -⋅=-B .()632422a a a ÷-=-C .326()a a -=D .326()ab ab = 7.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或08.下列判定直角三角形全等的方法,不正确的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个面积相等的直角三角形 9.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④10.下列条件中,不能作出唯一三角形的是( )A .已知三角形两边的长度和夹角的度数B .已知三角形两个角的度数以及两角夹边的长度C .已知三角形两边的长度和其中一边的对角的度数D .已知三角形的三边的长度11.到三角形各顶点的距离相等的点是三角形( )A .三条角平分线的交点B .三条高的交点C .三边的垂直平分线的交点D .三条中线的交点 12.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形 二、填空题13.分解因式:39a a -= __________14.若一个多边形的内角和是900º,则这个多边形是 边形.15.若分式11x x --的值为零,则x 的值为______. 16.分解因式:2x 2-8x+8=__________. 17.如图所示,在△ABC 中,∠C =90°,∠CAB =50°.按以下步骤作图:①以点A 为圆心,小于AC的长为半径画弧,分别交AB ,AC 于点E ,F ;②分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ;③作射线AG 交BC 边于点D .则∠ADC 的度数为 .18.分解因式:x 2-16y 2=_______.19.已知9y 2+my+1是完全平方式,则常数m 的值是_______.20.如图,△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD=_______.三、解答题21.(1)分解下列因式,将结果直接写在横线上:x 2+4x+4= ,16x 2+24x+9= ,9x 2﹣12x+4=(2)观察以上三个多项式的系数,有42=4×1×4,242=4×16×9,(﹣12)2=4×9×4,于是小明猜测:若多项式ax 2+bx+c(a >0)是完全平方式,则实数系数a 、b 、c 一定存在某种关系.①请你用数学式子表示a 、b 、c 之间的关系;②解决问题:若多项式x 2﹣2(m ﹣3)x+(10﹣6m)是一个完全平方式,求m 的值.22.计算: 22142a a a ---. 23.如图,四边形ABCD 中,∠B=90°, AB//CD ,M 为BC 边上的一点,AM 平分∠BAD ,DM 平分∠ADC ,求证:(1) AM ⊥DM;(2) M 为BC 的中点.24.如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F 两点,BEF ∠的平分线交CD 于点G ,若72EFG ∠=o ,求EGF ∠的度数.25.如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)求△ABC的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;选项B,A中的等式不成立;选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.2.D解析:D【解析】【详解】解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(-3,0),则OB′=3过点A作AE垂直x轴,则AE=4,OE=1则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,∵C′O∥AE,∴∠B′C′O=∠B′AE,∴∠B′C′O=∠EB′A∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC的周长最小.故选D.3.D解析:D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意.C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.∴C、D两点关于OE所在直线对称,正确,不符合题意.D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.4.A解析:A【解析】分AB为腰和为底两种情况考虑,画出图形,即可找出点C的个数.【详解】解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故选:A.【点睛】本题考查了等腰三角形的判定,解题的关键是画出图形,利用数形结合解决问题.5.C解析:C【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.C解析:C【解析】【分析】根据单项式的乘法和除法法则,以及幂的乘方法则即可作出判断.【详解】A、-3a2•2a3=-6a5,故A错误;B、4a6÷(-2a3)=-2a3,故B错误;C、(-a3)2=a6,故C正确;D、(ab3)2=a2b6,故B错误;【点睛】本题考查了单项式的乘法、除法以及幂的乘方,正确理解幂的运算法则是关键.7.B解析:B【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】根据题意,得|x|-1=0且x+1≠0,解得,x=1.故选B.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.8.D解析:D【解析】【分析】【详解】解:A、正确,利用SAS来判定全等;B、正确,利用AAS来判定全等;C、正确,利用HL来判定全等;D、不正确,面积相等不一定能推出两直角三角形全等,没有相关判定方法对应.故选D.【点睛】本题主要考查直角三角形全等的判定方法,关键是熟练掌握常用的判定方法有SSS、SAS、AAS、HL等.9.B解析:B【解析】【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x xx x x x x++-=-=+++++1111xx x-=++.又∵x为正整数,∴121xx≤+<1,故表示22(2)1441xx x x+-+++的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.10.C解析:C【解析】【分析】看是否符合所学的全等的公理或定理即可.【详解】A、符合全等三角形的判定SAS,能作出唯一三角形;B、两个角对应相等,夹边确定,如这样的三角形可作很多则可以依据ASA判定全等,因而所作三角形是唯一的;C、已知两边和其中一边的对角对应相等,也不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形;D、符合全等三角形的判定SSS,能作出唯一三角形;故选C.【点睛】本题主要考查由已知条件作三角形,可以依据全等三角形的判定来做.11.C解析:C【解析】【分析】根据三角形外心的作法,确定到三定点距离相等的点.【详解】解:因为到三角形各顶点的距离相等的点,需要根据垂直平分线上的点到线段两端点的距离相等,只有分别作出三角形的两边的垂直平分线,交点才到三个顶点的距离相等.故选:C.【点睛】本题考查了垂直平分线的性质和三角形外心的作法,关键是根据垂直平分线的性质解答.12.B解析:B【解析】【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B .【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.二、填空题13.【解析】分解因式的方法为提公因式法和公式法及分组分解法原式==a(3+a)(3-a)解析:(3)(3)a a a +-【解析】分解因式的方法为提公因式法和公式法及分组分解法.原式==a(3+a)(3-a). 14.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.15.-1【解析】【分析】【详解】试题分析:因为当时分式的值为零解得且所以x=-1考点:分式的值为零的条件解析:-1【解析】【分析】【详解】 试题分析:因为当10{-10-=≠x x 时分式11x x --的值为零,解得1x =±且1x ≠,所以x=-1. 考点:分式的值为零的条件.16.2(x-2)2【解析】【分析】先运用提公因式法再运用完全平方公式【详解】:2x2-8x+8=故答案为2(x-2)2【点睛】本题考核知识点:因式分解解题关键点:熟练掌握分解因式的基本方法解析:2(x-2)2【解析】【分析】先运用提公因式法,再运用完全平方公式.【详解】:2x 2-8x+8=()()2224422x x x -+=-. 故答案为2(x-2)2.【点睛】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.17.65°【解析】【分析】根据已知条件中的作图步骤知AG 是∠CAB 的平分线根据角平分线的性质解答即可【详解】根据已知条件中的作图步骤知AG 是∠CAB 的平分线∵∠CAB=50°∴∠CAD=25°;在△AD解析:65°【解析】【分析】根据已知条件中的作图步骤知,AG 是∠CAB 的平分线,根据角平分线的性质解答即可.【详解】根据已知条件中的作图步骤知,AG 是∠CAB 的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC 中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.18.(x+4y)(x-4y)【解析】试题解析:x2-16y2=x2-(4y )2=(x+4y)(x-4y) 解析:(x+4y) (x-4y)【解析】试题解析:x 2-16y 2=x 2-(4y )2=(x+4y) (x-4y).19.±6【解析】【分析】利用完全平方公式的结构特征确定出m 的值即可【详解】∵9y2+my+1是完全平方式∴m=±2×3=±6故答案为:±6【点睛】此题考查完全平方式熟练掌握完全平方公式是解本题的关键解析:±6【解析】【分析】利用完全平方公式的结构特征确定出m 的值即可.【详解】∵9y 2+my+1是完全平方式,∴m=±2×3=±6, 故答案为:±6.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解本题的关键.20.3【解析】【分析】由于∠C=90°∠ABC=60°可以得到∠A=30°又由BD平分∠ABC可以推出∠CBD=∠ABD=∠A=30°BD=AD=6再由30°角所对的直角边等于斜边的一半即可求出结果【详解析:3【解析】【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,BD=AD=6,再由30°角所对的直角边等于斜边的一半即可求出结果.【详解】∵∠C=90°,∠ABC=60°,∴∠A=30°.∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=12BD=6×12=3.故答案为3.【点睛】本题考查了直角三角形的性质、含30°角的直角三角形、等腰三角形的判定以及角的平分线的性质.解题的关键是熟练掌握有关性质和定理.三、解答题21.(1)(x+2)2,(4x+3)2,(3x﹣2)2;(2)①b2=4ac,②m=±1【解析】【分析】(1)根据完全平方公式分解即可;(2)①根据已知等式得出b2=4ac,即可得出答案;②利用①的规律解题.【详解】(1)x2+4x+4=(x+2)2,16x2+24x+9=(4x+3)2,9x2-12x+4=(3x-2)2,故答案为(x+2)2,(4x+3)2,(3x-2)2;(2)①b2=4ac,故答案为b2=4ac;②∵多项式x2-2(m-3)x+(10-6m)是一个完全平方式,∴[-2(m-3)]2=4×1×(10-6m),m2-6m+9=10-6mm 2=1m=±1.【点睛】本题考查了对完全平方公式的理解和应用,能根据完全平方公式得出b 2=4ac 是解此题的关键.22.12a + 【解析】【分析】先寻找2个分式分母的最小公倍式(最小公倍是用因式分解的方法去寻找),将最小公倍式作为结果的分母;然后在进行减法计算最后进行化简【详解】解:原式=21(2)(2)2a a a a -+-- = ()()22(2)(2)22a a a a a a +-+-+- = 2-(2)(2)(-2)a a a a ++ = -2(2)(-2)a a a + = 1+2a . 【点睛】本题是对分式计算的考察,正确化简是关键23.(1)详见解析;(2)详见解析【解析】【分析】(1)根据平行线的性质得到∠BAD +∠ADC =180°,根据角平分线的定义得到∠MAD +∠ADM =90°,求出∠AMD =90°,根据垂直的定义得到答案;(2)作MN ⊥AD ,根据角平分线的性质得到BM =MN ,MN =CM ,等量代换可得结论.【详解】证明:(1)∵AB ∥CD ,∴∠BAD +∠ADC =180°,∵AM 平分∠BAD ,DM 平分∠ADC ,∴2∠MAD +2∠ADM =180°,∴∠MAD +∠ADM =90°,∴∠AMD =90°,即AM ⊥DM ;(2)作MN ⊥AD 交AD 于N ,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.【点睛】本题考查的是平行线的性质、三角形内角和定理以及角平分线的性质,掌握平行线的性质和角平分线上的点到角的两边的距离相等是解题的关键.24.54o【解析】【分析】利用平行线的性质和角平分线的定义进行求解即可.【详解】解:∵AB//CD,∠EFG=72° (已知) ,∴∠BEF=180°-∠EFG=108°(两直线平行,同旁内角互补) ,∵EG平分∠BEF,∴∠BEG=12∠BEF=54° (角平分线定义) ,∵AB//CD,∴∠EGF=∠BEG=54°(两直线平行,内错角相等).【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.25.(1)图见解析;(2)11 2.【解析】【分析】(1)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)用一个矩形的面积减去三个三角形的面积计算△ABC的面积.【详解】:(1)如图,△A1B1C1为所作;(2)△ABC的面积11111 353132522222 =⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查了作图-对称性变换,注意画轴对称图形找关键点的对称点然后顺次连接是解题的关键.。
【精选3份合集】2020-2021年武汉市八年级上学期期末调研数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若281x kx -+是一个完全平方式,则k 的值为( )A .9±B .18C .18±D .18-【答案】C【分析】根据完全平方公式形式,这里首末两项是x 和9这两个数的平方,那么中间一项为加上或减去x 和9乘积的2倍.【详解】解:281x kx -+是一个完全平方式, ∴首末两项是x 和9这两个数的平方,2918kx x x ∴-=±⨯=±,解得18k =±.故选:C .【点睛】本题是完全平方公式的应用,两数平方和再加上或减去它们乘积的2倍,是完全平方式的主要结构特征,本题要熟记完全平方公式,注意积得2倍的符号,有正负两种情况,避免漏解.2.下列各组线段中,能够组成直角三角形的一组是( )A .1,2,3B .2,3,4C .4,5,6D .1 2 【答案】D【分析】根据勾股定理的逆定理判断即可.【详解】解:1+2=3,A 不能构成三角形;22+32≠42,B 不能构成直角三角形;42+52≠62,C 不能构成直角三角形;12+2=22,D 能构成直角三角形;故选D .【点睛】本题考查了能构成直角三角形的三边关系,解题的关键是掌握勾股定理.3.在920,5.55,2π,133-,0.232233222333…,,123 ) A .5B .4C .3D .2【答案】D【解析】根据无理数的定义判断即可.【详解】920,5.55, 133-,=0.4-,123=23为有理数, 无理数有:2π,0.232233222333,共2个,故选:D .【点睛】 本题主要考查了无理数的定义,其中初中范围内学习的无理数有:2ππ,等;开方开不尽的数;以及像0.232233222333等有这样规律的数.4.用科学记数法表示0.0000000052为( )A .105210-⨯B .95.210-⨯C .105.210-⨯D .115.210-⨯【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000000052=95.210-⨯.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.下列各分式中,最简分式是( ) A .()()37x y x y -+ B .22m n m n -+ C .2222a b a b ab -+ D .22222x y x xy y --+ 【答案】A 【分析】根据最简分式的标准:分子,分母中不含有公因式,不能再约分逐一判断即可. 【详解】3()7()x y x y -+的分子、分母都不能再分解,且不能约分,是最简分式,故A 选项符合题意. 22m n m n-+ =m-n ,故B 选项不符合题意·, 2222a b a b ab-+ =a b ab - ,故C 选项不符合题意·, 22222x y x xy y --+=+-x y x y,故D 选项不符合题意·, 故选A.【点睛】本题考查了最简分式的知识,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.最简分式的标准:分子,分母中不含有公因式,不能再约分,熟练掌握最简分式的标准是解题关键.6.点A(-2,5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,-5)C .(2,-5)D .(5,-2) 【答案】B【解析】分析:关于x 轴对称的两点的横坐标相等,纵坐标互为相反数.详解:根据题意可得:点A(-2,5)关于x 轴对称的点的坐标为(-2,-5),故选B.点睛:本题主要考查的是关于x 轴对称的点的性质,属于基础题型.关于x 轴对称的两个点横坐标相等,纵坐标互为相反数;关于y 轴对称的两个点纵坐标相等,横坐标互为相反数;关于原点对称的两个点横坐标和纵坐标都互为相反数.7.已知,m n x a x b ==那么23m n x +的值等于 ( )A .32a b +B .23a bC .32a bD .23a b + 【答案】B【分析】由同底数幂的乘法的逆运算与幂的乘方的逆运算把23m n x +变形后代入可得答案.【详解】解:,m n x a x b ==,232323()()m n m n m n x x x x x +∴=•=•23.a b =故选B .【点睛】本题考查的是同底数幂的逆运算与幂的乘方的逆运算,掌握逆运算的法则是解题的关键.8.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点,分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点,若点P 的坐标为(m ,n ),则下列结论正确的是( )A .m =2nB .2m =nC .m =nD .m =-n【答案】D【分析】根据角平分线的性质及第二象限内点的坐标特点即可得出结论.【详解】解:∵由题意可知,点C 在∠AOB 的平分线上,∴m=-n .故选:D .【点睛】本题考查的是作图−基本作图,熟知角平分线的作法及其性质是解答此题的关键.9.校舞蹈队10名队员的年龄情况统计如下表,则校舞蹈队队员年龄的众数是( )A .12B .13C .14D .15【答案】C【分析】根据众数的定义可直接得出答案.【详解】解:∵年龄是14岁的有4名队员,人数最多,∴校舞蹈队队员年龄的众数是14,故选:C.【点睛】本题考查了众数的定义,牢记众数是一组数据中出现次数最多的数是解题的关键.10.已知三角形的三边长为6,8,10,则这个三角形最长边上的高为( )A .2.4B .4.8C .9.6D .10 【答案】B【分析】先根据勾股定理的逆定理判定它是直角三角形,再利用直角三角形的面积作为相等关系求斜边上的高.【详解】解:∵62+12=102,∴这个三角形是直角三角形,∴边长为10的边上的高为6×1÷10=4.1.故选:B .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题11.命题“在ABC ∆中,如果A B C ∠=∠=∠,那么ABC ∆是等边三角形”的逆命题是_____.【答案】如果ABC ∆是等边三角形,那么A B C ∠=∠=∠.【解析】把原命题的题设与结论进行交换即可.【详解】“在ABC ∆中,如果A B C ∠=∠=∠,那么ABC ∆是等边三角形”的逆命题是“如果ABC ∆是等边三角形,那么A B C ∠=∠=∠”.故答案为:如果ABC ∆是等边三角形,那么A B C ∠=∠=∠.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.12.已知2()4f x x x =-,()6g x x =-.当x =____时,()()f x g x =.【答案】122,3x x ==【分析】由()()f x g x =得到关于x 的一元二次方程,求解方程即可得到x 的值.【详解】当()()f x g x =时,则有:246x x x -=-解得122,3x x ==故当122,3x x ==时,()()f x g x =.故答案为:122,3x x ==.【点睛】本题主要考查了解一元二次方程,由()()f x g x =得到一元二次方程是解决本题的关键.13.若分式3521x +-有意义,则x __________. 【答案】≠12 【分析】根据分式有意义的条件作答即可,即分母不为1.【详解】解:由题意得,2x-1≠1,解得x ≠12. 故答案为:≠12. 【点睛】本题考查分式有意义的条件,掌握分式有意义时,分母不为1是解题的关键.14.如图,已知△ABC 的周长是22,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,△ABC 的面积是_____.【答案】1【分析】根据角平分线上的点到角的两边的距离相等可得点O 到AB 、AC 、BC 的距离都相等,从而可得到△ABC 的面积等于周长的一半乘以OD ,然后列式进行计算即可求解.【详解】解:如图,连接OA ,作OE ⊥AB 于E ,OF ⊥AC 于F .∵OB 、OC 分别平分∠ABC 和∠ACB ,∴OD=OE=OF ,∴S △ABC =S △BOC +S △AOB +S △AOC =111222BC OD AC OF AB OE ⋅+⋅+⋅ =()12BC AC AB OD ++⋅ =12×22×3=1. 故答案为:1.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.15.把命题“三边分别相等的两个三角形全等”写成“如果⋯⋯那么⋯⋯”的形式_____________.【答案】如果两个三角形三条边对应相等,那么这两个三角形全等【分析】命题一般都可以写成如果…那么…形式;如果后面是题设,那么后面是结论.【详解】把命题“三边分别相等的两个三角形全等”写成“如果⋯⋯那么⋯⋯”的形式为:如果两个三角形三条边对应相等,那么这两个三角形全等.故答案为:如果两个三角形三条边对应相等,那么这两个三角形全等16.若等腰三角形的顶角为100,则它腰上的高与底边的夹角是________度.【答案】1【分析】已知给出了等腰三角形的顶角为100°,要求腰上的高与底边的夹角可以根据等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半求解.【详解】∵等腰三角形的顶角为100°∴根据等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半;∴高与底边的夹角为1°.故答案为1.【点睛】本题考查了等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半;作为填空题,做题时可以应用一些正确的命题来求解.17.如图,已知Rt ABC ∆的三边长分别为6、8、10,分别以它们的三边作为直径向外作三个半圆,则图中阴影部分的面积为_______.【答案】24 【分析】根据图形关系可得阴影部分面积为:22261811101682222222πππ⎛⎫⎛⎫⎛⎫⨯+⨯+⨯⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【详解】因为已知Rt ABC ∆的三边长分别为6、8、10所以62+82=102由已知可得:图中阴影部分的面积为 22261811101682222222πππ⎛⎫⎛⎫⎛⎫⨯+⨯+⨯⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=24 故答案为:24【点睛】考核知识点:直角三角形性质.弄清图形的面积和差关系是关键.三、解答题18.某超市用5000元购进某种干果后进行销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,购进干果的数量是第一次的1.5倍,但这次每干克的进价比第一次的进价提高了5元.(1)该种干果第一次的进价是每千克多少元?(2)如果超市按每千克40元的价格销售,当大部分干果售出后,余下的100千克按售价的6折售完,超市销售这种干果共盈利多少元?【答案】(1)25元;(2)超市销售这种干果共盈利4400元【分析】(1)分别设出该种干果第一次和第二次的进价,根据“第二次购进干果的数量是第一次的1.5倍”列出方程,解方程即可得出答案;(2)先求出两次购进干锅的数量,再根据利润公式计算利润即可得出答案.【详解】解:(1)设该种干果第一次的进价是每千克x 元,则第二次的进价是每千克(5)x +元. 根据题意得500090001.55x x ⨯=+, 解得25x =.经检验,25x =是所列方程的解.答:该种干果第一次的进价是每千克25元(2)第一次购进该种干果的数量是500025200÷=(千克),再次购进该干果的数量是200 1.5300⨯=(千克),获得的利润为(200300100)+-40100400.6⨯+⨯⨯500090004400--=(元).答:超市销售这种干果共盈利4400元.【点睛】本题考查的是分式方程在实际生活中的应用,难度适中,需要熟练掌握销售利润相关的计算公式. 19.如图①,在△ABC 中,AB=AC ,过AB 上一点D 作DE∥AC 交BC 于点E ,以E 为顶点,ED 为一边,作∠DEF=∠A,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,判断▱ADEF 的形状;(3)延长图①中的DE 到点G ,使EG=DE ,连接AE ,AG ,FG ,得到图②,若AD=AG ,判断四边形AEGF 的形状,并说明理由.【答案】(1)证明见解析;(2)▱ADEF 的形状为菱形,理由见解析;(3)四边形AEGF 是矩形,理由见解析.【解析】(1)根据平行线的性质得到∠BDE=∠A ,根据题意得到∠DEF=∠BDE ,根据平行线的判定定理得到AD ∥EF ,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到DE=12AC ,得到AD=DE ,根据菱形的判定定理证明; (3)根据等腰三角形的性质得到AE ⊥EG ,根据有一个角是直角的平行四边形是矩形证明.【详解】(1)证明:∵DE ∥AC ,∴∠BDE=∠A ,∵∠DEF=∠A ,∴∠DEF=∠BDE ,∴AD ∥EF ,又∵DE ∥AC ,∴四边形ADEF 为平行四边形;(2)解:□ADEF 的形状为菱形,理由如下:∵点D 为AB 中点,∴AD=12AB , ∵DE ∥AC ,点D 为AB 中点,∴DE=12 AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF为菱形,(3)四边形AEGF是矩形,理由如下:由(1)得,四边形ADEF为平行四边形,∴AF∥DE,AF=DE,∵EG=DE,∴AF∥DE,AF=GE,∴四边形AEGF是平行四边形,∵AD=AG,EG=DE,∴AE⊥EG,∴四边形AEGF是矩形.故答案为:(1)证明见解析;(2)菱形;(3)矩形.【点睛】本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.20.如图,在△ABC中,∠A>∠B.分别以点A、B为圆心,以大于12AB的长为半径画弧,过两弧的交点的直线与AB,BC分别相交于点D,E,连接AE,若∠B=50°,求∠AEC的度数.【答案】∠AEC=100°.【分析】根据作图过程可知直线ED是线段AB的垂直平分线,利用垂直平分线的性质和等腰三角形的性质,再根据三角形的外角性质即可求得结果.【详解】解:∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.【点睛】本题考查了复杂作图,解决本题的关键是利用线段的垂直平分线的性质.21.如图1中的三种情况所示,对于平面内的点M,点N,点P,如果将线段PM绕点P顺时针旋转90°能得到线段PN,就称点N是点M关于点P的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -. ①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”;②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可;(2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值;②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.【答案】(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-1;②334k -≤<- 【分析】(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)。
2021-2022学年湖北省武汉市江岸区八年级(上)期末数学试题及答案解析

2021-2022学年湖北省武汉市江岸区八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列四幅图形中,是轴对称图形的是( )A. B. C. D.2.点P(1,−2)关于x轴对称的点的坐标是( )A. (−1,2)B. (−2,1)C. (−1,−2)D. (1,2)3.2021年5月7日IBM公司宣布推出全球首个2nm芯片,其中1nm=0.000000001m,将2nm用科学记数法可表示为( )A. 2×10−10mB. 2×10−9mC. 2×1010mD. 2×109m4.若分式x−1x−2有意义,则x的取值范围是( )A. x≠1B. x=2C. x≠2D. x>25.分式13x2y2,14xy2的最简公分母是( )A. 12x2y2B. 12x3y4C. xyD. xy26.下列因式分解最后结果正确的是( )A. x2−2x−3=(x−1)(x+3)B. x(x−y)+y(y−x)=(x−y)2C. x3−x=x(x2−1)D. 6x−9−x2=(x−3)27.下列等式中,从左向右的变形正确的是( )A. a−ba+b =b−ab+aB. 22a+b=1a+bC. abab−b2=aa−bD. a−a+b=−aa+b8.某同学借了一本书,共140页,要在一周内读完.当他读了这本书的一半时,发现平均每天要多读21页才能刚好在借期内读完,他读这本书的前一半时,平均每天读多少页?设他读这本书的前一半时,平均每天读x页,则下列方程中正确的是( )A. 70x +70x−21=7 B. 70x+70x+21=7C. 140x +140x−21=7 D. 140x+140x+21=79.如图,△ABC中,∠ABC=90°,点I为△ABC各内角平分线的交点,过I点作AC的垂线,垂足为点H,若BC=6,AB=8,AC=10,那么IH的值为( )A. 2B. 3C. 4D. 510.如图,AD是等边三角形ABC的边BC上的高,点E是AD上的一个动点(点E不与点A重合),连接CE.将线段CE绕点E顺时针旋转60°得到EF,连接DF、CF,若AB=6,则线段DF长度的最小值是( )A. 3B. √3C. 1.5D. 1二、填空题(本大题共6小题,共18.0分)11.计算:(a2)3=______,(3a)2=______,3−2=______.12.若分式x2−1x+1的值为0,则x=______.13.已知一个等腰三角形的一个外角为100°,则它的顶角的度数是______.14.如图,△ABC中,AB=6,BC=5,将△ABC沿折痕AD折叠,使点B恰好落在AC边上的点E处,若△DEC的周长为7,则AC的长为______.15.如果关于x的方程axx−1+11−x=2无解,则a的值为______.16.如图,在等腰直角三角形ABC中,∠ABC=90°,O是AC的中点,点F、D分别在AB、BC上(点F、D与点A、B、C都不重合)运动,其中OF⊥OD、OE⊥AD交AB于点E.下列结论:①BD=BE ;②AF =BD ;③点E 是BF 的中点;④CDEF的值为定值.其中正确的结论是______(填写序号).三、计算题(本大题共2小题,共16.0分)17. 计算:(1)3a(5a −2);(2)(7x 2y 3−8x 3y 2z)÷8x 2y 2.18. 因式分解:(1)x 2−9;(2)ax 2+2a 2x +a 3.四、解答题(本大题共6小题,共56.0分。
武汉市江岸区八年级上学期数学期末考试(含答案)

EDC B AFED CBA乙甲t (时)s (千米)12632ED C B F O武汉市江岸区八年级上学期数学期末考试一、选择题(每小题3分,共36分) 1、式子2x +中x 的取值范围是( ) A.x >-2B.x ≥0C.x ≥-2D.x ≥2 2、9的算术平方根是( ) A.3 B.±3C.9D.±93、下列计算正确的是( ) A.2352a a a +=B.44a a a ÷=C.248a a a =D.236()a a -=-4、下列各图中,不是..轴对称图形的是( )A .B .C . D. 5、下列各点中不在..函数26y x =+图象上的点是( ) A.(-2,4)B.(-5,-4)C.(7,20)D.(23,173)6、点M (2,1)关于x 轴对称的点的坐标为( ) A.(-2,-1) B.(2,-1) C.(-2,1) D.(-1,2)7、下列多项式中是完全平方式的是( )A.214a +B.2441b b +-C.22a ab b ++D.244a a -+ 8、如图所示,AB =AC ,要使得△ADC ≌△AEB ,需添加的条件不能..是.( ) A.∠B =∠C B.AD =AE C.∠ADC =∠AEB D.DC =BE 9、已知函数y kx b =+的图象经过第一、三、四象限,则下列对k 和b 的取值范围判断正确的是( ) A.0k >,0b >B.0k >,0b <C.0k <,0b >D.0k <,0b <10、如图,△ABC 中,D 、E 在BC 上,且AC =DC ,BA =BE ,若5∠DAE =2∠BAC ,则∠DAE 的度数为( ) A.40° B.45° C.50°D.60°11、甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各处行进的路程随时间变化的图象,根据图象中的有关数据下列问题:①甲到达山顶需要4小时;②乙到达山顶需要6小时;③甲到达山顶时,乙距山顶还有4千米;④若甲同学到达山顶后休息1小时,沿原路下山,在点B 处与乙相遇,此时点B 与山顶距离为1.5千米,则甲从山顶回到山脚需要2小时.其中正确的说法有( ) A.1个B.2个C.3个D.4个EDCBAFH21xyOED CBAF12、在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =BC ,E 为AB 上一点,AE =AD ,且BF ∥CD ,AF ⊥CE 于F .连接DE 交对角线AC 于H .下列结论:①△ACD ≌ACE ;②AC 垂直平分ED ;③CE =2BF ;④CE 平分∠ACB .其中结论正确的是( ). A.①② B.①②④ C.①②③D.①②③④二、填空题(每小题3分,共12分) 13、倒数和立方根相等的数是 .14、已知等腰三角形的两边长为3和4,其周长为 .15、在同一个平面内,1个圆把平面分成0×1+2=2个部分,2个圆把平面最多..分成1×2+2=4个部分,3个圆把平面最多..分成2×3+2=8个部分,4个圆把平面最多..分成3×4+2=14个部分,那么100个圆最多..把平面分成_____________部分. 16、如图,直线b kx y +=经过点(2,1),则不等式022x kx b ≤<+ 的解集为 .三、解答题(共72分) 17、(1)(6分)计算:13(3)3-;(2)(6分)因式分解:244ax ax a ++;18、(8分)先化简,再求值:2(2)(2)(2)x y x y x y +--+,其中14x =,4y =-;19、(10分)如图,已知:BE ⊥AD ,CF ⊥AD ,且BE =CF ,请你判断AD 是△ABC 的中线,还是角平分线?请说明理由.FGEDCBA20、(10分)如图,在平面直角坐标系xoy 中,A (-1,5),B (-1,0),C (-4,3).⑴在图中画出△ABC 关于y 轴对称的图形△A 1B 1C 1.(其中A 1、B 1、C 1分别是A 、B 、C 的对应点,不写画法.)⑵则A 1、B 1、C 1的坐标分别为A 1( )、B 1( )、C 1( ); ⑶△ABC 1的面积= .21、(10分)已知一次函数图像经过(1,3)和(-1,7)两点. (1)求此一次函数解析式;(2)当9y 时,求自变量x 的值;22、(10分)如图△ABC 中,∠ABC =45°∠BAC =60°,D 为BC 上一点,∠ADC =60°.AE ⊥BC 于点E .CF ⊥AD 于点F ,AE 、CF 相交于点G .⑴求证:DF =FG ;⑵若DC =2,AF =3,求线段EG 的长.23、(12分)某校计划组织部分学生和老师集体外出活动,若每位老师带38学生,还有6学生没有安排;若每位老师带40名学生,有一位老师少带6学生.学校计划在总费用2300元的限额内,租用汽车送这些学生,为保障安全,每辆汽车上至少要有1名老师.现有甲、乙两种大客车,它们图3E DCBA图2EDCBA图1ED C B A的载客量和租金如下表:甲种客车 乙种客车 载客量(单位:人/辆) 45 30 租金(单位:元/辆)400280(1)老师和学生各有多少人?(2)共需租多少辆汽车?(3)设租用x 辆甲种客车租车费用为y 元,试写出y 关于x 的函数关系式,并根据所学知识,给出最节省费用的租车方案.附加题1、如图,已知:点D 是△ABC 的边BC 上一动点,且AB =AC ,DA =DE ,∠BAC =∠ADE =α. (1)如图1,当α=60°时,∠BCE = ;(图1) (图2) (图3)(2)如图2,当α=90°时,试判断∠BCE 的度数是否发生改变,若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;(3)如图3,当α=120°时,则∠BCE = ;xOEDBAyxOCB AyEA FO xy 2、在平面直角坐标系xo y 中,直线6y x =+与x 轴交于A ,与y 轴交于B ,BC ⊥AB 交x 轴于C .(1)求△ABC 的面积.(2)D 为OA 延长线上一动点,以BD 为直角边做等腰直角三角形BDE ,连结EA .求直线EA 的解析式.(3)点E 是y 轴正半轴上一点,且∠OAE =30°,OF 平分∠OAE ,点M 是射线AF 上一动点,点N 是线段AO 上一动点,是判断是否存在这样的点M 、N ,使得OM +NM 的值最小,若存在,请写出其最小值,并加以说明.参考答案及评分标准一、选择题(每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CADDAB DDB ADD二、填空题(每小题3分,共12分) 13、±1. 14、10或11.15、9902.16、02≤<x .三、解答题(共72分) 17、⑴(6分)解:13(3)313-=- ———————3分=2 ———————6分⑵(6分)解:2244(44)++=++ax ax a a x x ———————3分 =2(2)+a x ———————6分18、(8分)解:22222(2)(2)(2)44(4)+--+=++--x y x y x y x xy y x y ——————4分=242+xy y ———————6分 当14x =,4y =-时,原式=2144284⨯⨯-⨯=()+2(-4)———————8分19、(10分)答:AD 是△ABC 的中线 ———————2分可证△BDE ≌△CDF ———————6分∴BD=CD ———————9分 AD 是△ABC 的中线 ———————10分20、(10分)⑴图略 ———————3分⑵A 1(1,5)、B 1( 1,0)、C 1(4,3 ); ——————6分⑶△ABC 1的面积=252——————10分 .21、解⑴设这个一次函数解析式为=+y kx b ,根据题意的:———————1分37+=⎧⎨-+=⎩k b k b ———————3分 解之的25=-⎧⎨=⎩k b ———————5分∴这个一次函数解析式为25=-+y x ———————6分 ⑵当9y =时,925=-+x ,2=-x ———————10分22、(1)证明:∵∠ABC =45°,∠ADC =60°∴∠ADB=15°又∵∠BAC=60°∴∠DAC=45°又∵CF⊥AD∴∠AFC=∠CFD=90°∠ACF= ∠DAC=45°∴AF=CF———————2分又∵AE⊥BC,∠ADC=60°∴∠AEC=∠CFA=90°∴∠FAG=∠FCD=30°∴△AFG≌△CFD ———————4分∴DF=FG———————5分(2)在Rt△CFD中,∠CFD=90°,∠FCD=30°,∴DF=12CD=1———————6分∴FG =DF=1 ,又∵△AFG≌△CFD ,∴CF=AF=3———————7分∴CG=CF-FG=3-1 ———————8分在Rt△CGE中,∠AEC=90°,∠FCD=30°,∴EG=12CG=312-————10分23、⑴解:设老师有x名,学生有y名. ———————1分依题意,列方程组为386406x yx y+=⎧⎨-=⎩———————2分解之得:6234 xy=⎧⎨=⎩———————3分答:老师有6名,学生有234名. ———————4分⑵由每辆汽车上至少要有1名老师,汽车总数不能大于6辆;——————5分由要保证240名师生有车坐,汽车总数不能小于24045(取整为6)辆,———6分综合起来可知汽车总数为6辆. ——————7分⑶设租用m辆甲种客车,则租车费用Q(单位:元)是m的函数,即400280(6)Q m m=+-;化简为:1201680Q m=+———————8分依题意有:12016802300m+≤,∴316m≤,即5m≤又要保证240名师生有车坐,m不小于4 ———————9分所以有两种租车方案,方案一:4辆甲种客车,1辆乙种客车;方案二:5辆甲种客车,1辆乙种客车. ——————11分∵Q随m增加而增加.∴当4m=时,Q最少为2160元. ——————12分EDCBAFEDCBAF附加题1、如图,已知:点D 是△ABC 的边BC 上一动点,且AB =AC ,DA =DE ,∠BAC =∠ADE =α. ⑴如图1,当α=60°时,∠BCE =120°;⑵如图2,当α=90°时,试判断∠BCE 的度数是否发生改变,若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;证明:如图,过D 作DF ⊥BC ,交CA 或延长线于F . 易证:△DCE ≌△DAF ,得∠BCE =∠DFA =45°或135°.⑶如图3,当α=120°时,则∠BCE =30°或150°; 2、①求△ABC 的面积=36;②D 为OA 延长线上一动点,以BD 为直角边做等腰直角三角形BDE ,连结EA .求 解:过E 作EF ⊥x 轴于F ,延长EA 交y 轴于H . 易证:△OBD ≌△FDE ;得:DF =BO =AO ,EF =OD ; ∴AF =EF ,∴∠EAF =45°,∴△AOH 为等腰直角三角形. ∴OA =OH ,∴H (0,-6)∴直线EA 的解析式为:6y x =--;③解:在线段OA 上任取一点N ,易知使OM +NM 的值最小的是点O 到点N 关于直线AF 对称点N’之间线段的长.当点N 运动时,ON ’最短为点O 到直线AE 的距离,即点O 到直线AE 的垂线段的长. ∠OAE =30°,OA=6,所以OM +NM 的值为3.。
2020-2021武汉市八年级数学上期末试题含答案

2020-2021武汉市八年级数学上期末试题含答案一、选择题1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )A .5.6×10﹣1 B .5.6×10﹣2 C .5.6×10﹣3 D .0.56×10﹣1 2.已知三角形的两边长分别为4cm 和9cm,则下列长度的线段能作为第三边的是( )A .13cmB .6cmC .5cmD .4m 3.如图,已知圆柱底面的周长为4 dm,圆柱的高为2 dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值为( )A .45 dmB .22 dmC .25 dmD .42 dm4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 5.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1B .2C .3D .8 6.下列运算中,结果是a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 3)3D .(﹣a)6 7.若实数m 、n 满足 402n m -+-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .68.如图,已知∠ACB =∠DBC ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A.∠ABC=∠DCB B.∠ABD=∠DCAC.AC=DB D.AB=DC9.已知等腰三角形的一个角是100°,则它的顶角是()A.40°B.60°C.80°D.100°10.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形11.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于12CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称12.已知a是任何实数,若M=(2a﹣3)(3a﹣1),N=2a(a﹣32)﹣1,则M、N的大小关系是()A.M≥NB.M>NC.M<ND.M,N的大小由a的取值范围二、填空题13.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角,若∠A=100°,则∠1+∠2+∠3+∠4= .14.-12019+22020×(12)2021=_____________ 15.已知x m =6,x n =3,则x 2m ﹣n 的值为_____.16.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n ),且x+1=2128,则n=______.17.当m=____时,关于x 的分式方程2x m -1x-3+=无解. 18.分解因式:x 3y ﹣2x 2y+xy=______. 19.分式293x x --当x __________时,分式的值为零. 20.若=2m x ,=3n x ,则2m n x +的值为_____.三、解答题21.计算: 22142a a a ---. 22.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,﹣1).(1)将△ABC 沿y 轴正方向平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1坐标;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.23.如图,已知AB 比AC 长2cm ,BC 的垂直平分线交AB 于点D ,交BC 于点E ,△ACD 的周长是14cm ,求AB 和AC 的长.24.先化简,再求值:22211111x x x x x ⎛⎫-++÷ ⎪-+⎝⎭,其中x =-2. 25.因式分解:(1)()()36x m n y n m ---;(2)()222936x x +-【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【详解】2.B解析:B【解析】【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边可求得第三边取值范围.【详解】设第三边长度为a,根据三角形三边关系a9494a.解得513只有B符合题意故选B.【点睛】本题考查三角形三边关系,能根据关系求得第三边的取值范围是解决此题的关键.3.D解析:D【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴dm,∴这圈金属丝的周长最小为.故选D.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.4.D解析:D【解析】【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a-+,再根据P点所在象限可得横纵坐标的和为0,进而得到a的数量关系.【详解】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故11+423a a-+=0,解得:a=1 3 .故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.5.C解析:C【解析】【分析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.6.D解析:D【解析】【分析】分别利用幂的乘方运算和合并同类项法则分别化简求出答案.【详解】解:A、a2•a3=a5,故此选项错误;B、122a a= a10,故此选项错误;C、(a3)3=a9,故此选项错误;D、(-a)6=a6,故此选项正确.故选D.【点睛】此题主要考查了合并同类项法则以及幂的乘方运算等知识,正确运用相关法则是解题关键.7.B解析:B【解析】【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.8.D解析:D【解析】【分析】根据全等三角形的判定定理逐个判断即可.【详解】A、∵在△ABC和△DCB中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;B 、∵∠ABD =∠DCA ,∠DBC =∠ACB ,∴∠ABD +∠DBC =∠ACD +∠ACB ,即∠ABC =∠DCB ,∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;C 、∵在△ABC 和△DCB 中BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB (SAS ),故本选项不符合题意;D 、根据∠ACB =∠DBC ,BC =BC ,AB =DC 不能推出△ABC ≌△DCB ,故本选项符合题意;故选:D .【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .9.D解析:D【解析】试题解析::(1)当100°角为顶角时,其顶角为100°;(2)当100°为底角时,100°×2>180°,不能构成三角形. 故它的顶角是100°.故选D .10.B解析:B【解析】【分析】n 边形的内角和是(n ﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据n 边形的内角和公式,得(n ﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.11.D解析:D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意.C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.∴C、D两点关于OE所在直线对称,正确,不符合题意.D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.12.A解析:A【解析】【分析】将M,N代入到M-N中,去括号合并得到结果为(a﹣1)2≥0,即可解答【详解】∵M=(2a﹣3)(3a﹣1),N=2a(a﹣32)﹣1,∴M﹣N=(2a﹣3)(3a﹣1)﹣2a(a﹣32)+1,=6a2﹣11a+3﹣2a2+3a+1=4a2﹣8a+4=4(a﹣1)2∵(a ﹣1)2≥0,∴M ﹣N ≥0,则M ≥N .故选A .【点睛】此题考查整式的混合运算,解题关键是在于把M,N 代入到M-N 中计算化简得到完全平方式为非负数,从而得到结论.二、填空题13.280°【解析】试题分析:先根据邻补角的定义得出与∠EAB 相邻的外角∠5的度数再根据多边形的外角和定理即可求解解:如图∵∠EAB+∠5=180°∠EAB=100°∴∠5=80°∵∠1+∠2+∠3+∠解析:280°【解析】试题分析:先根据邻补角的定义得出与∠EAB 相邻的外角∠5的度数,再根据多边形的外角和定理即可求解.解:如图,∵∠EAB+∠5=180°,∠EAB=100°,∴∠5=80°.∵∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3+∠4=360﹣80°=280°故答案为280°.考点:多边形内角与外角.14.【解析】【分析】根据有理数的混合运算法则求解即可【详解】;故答案为【点睛】本题考查了有理数的混合运算熟练掌握有理数的混合运算法则是解题的关键 解析:12- 【解析】【分析】根据有理数的混合运算法则求解即可.【详解】201920202021202020201111212222⨯⨯⨯-+()=-+()202011=1222⨯⨯-+() 11=1=22-+-;故答案为12-. 【点睛】本题考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键. 15.12【解析】【分析】逆用同底数幂的除法法则和幂的乘方的运算法则进行解答即可【详解】∵∴故答案为12【点睛】熟记同底数幂的除法法则:幂的乘方的运算法则:并能逆用这两个法则是解答本题的关键解析:12【解析】【分析】逆用“同底数幂的除法法则和幂的乘方的运算法则”进行解答即可.【详解】∵63m n x x ==,,∴222()6312m n m n x x x -=÷=÷=.故答案为12.【点睛】熟记“同底数幂的除法法则:m n m n a a a -÷=,幂的乘方的运算法则:()m n mn a a =,并能逆用这两个法则”是解答本题的关键. 16.64【解析】试题分析:先在前面添加因式(2﹣1)再连续利用平方差公式计算求出x 然后根据指数相等即可求出n 值解:(1+2)(1+22)(1+24)(1+28)…(1+2n )=(2﹣1)(1+2)(1+解析:64【解析】试题分析:先在前面添加因式(2﹣1),再连续利用平方差公式计算求出x ,然后根据指数相等即可求出n 值.解:(1+2)(1+22)(1+24)(1+28)…(1+2n ),=(2﹣1)(1+2)(1+22)(1+24)(1+28)…(1+2n ),=(22﹣1)(1+22)(1+24)(1+28)…(1+2n ),=(2n ﹣1)(1+2n ),=22n ﹣1,∴x+1=22n ﹣1+1=22n ,2n=128,∴n=64.故填64.考点:平方差公式点评:本题考查了平方差公式,关键是乘一个因式(2﹣1)然后就能依次利用平方差公式17.-6【解析】把原方程去分母得2x+m=-(x-3)①把x=3代入方程①得m=-6故答案为-6解析:-6【解析】把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.18.xy(x﹣1)2【解析】【分析】原式提取公因式再利用完全平方公式分解即可【详解】解:原式=xy(x2-2x+1)=xy(x-1)2故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合解析:xy(x﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.=-3【解析】【分析】根据分子为0分母不为0时分式的值为0来解答【详解】根据题意得:且x-30解得:x=-3故答案为:=-3【点睛】本题考查的是分式值为0的条件易错点是只考虑了分子为0而没有考虑同时解析:= -3【解析】【分析】根据分子为0,分母不为0时分式的值为0来解答.【详解】根据题意得:290x且x-3 0解得:x= -3故答案为:= -3.【点睛】本题考查的是分式值为0的条件,易错点是只考虑了分子为0而没有考虑同时分母应不为0.20.18【解析】【分析】先把xm+2n变形为xm(xn)2再把xm=2xn=3代入计算即可【详解】∵xm=2xn=3∴xm+2n=xmx2n=xm(xn)2=2×32=2×9=18;故答案为18【点睛】解析:18【解析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可.【详解】∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=18; 故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.三、解答题21.12a + 【解析】【分析】先寻找2个分式分母的最小公倍式(最小公倍是用因式分解的方法去寻找),将最小公倍式作为结果的分母;然后在进行减法计算最后进行化简【详解】解:原式=21(2)(2)2a a a a -+-- = ()()22(2)(2)22a a a a a a +-+-+- = 2-(2)(2)(-2)a a a a ++ = -2(2)(-2)a a a + = 1+2a . 【点睛】本题是对分式计算的考察,正确化简是关键22.(1)画图见解析;点1B 坐标为:(﹣2,﹣1);(2)画图见解析;点2C 的坐标为:(1,1)【解析】【分析】(1)直接利用平移的性质得出平移后对应点位置进而得出答案;(2)利用轴对称图形的性质得出对应点位置进而得出答案.【详解】解:(1)如图所示:△111A B C ,即为所求;点1B 坐标为:(﹣2,﹣1);(2)如图所示:△222A B C ,即为所求,点2C 的坐标为:(1,1).考点:作图-轴对称变换;作图-平移变换23.AB=9cm,AC=6cm.【解析】根据线段垂直平分线上的点到两端点的距离相等可得CD=BD,然后求出△ACD的周长=AB+AC,再解关于AC、AB的二元一次方程组即可.解:∵DE垂直平分BC,∴BD=DC,∵AB=AD+BD,∴AB=AD+DC.∵△ADC的周长为15cm,∴AD+DC+AC=15cm,∴AB+AC=15cm.∵AB比AC长3cm,∴AB-AC=3cm.∴AB=9cm,AC=6cm.24.21xx+;﹣52【解析】【分析】先分解括号内的第一部分,再算括号内的加法,同时把除法变成乘法,约分后代入求出即可.【详解】解:原式=[2(1)(1)(1)xx x-+-+1x]÷11x+=(11xx-++1x)•(x+1)=21(1)xx x++•(x+1)=21 xx+,当x =﹣2时,原式=2(2)12-+- =﹣52. 【点睛】本题考查了分式的混合运算和求值,主要考查学生的化简能力和计算能力,题目比较好.25.(1)3()(2)m n x y -+;(2)22(3)(3)x x +-.【解析】【分析】(1)原式变形后,提取公因式即可;(2)原式先利用平方差公式进行因式分解,再利用完全平方公式分解即可.【详解】(1)原式3()6()x m n y m n =-+-3()3()2m n x m n y =-⋅+-⋅3()(2)m n x y =-+(2)原式()2229(6)x x =+-()()229696x x x x =+++-22(3)(3)x x =+-【点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.。
2022年湖北省武汉市江岸区八年级数学第一学期期末监测试题含解析

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分) 1.下列各数是无理数的是( ) A .3.14B .-πC .0.21D .2102.已知x 2+mx+25是完全平方式,则m 的值为( ) A .10B .±10C .20D .±203.下列各式为分式的是( ) A .3bB .1x -C .3()4x y + D .m nm n+- 4.下列运算:236(1)⋅=a a a ,()236(2)=a a ,55(3) ÷=a a a ,333(4)()=ab a b 其中结果正确的个数为( ) A .1B .2C .3D .45.下面有四个图案,其中不是轴对称图形的是( ) A .B .C .D .6.下列分式中,无论x 取何值,分式总有意义的是( ) A .215x B .211x + C .311+x D .2x x+ 7.在平面直角坐标系中,点(2,3)关于y 轴对称的点的坐标是( ) A .(﹣2,﹣3)B .(2,﹣3)C .(﹣2,3)D .(2,3)8.如图所示的图案中,是轴对称图形且有两条对称轴的是( )A .B .C .D .9.如图,在ABC 中,80A ∠=︒,高BE 和CH 的交点为O ,则∠BOC=( )A .80°B .120°C .100°D .150°10.如图,已知ABC ∆中,AB AC =,90BAC ∠=︒,直角EPF ∠的顶点P 是BC 的中点,两边PE PF 、分别交AB AC 、于点E F 、,当EPF ∠在ABC ∆内绕顶点P 旋转时(点E 不与A 、B 重合),给出以下五个结论:①AE CF =;②APE CPF ∠=∠;③EPF ∆是等腰直角三角形;④EFAP =;⑤ 12ABC AEPF S S ∆=四边形;始终正确的有( )A .2个B .3个C .4个D .5个11.如图,下列图案是我国几家银行的标志,其中轴对称图形有( )A .1个B .2个C .3个D .4个12.已知点11(,)x y ,22(,)x y 均在双曲线1y x=-上,下列说法中错误的是( ) A .若12x x =,则12y y = B .若12x x =-,则12y y =- C .若120x x <<,则12y y < D .若120x x <<,则12y y >二、填空题(每题4分,共24分)13.如图,已知在锐角△ABC 中,AB .AC 的中垂线交于点O ,则∠ABO +∠ACB =________.14.若一个正多边形的每个外角都等于36°,则它的内角和是_____. 15.二次三项式29x kx -+是一个完全平方式,则k=_______.16.如图,AB BC ⊥,DC BC ⊥,垂足分别为B C 、,4AB =,6BC =,2CD =,点P 为BC 边上一动点,当BP =_______时,形成的Rt ABP ∆与Rt PCD ∆全等.17.已知等边三角形ABC 的边长是2,以BC 边上的高AB 1为边作等边三角形,得到第一个等边三角形AB 1C 1,再以等边三角形AB 1C 1的B 1C 1边上的高AB 2为边作等边三角形,得到第二个等边三角形AB 2C 2,再以等边三角形AB 2C 2的边B 2C 2边上的高AB 3为边作等边三角形,得到第三个等边AB 3C 3;…,如此下去,这样得到的第n 个等边三角形AB n C n 的面积为 .18.若2m a =,3n a =,则32m n a -=_____________. 三、解答题(共78分)19.(8分)小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高 cm ;(2)求放入小球后量桶中水面的高度y (cm )与小球个数x (个)之间的函数关系式; (3)当量桶中水面上升至距离量桶顶部3cm 时,应在量桶中放入几个小球?20.(8分)如图,△ABC 和△DAE 中,∠BAC=∠DAE ,AB=AE ,AC=AD ,连接BD ,CE ,求证:△ABD ≌△AEC .21.(8分)如图 AB=AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1)求证AD=AE ;(2)连接OA ,BC ,试判断直线OA ,BC 的关系并说明理由.22.(10分)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 在第一象限,点C 在第四象限,点B 在x 轴的正半轴上.90OAB ∠=︒且OA AB =,OB ,OC 的长分别是二元一次方程组2328323x y x y +=⎧⎨-=⎩的解(OB OC >). (1)求点A 和点B 的坐标;(2)点P 是线段OB 上的一个动点(点P 不与点O ,B 重合),过点P 的直线l 与y 轴平行,直线l 交边OA 或边AB 于点Q ,交边OC 或边BC 于点R .设点P 的横坐标为t ,线段QR 的长度为m .已知4t =时,直线l 恰好过点C .①当03t <<时,求m 关于t 的函数关系式; ②当72m =时,求点P 的横坐标t 的值.23.(10分)尺规作图:如图,已知ABC ∆. (1)作A ∠的平分线;(2)作边AC 的垂直平分线,垂足为E .(要求:不写作法,保留作图痕迹) .24.(10分) “读经典古诗词,做儒雅美少年”是江赣中学收看CCTV 《中国诗词大会》之后的时尚倡议.学校图书馆购进《唐诗300首》和《宋词300首》彩绘读本各若干套,已知每套《唐诗》读本的价格比每套《宋词》读本的价格贵15元,用5400元购买《宋词》读本的套数恰好是用3600元购买《唐诗》读本套数的2倍;求每套《宋词》读本的价格.25.(12分)如图,在平面直角坐标系中,()0A a ,,(0)B b ,,且 a ,b 满足2(1)30a b +++=,直线1l 经过点A 和B .(1)A 点的坐标为( , ),B 点的坐标为( , );(2)如图1,已知直线2l 经过点A 和 y 轴上一点M ,60MAO ∠=︒ ,点 P 在直线AB 上且位于 y 轴右侧图象上一点,连接 M P ,且=BMP S ∆12ABM S ∆. ①求 P 点坐标;②将AOM 沿直线AM 平移得到'''A O M ∆,平移后的点 'A 与点M 重合,N 为''A M 上的一动点,当3'2M N NP +的值最小时,请求出最小值及此时 N 点的坐标;(3)如图 2,将点A 向左平移 2 个单位到点 C ,直线3l 经过点B 和C ,点D 是点C关于 y 轴的对称点,直线4l 经过点 B 和点 D ,动点Q 从原点出发沿着 x 轴正方向运动,连接BQ ,过点C 作直线BQ 的垂线交 y 轴于点 E ,在直线 BD 上是否存在点G ,使得EQG 是等腰直角三角形?若存在,求出G 点坐标.26.如图,在ABC ∆中,90ACB ∠=︒,30ABC ∠=︒,AD 平分CAB ∠,延长AC 至E ,使CE AC =.(1)求证:DE DB =;(2)连接BE ,试判断ABE ∆的形状,并说明理由.参考答案一、选择题(每题4分,共48分) 1、B【分析】根据无理数的定义判断.【详解】A 、3.14是有限小数,是有理数,故不符合题意; B 、-π是无限不循环小数,是无理数,故符合题意; C 、0.21是无限循环小数,是有理数,故不符合题意;D 、=10,是有理数,故不符合题意; 故选B . 【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式. 2、B【分析】根据完全平方式的特点求解:a 2±2ab +b 2. 【详解】∵x 2+mx +25是完全平方式, ∴m =±10, 故选B . 【点睛】本题考查了完全平方公式:a 2±2ab +b 2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x 和1的平方,那么中间项为加上或减去x 和1的乘积的2倍. 3、D【解析】根据分式的定义即可求解. 【详解】A.3b是整式,故错误; B. 1x -是整式,故错误; C.3()4x y +是整式,故错误; D.m nm n+-是分式,正确; 故选D . 【点睛】此题主要考查分式的识别,解题的关键是熟知分式的定义. 4、B【分析】由题意根据同底数幂的除法与乘法、幂的乘方和积的乘方,依次对选项进行判断即可.【详解】解:(1)235a a a •=,故计算错误;()236a a,故计算正确;(2)=55÷=,故计算错误;(3) 1a a333ab a b,故计算正确;(4)()=正确的共2个,故选:B.【点睛】本题考查同底数幂的除法与乘法、幂的乘方和积的乘方问题,关键是根据同底数幂的除法与乘法以及幂的乘方和积的乘方的法则进行分析.5、A【分析】定义:如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.【详解】根据轴对称图形的定义可知,A选项明显不是轴对称图形.【点睛】理解轴对称图形的定义是解题的关键.6、B【解析】根据分母不为零分式有意义,可得答案.【详解】A、x=0时分式无意义,故A错误;B、无论x取何值,分式总有意义,故B正确;C、当x=-1时,分式无意义,故C错误;D、当x=0时,分式无意义,故D错误;故选B.【点睛】本题考查了分式有意义的条件,分母不为零分式有意义.7、C【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对称的点的坐标是(﹣2,3).故选C.【点睛】本题考查关于x轴、y轴对称的点的坐标,利用数形结合思想解题是关键.8、D【详解】选项A 、B 中的图形是轴对称图形,只有1条对称轴; 选项C 中的图形不是轴对称图形;选项D 中的图形是轴对称图形,有2条对称轴. 故选D. 9、C【分析】在ABE △中根据三角形内角和定理求出10ABE ∠=︒,然后再次利用三角形内角和定理求出80BOH ∠=︒,问题得解. 【详解】∵BE 和CH 为ABC 的高, ∴90BHC AEB ∠=∠=︒. ∵80A ∠=︒,∴在ABE △中,180180908010ABE AEB A ∠=︒-∠-∠=︒-︒-︒=︒, 在BHO △中,180180901080BOH BHO HBO ∠=︒-∠-∠=︒-︒-︒=︒, ∴180********.BOC BOH ∠=︒-∠=︒-︒=︒ 故选C. 【点睛】本题考查三角形内角和定理,熟知三角形内角和为180°是解题关键. 10、C【分析】根据等腰直角三角形的性质可得⊥AP BC ,AP AC =,==45EAP C ︒∠∠,根据同角的余角相等求出=APE CPF ∠∠,判定②正确,然后证明APE CPF ≌,因此AE CF =,判定①正确,再根据等腰直角三角形的定义得到EFP △是等腰直角倍表示出EF ,可知EF 随着点E 的变化而变化,判定④错误,根据全等三角形的面积相等可得APE CPF S S =△△,因此12ABC AEPF S S =四边形△,判定⑤正确. 【详解】∵AB AC =,90BAC ∠=︒,点P 是BC 的中点 ∴⊥AP BC ,==45EAP C ︒∠∠,AP PC PB == ∴=90APF CPF +︒∠∠ ∵=90EPF ︒∠∴90APF APE +=︒∠∠ ∴APE CPF ∠=∠,故②正确 ∴APE CPF ≌(ASA ) ∴AE CF =,故①正确∴EFP △是等腰直角三角形,故③正确∵根据等腰直角三角形的性质,EF =∴EF 随着点E 的变化而变化,只有当点E 为AB的中点时,EF AP ==,在其他位置时EF AP ≠,故④错误 ∵APE CPF ≌ ∴APE CPF S S =△△∴1=+2APF APE APF CPF APC ABC AEPF S S S S S S S +===△△△△△△四边形,故⑤正确 综合所述,正确的结论有①②③⑤共4个 故选C 【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,证出APE CPF ≌是解题的关键. 11、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形. 【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意; 第三个图形找不到对称轴,则不是轴对称图形,不符合题意. 第四个图形有1条对称轴,是轴对称图形,符合题意; 轴对称图形共有3个. 故选:C . 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 12、D【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线1y x=-,用y 1、y 2表示出x 1,x 2,据此进行判断.【详解】∵点(x 1,y 1),(x 2,y 2)均在双曲线1y x=-上, ∴111y x =-,221y x =-.A 、当x 1=x 2时,-11x =-21x ,即y 1=y 2,故本选项说法正确; B 、当x 1=-x 2时,-11x =21x ,即y 1=-y 2,故本选项说法正确; C 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确; D 、因为双曲线1y x =-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1>y 2,故本选项说法错误;故选:D .【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(每题4分,共24分)13、90°.【分析】由中垂线的性质和定义,得BA =BC ,BE ⊥AC ,从而得∠ACB =∠A ,再根据直角三角形的锐角互余,即可求解.【详解】∵BE 是AC 的垂直平分线,∴BA =BC ,BE ⊥AC ,∴∠ACB =∠A .∵∠ABO +∠A =90°,∴∠ABO +∠ACB =90°.故答案为:90°.【点睛】本题主要考查垂直平分线的性质以及直角三角形的性质定理,掌握垂直平分线的性质,是解题的关键.14、1440°【分析】先根据多边形的外角和求多边形的边数,再根据多边形的内角和公式求出即可.【详解】解:∵一个正多1440°边形的每个外角都等于36°, ∴这个多边形的边数为36060=10, ∴这个多边形的内角和=(10﹣2)×180°=1440°,故答案为:1440°.【点睛】本题考查了多边形的内角与外角,能正确求出多边形的边数是解此题的关键,注意:多边形的外角和等于360°,边数为n 的多边形的内角和=(n-2)×180°.15、±6【分析】根据完全平方公式的展开式,即可得到答案.【详解】解:∵29x kx -+是一个完全平方式,∴2136k =±⨯⨯=±;故答案为6±.【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式的展开式.16、1【分析】当BP=1时,Rt △ABP ≌Rt △PCD ,由BC=6可得CP=4,进而可得AB=CP ,BP=CD ,再结合AB ⊥BC 、DC ⊥BC 可得∠B=∠C=90°,可利用SAS 判定△ABP ≌△PCD .【详解】解:当BP=1时,Rt △ABP ≌Rt △PCD ,∵BC=6,BP=1,∴PC=4,∴AB=CP ,∵AB ⊥BC 、DC ⊥BC ,∴∠B=∠C=90°,在△ABP 和△PCD 中90AB PC B C BP CD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ABP ≌△PCD (SAS ),故答案为:1.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )是解题的关键.17、n 34⎛⎫ ⎪⎝⎭【解析】由AB1为边长为2等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n C n 的面积.解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1∴第一个等边三角形AB1C1234)1;∵等边三角形AB1C1,AB2⊥B1C1,∴B1AB1根据勾股定理得:AB2=32,∴第二个等边三角形AB2C2(32)234)2;依此类推,第n个等边三角形AB n C n 34)n.34)n18、89【分析】根据幂的乘方以及同底数幂的除法法则的逆运算解答即可.【详解】解:∵a m=2,a n=3,∴a3m-2m=(a m)3÷(a n)2=23÷32=89,故答案为:89.【点睛】本题主要考查了幂的乘方以及同底数幂的除法法则的逆运算,熟记幂的运算法则是解答本题的关键.三、解答题(共78分)19、(1)2;(2)y=2x+30;(3)放入1个小球.【分析】(1)根据中间量筒可知,放入一个小球后,量筒中的水面升高2cm;(2)本题中关键是如何把图象信息转化为点的坐标,无球时水面高30cm,就是点(0,30);3个球时水面高为36,就是点(3,36),从而求出y与x的函数关系式.(3)列方程可求出量筒中小球的个数.【详解】(1)根据中间量筒可知,放入一个小球后,量筒中的水面升高2cm.故答案为2;(2)设水面的高度y与小球个数x的表达式为y=kx+b.当量筒中没有小球时,水面高度为30cm;当量筒中有3个小球时,水面高度为36cm,因此,(0,30),(3,36)满足函数表达式,则30336 bk b=⎧⎨+=⎩,解,得k230 b=⎧⎨=⎩.则所求表达式为y=2x+30;(3)由题意,得2x+30=46,解,得x=1.所以要放入1个小球.【点睛】本题考查了一次函数的实际应用,朴实而有新意,以乌鸦喝水的小故事为背景,以一次函数为模型,综合考查同学们识图能力、处理信息能力、待定系数法以及函数所反映的对应与变化思想的应用.20、证明见解析【解析】试题分析:根据∠BAC=∠DAE,可得∠BAD=∠CAE,再根据全等的条件可得出结论试题解析:∵∠BAC=∠DAE,∴∠BAC﹣BAE=∠DAE﹣∠BAE,即∠BAD=∠CAE,又∵AB=AE,AC=AD,∴△ABD≌△AEC(SAS).考点:全等三角形的判定21、(1)证明见解析;(2)互相垂直,证明见解析【分析】(1)根据AAS推出△ACD≌△ABE,根据全等三角形的性质得出即可;(2)证Rt △ADO ≌Rt △AEO ,推出∠DAO=∠EAO ,根据等腰三角形的性质推出即可.【详解】(1)证明:∵CD ⊥AB ,BE ⊥AC ,∴∠ADC=∠AEB=90°, △ACD 和△ABE 中,∵ADC AEB CAD BAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===∴△ACD ≌△ABE (AAS ),∴AD=AE .(2)猜想:OA ⊥BC .证明:连接OA 、BC ,∵CD ⊥AB ,BE ⊥AC ,∴∠ADC=∠AEB=90°. 在Rt △ADO 和Rt △AEO 中,∵OA OA AD AE ⎧⎨⎩== ∴Rt △ADO ≌Rt △AEO (HL ).∴∠DAO=∠EAO ,又∵AB=AC ,∴OA ⊥BC .22、(1)A (3,3),B (6,0);(2)当03t <<时,74mt ;(3)满足条件的P 的坐标为(2,0)或23(,0)5【分析】(1)解方程组得到OB ,OC 的长度,得到B 点坐标,再根据△OAB 是等腰直角三角形,解出点A 的坐标;(2)①根据坐标系中两点之间的距离,QR 的长度为点Q 与点R 纵坐标之差,根据OC的函数解析式,表达出点R坐标,根据△OPQ是等腰直角三角形得出点Q坐标,表达m即可;②根据直线l的运动时间分类讨论,分别求出直线AB,直线BC的解析式,再由QR的长度为点Q与点R纵坐标之差表达出m的函数解析式,当72m=时,列出方程求解.【详解】解:(1)如图所示,过点A作AM⊥OB,交OB于点M,解二元一次方程组2328323x yx y+=⎧⎨-=⎩,得:56xy=⎧⎨=⎩,∵OB OC>,∴OB=6,OC=5∴点B的坐标为(6,0)∵∠OAB=90°,OA=AB,∴△OAB是等腰直角三角形,∠AOM=45°,根据等腰三角形三线合一的性质可得116322OM OB==⨯=,∵∠AOM=45°,则∠OAM=90°-45°=45°=∠AOM,∴AM=OM=3,所以点A的坐标为(3,3)∴A(3,3),B(6,0)(2)①由(1)可知,∠AOM=45°,又PQ⊥OP,∴△OPQ是等腰直角三角形,∴PQ=OP=t,∴点Q(t,t)如下图,过点C作CD⊥OB于点D,∵4t=时,直线l恰好过点C,∴OD=4,OC=5在Rt △OCD 中,CD=223OC OD -=∴点C (4,-3)设直线OC 解析式为y=kx ,将点C 代入得-3=4k ,∴34k =-, ∴34y x =-, ∴点R (t ,34t -)∴37()44QR t t t =--= 故当03t <<时,74m t②设AB 解析式为y px q =+将A (3,3)与点B (6,0)代入得3360p q p q +=⎧⎨+=⎩,解得16p q =-⎧⎨=⎩ 所以直线AB 的解析式为6y x =-+,同理可得直线BC 的解析式为392y x =- 当03t <<时,若72m =,则7724t =,解得t=2,∴P (2,0) 当34t ≤<时,316()644m t t t =-+--=-+,若72m =,即71624t =-+,解得t=10(不符合,舍去)当46t ≤<时,Q (t ,-t+6),R (t ,392t -) ∴356(9)1522m t t t =-+--=-+若72m=,即515272t-+=,解得235t=,此时23(,0)5P,综上所述,满足条件的P的坐标为(2,0)或23(,0) 5.【点睛】本题考查了一次函数与几何的综合问题,解题的关键是综合运用函数与几何的知识进行求解.23、(1)图见解析;(2)图见解析【分析】(1)根据角平分线的尺规作图方法即可;(2)根据线段垂直平分线的尺规作图方法即可.【详解】(1)AF为∠BAC的平分线;(2)MN为AC的垂直平分线,点E为垂足.【点睛】本题考查了角平分线及线段垂直平分线的尺规作图方法,解题的关键是掌握相应的尺规作图.24、每套《宋词》读本的价格为45元.【解析】设每套《宋词》读本的价格为x元,根据题意得出等量关系,列出方程解答即可.【详解】设每套《宋词》读本的价格为x元,每套《唐诗》读本的价格为(x+15)元,根据题意可得:54003600215x x=⨯+,解得:x=45,经检验x=45是原方程的解,答:每套《宋词》读本的价格为45元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.25、(1)-1,0;0,-3;(2)①点19()22P -,;②点(12N (3)点G 的坐标为33()22G -,或(21)G -,或(12)G -,. 【分析】(1)根据两个非负数和为0的性质即可求得点A 、B 的坐标;(2)①先求得直线AB 的解析式,根据12BMP ABM S S =求得2AB BP =,继而求得点P 的横坐标,从而求得答案;②先求得直线AM 的解析式及点M '的坐标,过点P 过y 轴的平行线交直线AM 与点N ,过点M '作M H '垂直于PN 的延长线于点H ,求得2NH M N =',即2M N NP NH NP PH '+=+=为最小值,即点N 为所求,求得点N 的坐标,再求得PH 的长即可;(3)先求得直线BD 的解析式,设点0Q n (,),同理求得直线BQ 的解析式,求出点E的坐标为()0n -,,证得OQ OE n ==,分∠QGE 为直角、∠EQG 为直角、∠QEG 为直角,三种情况分别求解即可.【详解】(1)∵210a +=(),∴10a +=,30b +=,则13a b =-=-,,故点A 、B 的坐标分别为:()()1003--,、,, 故答案为:10-,;03-,;(2)①直线2l 经过点A 和y 轴上一点M ,60MAO ∠=︒,∴30AMO ∠=︒,由(1)得:点A 、B 的坐标分别为:()()1003--,、,,则1OA =,3OB =, 设直线AB 的解析式为:y kx b =+,∴03k b b -+=⎧⎨=-⎩解得:33k b =-⎧⎨=-⎩∴直线AB 的解析式为:33y x =--, ∵12BMP ABM S S =∴2AB BP =作PL ⊥y 轴于L ,∴12PL BP OA AB ==, ∴1122PL OA ==, ∴点P 的横坐标为12, 又点P 在直线AB 上,∴193322y =-⨯-=-, ∴点P 的坐标为1922⎛⎫- ⎪⎝⎭,; ②由(1)得:点A 、B 的坐标分别为:()()1003--,、,,则1OA =,3OB =, ∴22AM OA ==,33OM OA == ∴点M 的坐标为(03, ,设直线AM 的解析式为:y kx b =+,∴03k b b -+=⎧⎪⎨=⎪⎩解得:33k b ⎧=⎪⎨=⎪⎩∴直线AM 的解析式为:33y x =+, 根据题意,平移后点123M '(,), 过点P 过y 轴的平行线交直线AM 与点N ,过点M '作M H '垂直于PN 的延长线于点H ,如图1,∴MH '∥AO , ∵60MAO ∠=︒,∴60M HN MAO ∠=∠='︒, 则3602NH M Nsin M N ='︒=', 32M N NP NH NP PH '+=+=为最小值,即点N 为所求, 则点N 的横坐标与点P 的横坐标相同都是12, 点N 在直线AM 上,∴1333322y =+= ∴点N 的坐标为1332⎛ ⎝⎭, ,∴9922H P M P PH y y y y '+=+=+==,N NP NH NP PH '+=+==; (3)根据题意得:点B C D 、、的坐标分别为:033030--(,)、(,)、(,), 设直线BD 的解析式为:y kx b =+,∴303k b b +=⎧⎨=-⎩, 解得:13k b =⎧⎨=-⎩, ∴直线BD 的解析式为:3y x =-,设点0Q n (,),同理直线BQ 的解析式为:33y x n =-, ∵CE BQ ⊥,∴设直线CE 的解析式为:3n y x b =-+, 当3x =-时,0y =,则b n =-,则直线CE 的解析式为:3n y x n =-- , 故点E 的坐标为()0n -,, 即OQ OE n ==,①当QGE ∠为直角时,如下图,∵QGE 为等腰直角三角形,∴GE QG OQ n ===,则点G 的坐标为()n n -,, 将点G 的坐标代入直线BD 的解析式3y x =-并解得:32n =, 故点3322G -(,);②当EQG ∠为直角时,如下图,作EG QR ⊥于R ,∵QGE 为等腰直角三角形,∴QE QG =,45QEG QGE OQE ∠=∠=∠=︒,∴GE ∥x 轴,OEQ 、RQG 和RQE 都是底边相等的等腰直角三角形, ∴OEQ RQG RQE ≅≅,∴RQ RG RE OQ n ====,则点G 的坐标为()2n n -,, 将点G 的坐标代入直线BD 的解析式3y x =-并解得:1n =,故点21G -(,); ③当QEG ∠为直角时,如下图,同理可得点G 的坐标为()2n n -,, 将点G 的坐标代入直线BD 的解析式3y x =-并解得:1n =,故点12G -(,); 综上,点G 的坐标为:3322G -(,)或21G -(,)或12G -(,). 【点睛】本题考查的是一次函数综合运用,待定系数法求函数解析式、涉及到线段和的最值、等腰直角三角形的性质等,其中(3)要注意分类求解,避免遗漏.26、(1)见解析;(2)等边三角形,理由见解析.【分析】(1)由直角三角形的性质和角平分线得出∠DAB=∠ABC ,得出DA=DB ,再由线段垂直平分线的性质得出DE=DA ,即可得出结论;(2)由线段垂直平分线的性质得出BA=BE ,再由∠CAB=60°,即可得出△ABE 是等边三角形.【详解】解:(1)证明:∵∠ACB=90°,∠ABC=30°,∴BC ⊥AE ,∠CAB=60°,∵AD 平分∠CAB ,∴∠DAB=12∠CAB=30°=∠ABC , ∴DA=DB ,∵CE=AC ,∴BC 是线段AE 的垂直平分线,∴DE=DA ,∴DE=DB ;(2)△ABE 是等边三角形;理由如下:∵BC 是线段AE 的垂直平分线,∴BA=BE ,即△ABE是等腰三角形,又∵∠CAB=60°,∴△ABE是等边三角形.【点睛】本题考查了等边三角形的判定方法、线段垂直平分线的性质、等腰三角形的判定等知识.解题的关键是掌握角平分线的性质以及等边三角形的性质,此题难度不大.。
2020-2021武汉市八年级数学上期末一模试卷(带答案)

2020-2021武汉市八年级数学上期末一模试卷(带答案)一、选择题1.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,AC=6cm ,则BE 的长度为( )A .10cmB .6cmC .4cmD .2cm 2.如果a c b d =成立,那么下列各式一定成立的是( ) A .a d c b = B .ac c bd b = C .11a c b d ++= D .22a b c d b d++= 3.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1B .2C .3D .8 4.下列各因式分解的结果正确的是( ) A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+- 5.下列判定直角三角形全等的方法,不正确的是( ) A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个面积相等的直角三角形 6.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是( ) A .4 B .6 C .8 D .107.下列计算中,结果正确的是( )A .236a a a ⋅=B .(2)(3)6a a a ⋅=C .236()a a =D .623a a a ÷= 8.若 x=3 是分式方程2102a x x --=- 的根,则 a 的值是 A .5 B .-5 C .3 D .-39.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④ 10.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .AB .BC .CD .D 11.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°12.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A .5B .6C .7D .10二、填空题13.若关于x 的分式方程x 2322m m x x++=--的解为正实数,则实数m 的取值范围是____.14.等边三角形有_____条对称轴.15.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.16.若m 为实数,分式()22x x x m ++不是最简分式,则m =______.17.因式分解:328x x -=______.18.计算:()201820190.1258-⨯=________.19.已知9y 2+my+1是完全平方式,则常数m 的值是_______.20.如图,ABC V 的三边AB BC CA 、、 的长分别为405060、、,其三条角平分线交于点O ,则::ABO BCO CAO S S S V V V =______.三、解答题21.为了改善生态环境,某乡村计划植树4000棵.由于志题者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?22.已知3a b -=,求2(2)a a b b -+的值. 23.先化简,再求值:22211111x x x x x ⎛⎫-++÷ ⎪-+⎝⎭,其中x =-2. 24.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?25.如图,点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,求证:AB ∥DE .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题解析:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,{CD DE AD AD==,∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选C .2.D解析:D【解析】 已知a c b d=成立,根据比例的性质可得选项A 、B 、C 都不成立;选项D ,由2a b b +=2c d d +可得22a c b d +=+,即可得a c b d=,选项D 正确,故选D. 点睛:本题主要考查了比例的性质,熟练运用比例的性质是解决问题的关键.3.C解析:C【解析】【分析】根据三角形三边关系可得5﹣3<a <5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a <5+3,即2<a <8,由此可得,符合条件的只有选项C ,故选C .【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a <5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.4.C解析:C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】()321a a a a -=-=a (a+1)(a-1),故A 错误; 2(1)b ab b b b a ++=++,故B 错误;2212(1)x x x -+=-,故C 正确;22x y +不能分解因式,故D 错误,故选:C .【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.5.D解析:D【解析】【分析】【详解】解:A 、正确,利用SAS 来判定全等;B 、正确,利用AAS 来判定全等;C 、正确,利用HL 来判定全等;D 、不正确,面积相等不一定能推出两直角三角形全等,没有相关判定方法对应. 故选D .【点睛】本题主要考查直角三角形全等的判定方法,关键是熟练掌握常用的判定方法有SSS 、SAS 、AAS 、HL 等.6.C解析:C【解析】【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.【详解】设第三边长为xcm ,则8﹣2<x <2+8,6<x <10,故选:C .【点睛】本题考查了三角形三边关系,解题的关键是根据三角形三边关系定理列出不等式,然后解不等式即可.7.C解析:C【解析】选项A ,235a a a ⋅=,选项A 错误;选项B ,()()2236a a a ⋅= ,选项B 错误;选项C ,()326a a =,选项C 正确;选项D ,624a a a ÷=,选项D 错误.故选C.8.A解析:A【解析】把x=3代入原分式方程得,21332a--=-,解得,a=5,经检验a=5适合原方程.故选A.9.B解析:B【解析】【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x xx x x x x++-=-=+++++1111xx x-=++.又∵x为正整数,∴121xx≤+<1,故表示22(2)1441xx x x+-+++的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.10.C解析:C【解析】试题分析:根据轴对称图形的定义可知,只有选项C是轴对称图形,故选C.11.C解析:C【解析】【分析】根据等边对等角可得∠B=∠ACB=50°,再根据三角形内角和计算出∠A的度数,然后根据三角形内角与外角的关系可得∠BPC>∠A , 再因为∠B=50°,所以∠BPC<180°-50°=130°进而可得答案.【详解】∵AB=AC,∠B=50°,∴∠B=∠ACB=50°,∴∠A=180°-50°×2=80°,∵∠BPC=∠A+∠ACP,∴∠BPC>∠A,∴∠BPC>80°.∵∠B=50°,∴∠BPC<180°-50°=130°,则∠BPC的值可能是100°.C.此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.12.C解析:C【解析】依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7, 故选C二、填空题13.m <6且m≠2【解析】【分析】利用解分式方程的一般步骤解出方程根据题意列出不等式解不等式即可【详解】方程两边同乘(x-2)得x+m-2m=3x-6解得x=由题意得>0解得m <6∵≠2∴m≠2∴m <6解析:m <6且m≠2.【解析】【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【详解】x 2322m m x x++=--, 方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6-2m , 由题意得,6-2m >0, 解得,m <6, ∵6-2m ≠2, ∴m≠2, ∴m<6且m≠2.【点睛】要注意的是分式的分母暗含着不等于零这个条件,这也是易错点.14.3【解析】试题解析:等边三角形有3条对称轴考点:轴对称图形试题解析:等边三角形有3条对称轴.考点:轴对称图形.15.30【解析】【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P的度数【详解】∵BP是∠ABC的平分线CP是∠ACM 的平分线∠ABP=20°∠ACP=50°∴解析:30【解析】【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.【详解】∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.16.0或-4【解析】【分析】由分式不是最简分式可得x或x+2是x2+m的一个因式分含x和x+2两种情况根据多项式乘以多项式的运算法则求出m的值即可【详解】∵分式不是最简分式∴x或x+2是x2+m的一个因解析:0或-4【解析】【分析】由分式()22x xx m++不是最简分式可得x或x+2是x2+m的一个因式,分含x和x+2两种情况,根据多项式乘以多项式的运算法则求出m的值即可.【详解】∵分式()22x xx m++不是最简分式,∴x或x+2是x2+m的一个因式,当x是x2+m的一个因式x时,设另一个因式为x+a,则有x(x+a)=x2+ax=x2+m,∴m=0,当x或x+2是x2+m的一个因式时,设另一个因式为x+a,则有(x+2)(x+a)=x2+(a+2)x+2a=x2+m,∴202a m a +=⎧⎨=⎩, 解得:24a m =-⎧⎨=-⎩, 故答案为:0或-4.【点睛】本题考查最简分式的定义及多项式乘以多项式,根据题意得出x 或x+2是x 2+m 的一个因式是解题关键.17.【解析】【分析】提取公因式2x 后再利用平方差公式因式分解即可【详解】故答案为:【点睛】本题考查了因式分解熟练运用提公因式法和运用公式法进行因式分解是解决问题的关键解析:()()222x x x +-【解析】【分析】提取公因式2x 后再利用平方差公式因式分解即可.【详解】()()()322824?222x x x x x x x -=-=+-.故答案为:()()222x x x +-.【点睛】本题考查了因式分解,熟练运用提公因式法和运用公式法进行因式分解是解决问题的关键. 18.8【解析】【分析】根据同底数幂的乘法底数不变指数相加可化成指数相同的幂的乘法根据积的乘方可得答案【详解】原式=(−0125)2018×820188=(−0125×8)20188=8故答案为:8【点睛解析:8【解析】【分析】根据同底数幂的乘法底数不变指数相加,可化成指数相同的幂的乘法,根据积的乘方,可得答案.【详解】原式= (−0.125)2018×82018⨯ 8= (−0.125×8)2018⨯8=8, 故答案为:8.【点睛】本题考查的知识点是幂的乘方与积的乘方及同底数幂的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方及同底数幂的乘方.19.±6【解析】【分析】利用完全平方公式的结构特征确定出m 的值即可【详解】∵9y2+my+1是完全平方式∴m=±2×3=±6故答案为:±6【点睛】此题考查完全平方式熟练掌握完全平方公式是解本题的关键解析:±6【解析】【分析】利用完全平方公式的结构特征确定出m的值即可.【详解】∵9y2+my+1是完全平方式,∴m=±2×3=±6,故答案为:±6.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解本题的关键.20.【解析】【分析】首先过点O作OD⊥AB于点D作OE⊥AC于点E作OF⊥BC 于点F由OAOBOC是△ABC的三条角平分线根据角平分线的性质可得OD=OE=OF 又由△ABC的三边ABBCCA长分别为40解析:4:5:6【解析】【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(12AB•OD):(12BC•OF):(12AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.【点睛】此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.三、解答题21.原计划植树20天.【解析】【分析】设原计划每天种x 棵树,则实际每天种(1+20%)x 棵,根据题意可得等量关系:原计划完成任务的天数﹣实际完成任务的天数=3,列方程即可.【详解】解:设原计划每天种x 棵树,则实际每天种(1+20%)x 棵, 依题意得:4004000803(120%)x x+-=+ 解得x=200,经检验得出:x=200是原方程的解. 所以4000200=20. 答:原计划植树20天.【点睛】此题主要考查了分式方程的应用,正确理解题意,找出题目中的等量关系,列出方程是解题关键.22.【解析】【分析】将原式因式分解,然后代入求解即可.【详解】∵3a b -=,∴2(2)a a b b -+ 222a ab b =-+()2a b =-23==9.【点睛】本题考查了整式的化简求值,将原式进行适当的变形是解题的关键. 23.21x x+;﹣52 【解析】【分析】先分解括号内的第一部分,再算括号内的加法,同时把除法变成乘法,约分后代入求出即可.【详解】解:原式=[2(1)(1)(1)x x x -+-+1x ]÷11x +=(11xx-++1x)•(x+1)=21(1)xx x++•(x+1)=21 xx+,当x=﹣2时,原式=2 (2)12-+-=﹣52.【点睛】本题考查了分式的混合运算和求值,主要考查学生的化简能力和计算能力,题目比较好.24.(1)该种干果的第一次进价是每千克5元.(2)超市销售这种干果共盈利5820元.【解析】【分析】【详解】试题分析:(1)、设第一次进价x元,第二次进价为1.2x,根据题意列出分式方程进行求解;(2)、根据利润=销售额-进价.试题解析:(1)、设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得9000(120%)x+=2×3000x+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)、[30009000-55(120%)⨯+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.考点:分式方程的应用.25.详见解析.【解析】【分析】利用SSS证明△ABC≌△DEF,根据全等三角形的性质可得∠B=∠DEF,再由平行线的判定即可得AB∥DE.【详解】证明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),则∠B=∠DEF,∴AB∥DE.考点:全等三角形的判定与性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B '
B
30
50
l
2
1
D
E
C
B
A
武汉市江岸区2020—2021学年度上学期期末考试初二数学试
题及答案
八年级数学试题
一、选择题(本大题共12小题, 每小题3分, 共36分) 1、 4的平方根是
A.2
B.±2
C.-2
D.4
2、在函数2-=
x y 中,自变量x 的取值范畴是
A.x >2 B.x <2 C.2x ≥ D.2x ≤
3、如图,△ABC ≌△BAD ,假如AB = 6cm ,BD = 5cm ,AD = 4cm , 那么BC 的长是
(A) 4cm (B) 5cm (C) 6cm (D) 无法确定 4、下列各点,不在函数21y x =-的图象上的是
A .(2,3)
B .(-2,-5)
C .(0,-1)
D .(-1,0) 5、下列运算中正确的是
A 、325x x x ⋅=
B 、2x x x +=
C 、426()x x =
D 、22(2)4x x -=-
6、如图,ABC △与A B C '''△关于直线l 对称,则B ∠的度数为
A 、30
B 、50
C 、90
D 、100
7、如图,已知∠1=∠2,AC=AD ,增加下列条件之一: ①AB=AE ;②BC=ED ;③∠C=∠D ;④∠B=∠E . 其中能使△ABC ≌△AED 的条件有
A .1个
B .2个
C .3个
D .4个
8、下列各式由左边到右边的变形中,是因式分解的为
A .ay ax y x a +=+)(
B .4)4(442
+-=+-x x x x C .)12(22
-=-x x x x
D .x x x x x 3)4)(4(3162
+-+=+-
9、已知a+b=m ,ab=-4,化简(a-2)(b-2)的结果是
A
B
C
D
D
B
E
C
A
A. 2m -
B. 28m -
C. 2m
D. 6 10、已知点(– 4,1y ),(2,2y )都在直线1
32
y x =-
+上,则1y 、2y 的大小关系是 A .12y y > B .12y y = C .12y y < D .不能比较
11、在平面直角坐标系中,直线3y kx =+通过点(-1,1),则不等式30kx +<的解集为
A .32x <-
B .3
2
x < C .3x <- D .3x < 12、点P 是等边三角形ABC 所在平面上一点,若P 和ABC 的三个顶点所组成的PAB 、PBC 、PAC
差不多上等腰三角形,则如此的点P 的个数为
A .1
B .4
C .7
D .10 10
二、填空题(共4小题,每小题3分,共12分)
13、运算: 2
3
13()3
x x -
= ;23(2)a -=________;82a a ÷=________. 14、若
y=4y =,则x
y
=_______.
15、等腰三角形的一边等于4,另一边等于9,则它的周长是 。
16、小明从A 地动身走行到B 地,并从B 地返回到A 地,同时小张从B 地骑车
匀速到达A 地后,发觉忘带东西,赶忙以原速返回取到东西后,再以原速赶往A 地,结果与小明同时到达A 地,如图为小明离A 地距离S (千米)与所用时刻t (时)之间关系,则小明与小张第2次相遇时离A 地 千米. 三、解答题(本大题72分) 17、(本题满分12分)
分解因式:(1) 3
3
9x y xy - (2)2
484a a ++
18、(本题满分10分))
如图,已知90A B ∠=∠=︒,点E 为AB 上一点,且,CE DE CE DE ⊥=,
求证:ACE BED ≅
C
B
A
19、(本题满分10分).
先化简,再求值:()()()2
2322x y x y x y --+-,其中, 1
,22
x y ==-
20、(本题满分10分)
在如图所示的正方形网络中,每个小正方形的边长为1, 格点三角形(顶点是网络的交点的三角形)ABC 的顶点 A,C 的坐标为(4,5),(1,3).--
(1)请在如图所示的网络平面内作出平面直角坐标系; (2)请作出ABC 关于y 轴对称的A B C ''' (3)请写出点B 关于x 轴的对称点B ''的坐标。
21.(本题满分10分)
为促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户居民每月用电电费y (元)与用电量x (度)间的函数关系. (1)依照图象,阶梯电价方案分为三个档次,请填写下表:
(2)小明家某月用电120度,需交电费 元;
(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系。
22、(本题满分10分)
已知:如图,在△ABC中,∠C=90°,∠B=30°,AC=6,点D在边BC上,AD平分∠CAB,E为AC上的一个动点(不与A、C重合),EF⊥AB,垂足为F.
(1)求证:AD=DB;
(2)设CE=x,BF=y,求y关于x的函数解析式;
(3)当∠DEF=90°时,求BF的长。
23、(本题满分12分)
已知,如图1,在平面直角坐标系内,直线l 1:4y x =-+与坐标轴分别相交于点A 、B ,与直线l 2:1
3
y x =相交于点C .
(1)求点C 的坐标;
(2)如图1,平行于y 轴的直线1x =交直线l 1于点E ,交直线l 2于点D ,平行于y 轴的直线x a =交直线l 1于点M ,交直线l 2于点N ,若MN=2ED ,求a 的值;
(3) 如图2,点P 是第四象限内一点,且∠BPO =135°, 连接AP ,探究AP 与BP 之间的位置关系,并证明你的结论.
A
C
O
l 1
l 2
x=1
E
D x
y
B
图1
A B
O
l 1
y
x
P
图2
2020-2020学年度上学期期末考试
八年级数学试题 参考答案
一、选择题(本大题共12小题, 每小题3分, 共36分)
BCAC ADCC AAAD
二、填空题(共4小题,每小题3分,共12分)
13、6
x -,6
8a -,6
a 14、4 15、22 16、20 三、解答题(本大题72分)
17、(本题满分10分)
解:(1)原式= 2
2
(9)x x y - …………………………………3分 =(3)(3)x x y x y +- ………………………………6分
(2)原式=24(21)a a ++ ………………………………3分
= 2
4(1)a + ………………………………………6分 18、(本题满分10分))
略
19、(本题满分10分).
(1)解:原式
= 22 ………………2分(做对一个知识点给1分) = 4 ………………………………………………4分
(2)解:原式=2
2
2
2
4129(4)x xy y x y -+-- ………3分(做对一个知识点给2分) = 2
1210xy y -+ ………………………………………………4分
当1
,22
x y =
=-时, 原式=()2
112210(2)2
-⨯⨯-+⨯-………………………………5分
=52 ………………………………………6分
20、(本题满分10分)
解:(1)作图正确 ………………3分
(2)略 ………………7分
(3)( 2.1)--………………………………8分 21、(本题满分10分) 解:(1)
……………………4分(每空2分)
(2)54 ………………………6分
3)解:设y 与x 的关系式为b kx y +=
∵点(140,63)和(230,108)在b kx y +=上
∴⎩⎨⎧+=+=b
k b
k 23010814063………………………8分
解得⎩
⎨⎧-==75
.0b k ………………………9分
∴y 与x 的关系式为75.0-=x y …………………10分
22、解:(1)略 ……………………3分 (2)1
92
y x =+
……………………6分 (3)10 ……………………10分
23、解:(1)(3,1)B …………3分
(2)1a =-或7…………………………8分(只给出一种答案扣2分)
⊥,交BP的延长线于点Q
(3)过点O作OQ OP
先证△POQ为等腰直角三角形……………………………9分再证△AOP≌△BOQ……………………………11分
⊥……………………………12分
AP BP。