第十课时_1.4三角函数的图象与性质(2课时)
三角函数的图象与性质教案

三角函数的图象与性质教案一、教学目标1. 理解三角函数的定义和基本性质。
2. 学会绘制和分析三角函数的图象。
3. 掌握三角函数的周期性、奇偶性、单调性等性质。
4. 能够应用三角函数的性质解决问题。
二、教学内容1. 三角函数的定义和基本性质。
2. 三角函数的图象绘制方法。
3. 三角函数的周期性性质。
4. 三角函数的奇偶性性质。
5. 三角函数的单调性性质。
三、教学重点与难点1. 三角函数的定义和基本性质的理解。
2. 三角函数图象的绘制和分析。
3. 三角函数周期性、奇偶性、单调性的理解和应用。
四、教学方法1. 采用多媒体教学,展示三角函数的图象和性质。
2. 利用数学软件或图形计算器进行图象绘制和分析。
3. 引导学生通过观察、分析和归纳三角函数的性质。
4. 利用例题和练习题巩固所学知识。
五、教学安排1. 第一课时:三角函数的定义和基本性质。
2. 第二课时:三角函数的图象绘制方法。
3. 第三课时:三角函数的周期性性质。
4. 第四课时:三角函数的奇偶性性质。
5. 第五课时:三角函数的单调性性质。
六、教学目标1. 理解正弦函数、余弦函数的周期性。
2. 学会应用周期性解决实际问题。
3. 掌握正弦函数、余弦函数的相位变换。
七、教学内容1. 正弦函数、余弦函数的周期性。
2. 周期性在实际问题中的应用。
3. 正弦函数、余弦函数的相位变换。
八、教学重点与难点1. 周期性的理解和应用。
2. 相位变换的理解和应用。
九、教学方法1. 通过实例讲解周期性在实际问题中的应用。
2. 利用数学软件或图形计算器进行相位变换的演示。
3. 引导学生通过观察、分析和归纳正弦函数、余弦函数的周期性和相位变换。
十、教学安排1. 第六课时:正弦函数、余弦函数的周期性。
2. 第七课时:周期性在实际问题中的应用。
3. 第八课时:正弦函数、余弦函数的相位变换。
十一、教学目标1. 理解正切函数的图象和性质。
2. 学会应用正切函数解决实际问题。
3. 掌握正切函数的周期性和奇偶性。
人教A版高中数学必修一课件 《三角函数的图象与性质》三角函数(第二课时正、余弦函数的周期性与奇偶性)

三角函数奇偶性的判断 【例 2】 判断下列函数的奇偶性: (1)f(x)=sin-12x+π2; (2)f(x)=lg(1-sin x)-lg(1+sin x); (3)f(x)=1+s1i+n xs-in cxos2x.
16
[思路点拨]
17
[解] (1)显然x∈R,f(x)=cos12x,
A.-12
B.12
C.-
3 2
D.
3 2
24
[思路点拨] (1)先作出选项A,B中函数的图象,化简选项C、D中函 数的解析式,再判断奇偶性、周期性.
(2)先依据f(x+π)=f(x)化简f53π;再依据f(x)是偶函数和x∈0,π2,f(x) =sin x求值.
25
(1)D (2)D [(1)y=cos|2x|是偶函数,y=|sin 2x|是偶函数,y= sinπ2+2x=cos 2x是偶函数,y=cos32π-2x=-sin 2x是奇函数,根据公 式得其最小正周期T=π.
32
[提示] (1)×.因为对任意 x,sin23π+x与 sin x 并不一定相等. (2)×.不是所有的函数都有最小正周期,如函数 f(x)=5 是周期函数, 就不存在最小正周期. (3)×.函数 y= sin x的定义域为{x|2kπ≤x≤2kπ+π,k∈Z},不关于 原点对称,故非奇非偶. [答案] (1)× (2)× (3)×
23
【例3】 (1)下列函数中是奇函数,且最小正周期是π的函数是
() A.y=cos|2x|
B.y=|sin 2x|
C.y=sinπ2+2x
D.y=cos32π-2x
(2)定义在R上的函数f(x)既是偶函数,又是周期函数,若f(x)的最小正
周期为π,且当x∈0,π2时,f(x)=sin x,则f53π等于( )
三角函数的图像和性质讲解(定义域,值域,周期,单调性等)

三角函数的图象与性质教学目标:1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间教学重点:正、余弦函数的性质教学难点:正、余弦函数的单调性知识要点:1、定义域:函数sin y x =及cos y x =的定义域都是(),-∞+∞,即实数集R2、值域:函数sin y x =,x R ∈及cos y x =,x R ∈的值域都是[]1,1-理解:(1)在单位圆中,正弦线、余弦线的长都是等于或小于半径的长1的,所以sin 1x ≤,cos 1x ≤,即1sin 1x -≤≤,1cos 1-≤≤。
(2)函数sin y x =在2,()2x k k Z ππ=+∈时,y 取最大值1,当22x k ππ=-,()k Z ∈时,y 取最小值-1;函数cos y x =在2x k π=,()k Z ∈时,y 取最大值1,当2x k ππ=+,()k Z ∈时,y 取最小值-1。
正弦函数s i n y x =,x R ∈和余弦函数cos y x =,x R ∈是周期函数,2k π(0)k Z k ∈≠且都是它们的周期,最小正周期是2π。
4、奇偶性正弦函数sin y x =,x R ∈是奇函数,余弦函数cos y x =,x R ∈是偶函数。
理解:(1)由诱导公式()sin sin x x -=-,cos()cos x x -=可知以上结论成立;(2)反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称。
5、单调性(1)由正弦曲线可以看出:当x 由2π-增大到2π时,曲线逐渐上升,sin x 由-1增大到1;当x 由2π增大到32π时,曲线逐渐下降,sin x 由1减至-1,由正弦函数的周期性知道:①正弦函数sin y x =在每一个闭区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈上,都从-1增大到1,是增函数; ②在每一个闭区间32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈上,都从1减小到-1,是减函数。
高中数学第一章三角函数1.4.2正弦函数、余弦函数的性质第2课时正弦函数、余弦函数的性质(二)

(3)换元后配方利用二次函数求最值.
12/9/2021
第二十一页,共三十三页。
已知函数 f(x)=sin2x+cos x+43x∈0,23π,则
函数 f(x)的值域为( )
A.[1,2]
B.-14,74
C.-34,1
12/9/2021
第九页,共x+φ)(A>0,ω>0)的函数(hánshù)求 单调区间时,应采用“换元法”整体代换,将“ωx+φ”看作一个整体 “z”,即通过求y=Asin z的单调区间而求出原函数的单调区间.求形如y= Acos(ωx+φ)(A>0,ω>0)的函数的单调区间,方法同上.
D.cos-π6<cos-π5
【答案】C
12/9/2021
第六页,共三十三页。
3 . (2018 年 内 蒙 古 呼 伦 贝 尔 二 模 ) 若 函 数 f(x) = 1 + asin ax+π6 (a > 0) 的 最 大 值 为 3 , 则 f(x) 的 最 小 正 周 期 为 ________.
求最值.
12/9/2021
第二十七页,共三十三页。
1.函数 y=cos 2x 在下列哪个区间上是减函数( )
A.-π4,4π C.0,π2 【答案】C
B.π4,34π D.π2,π
【解析】若函数 y=cos 2x 递减,应有 2kπ≤2x≤π+2kπ,k
∈Z,即 kπ≤x≤π2+kπ,k∈Z,令 k=0 可得 0≤x≤π2.
第2课时(kèshí) 正弦函数、余弦函数的性质(二)
12/9/2021
第一页,共三十三页。
目标定位
重点难点
1.借助图象理解正、余弦函数在
三角函数的图像与性质课件

1
0 -1
y
y=-cosx x [0,2 ]
1
●
o
●
3●
2
x
2
2
-1 ●
●
思考:
1、函数y=1+sinx的图象与函数y=sinx的图象有什么关系? 2、函数y=-cosx的图象与函数y=cosx的图象有什么关系?
y 2
1
o
2
-1
y
1
o
2
-1
y=1+sinx x[0, 2 ]
3
2
x
2
y=sinx x[0, 2 ]
解:(1)函数的定义域为 R,
且
f(x)
=
cos(
π 2
+
2x)
=
-
sin
2x.∵f( -x) =-
sin(-2x)=sin 2x=-f(x),∴函数 f(x)=cos(2x
+52π)是奇函数.(2)函数的定义域为 R,
且 f(-x)=sin[cos(-x)]=sin(cos x)=f(x),
∴函数 f(x)=sin(cos x)是偶函数.
【名师点评】 判断函数奇偶性时,必须先检查定义 域是否是关于原点的对称区间.如果是,再验证f(-x) 是否等于-f(x)或f(x),进而判断函数的奇偶性;如果 不是,则该函数必为非奇非偶函数.
跟踪训练
3.判断下列函数的奇偶性.
(1)f(x)=cos(2x+52π);
(2)f(x)=sin(cos x).
(2)y= - cosx, x [0, 2 ]
解:(1)按五个关键点列表
x
0
2
3
2
2
sinx 0 1 0 -1 0
《三角函数的概念(第二课时)》示范教学方案

《5.2.1 三角函数的概念(第二课时)》教学设计1.掌握三角函数值的符号;2.掌握诱导公式一,初步体会三角函数的周期性.教学重点:函数值的符号、诱导公式一.教学难点:对诱导公式的发现与认识.PPT课件.资源引用:【知识点解析】三角函数值在各象限的符号、【知识点解析】对三角函数值符号的理解(一)创设情境引导语:前面学习了三角函数的定义,根据已有的学习函数的经验,你认为接下来应研究三角函数的哪些问题?预设的师生活动:先由学生发言.一般而言,学生会直接把问题指向“图象与性质”.教师可以在肯定学生想法的基础上,指出三角函数的特殊性:预设答案:因为单位圆上点的坐标或坐标比值就是三角函数,而单位圆具有对称性,这种对称性反映到三角函数的取值规律上,就会呈现出比幂函数、指数函数和对数函数等更丰富的性质.例如,我们可以从定义出发,结合单位圆的性质直接得到一些三角函数的性质.设计意图:明确研究的问题和思考方向.一般地,学生不习惯于借助单位圆的性质研究三角函数的性质,所以需要教师的讲解和引导.(二)新知探究1.三角函数值的符号问题1:由三角函数的定义以及任意角α的终边与单位圆交点所在的象限,你能发现正弦函数、余弦函数和正切函数的值的符号有什么规律吗?如何用集合语言表示这种规律?预设的师生活动:由学生独立完成.★资源名称:【知识点解析】三角函数值在各象限的符号★使用说明:本资源展现“三角函数值在各象限的符号”,辅助教师教学,加深学生对于知识的理解和掌握.适合于教师课堂进行展示.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.预设答案:用集合语言表示的结果是:当α∈{β|2k π<β<2k π+π,k ∈Z }时,sin α>0;当α∈{β|2k π+π<β<2k π+2π,k ∈Z }时,sin α<0;当α∈{β|β=k π,k ∈Z }时,sin α=0.其他两个函数也有类似结果.设计意图:在直角坐标系中标出三角函数值的符号规律不难,可由学生独立完成.用集合语言表示,可以复习象限角、终边相同的角的集合表示等.例1 求证:角θ为第三象限角的充要条件是⎩⎪⎨⎪⎧sin θ<0,①tan θ>0.② 预设的师生活动:先引导学生明确问题的条件和结论,再由学生独立完成证明. 预设答案:先证充分性.因为①式sin θ<0成立,所以θ角的终边可能位于第三或第四象限,也可能与y 轴的负半轴重合;又因为②式tan θ>0成立,所以θ角的终边可能位于第一或第三象限.因为①②式都成立,所以θ角的终边只能位于第三象限.于是角θ为第三象限角. 再证必要性.因为角θ为第三象限角,由定义①②式都成立.设计意图:通过联系相关知识,培养学生的推理论证能力.★资源名称:【知识点解析】对三角函数值符号的理解★使用说明:本资源展现“对三角函数值符号的理解”,辅助教师教学,加深学生对于知识的理解和掌握.适合教师课堂展示.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.2.诱导公式一问题2:联系三角函数的定义、象限角以及终边相同的角的表示,你有发现什么? 师生活动:学生在问题引导下自主探究,发现诱导公式一.追问:(1)观察诱导公式一,对三角函数的取值规律你有什么进一步的发现?它反映了圆的什么特性?(2)你认为诱导公式一有什么作用?预设答案:(1)诱导公式一体现了三角函数周期性取值的规律,这是“单位圆上的点绕圆周旋转整数周仍然回到原来位置”的特征的反映.(2)利用公式一可以把求任意角的三角函数值,转化为求0~2π角的三角函数值.同时,由公式一可以发现,只要讨论清楚三角函数在区间[0,2π]上的性质,那么三角函数在整个定义域上的性质就清楚了.设计意图:引导学生通过建立相关知识的联系发现诱导公式一及其体现的三角函数周期性取值的规律,这是“单位圆上的点绕圆周旋转整数周仍然回到原来位置”的特征的反映.在此过程中,可以培养学生用联系的观点看待问题,发展直观想象等素养.例2 确定下列三角函数值的符号,然后用计算器验证:(1)cos 250°;(2)sin ⎪⎭⎫ ⎝⎛-4π; (3)tan (-672°); (4)tan 3π.解:(1)因为250°是第三象限角,所以cos 250°<0;(2)因为4π-是第四象限角,所以sin ⎪⎭⎫ ⎝⎛-4π<0; (3)因为tan (-672°)=tan (48°-2×360°)=tan 48°,而48°是第一象限角, 所以tan (-672°)>0;(4)因为tan 3π=tan (π+2π)=tan π,而π的终边在x 轴上,所以tan π=0.例3 求下列三角函数值:(1)sin 1 480°10′(精确到0.001);(2)cos4π9; (3)tan ⎪⎭⎫ ⎝⎛-6π11. 解:(1)sin 1480°10′=sin (40°10′+4×360°)=sin 40°10′≈0.645;(2)9πππcos cos(2π)cos 4442=+==;(3)11πππtan()tan(2π)tan 6663-=-==. 师生活动:以上都是教科书中的例题,难度不大,可以由学生独立完成,并作课堂展示.教师可以鼓励学生采用不同的变形方法得出答案.在用计算器验证时,提醒学生注意角度制的设置.(三)课堂练习教科书练习第1,2,3,4,5题.(四)布置作业教科书习题5.2第1,3,4,5,7,8,9,10题.(五)目标检测设计1.求下列三角函数的值:(1)cos (-23π6); (2)tan 25π6. 设计意图:考查诱导公式一,特殊角的三角函数值.2.角α的终边与单位圆的交点是Q ,点Q 的纵坐标是12,说出几个满足条件的角α. 设计意图:考查正弦函数的定义,诱导公式一.3.对于①sin θ>0,②sin θ<0,③cos θ>0,④cos θ<0,⑤tan θ>0与⑥tan θ<0,选择恰当的关系式序号填空:(1)角θ为第二象限角的充要条件是________;(2)角θ为第三象限角的充要条件是________.设计意图:考查三角函数值的符号规律.。
人教版高中数学必修4第一章三角函数《1.4三角函数的图象与性质:1.4.2 正弦函数、余弦函数的性质》教学PPT

解:(2)当x 2k , k Z时,函数取得最大值,ymax 1
2
当x 2k , k Z时,函数取得最小值,
2
ymin 1
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymax
1,
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymin
1.
二、 正、余弦函数的奇偶性
-4 -3
例1.下列函数有最大(小)值?如果有,请写出取最大(小) 值时的自变量x的集合,并说出最大(小)值是什么?
(1)y cos x 1, x R; (2)y sin x, x R.
解:(1)当x 2k , k Z时,ymax 11 2,
当x 2k , k Z时,ymin 11 0.
1.4.2 正弦、余弦函数的性质
(1)周期性
定义域、值域
-4 -3
y
1
-2
- o
-1
y=sinx (xR)
2
3
4
定义域 xR
-4 -3
y=cosx (xR)
y
1
-2
- o
-1
值 域 y[ - 1, 1 ]
2
3
4
5 6x 5 6x
举例:
生活中“周而复始”的变化规律。
24小时1天、7天1星期、365天1年……. 相同的间隔重复出现的现象称为周期现象. 数学中又有哪些周期现象呢?
思考:y=sinx,x∈R的图象为什么会重复出现形 状相同的曲线呢?
y
1
4
3
2
7 2
5
3
2
「精品」高中数学第一章三角函数1.4三角函数的图象与性质1.4.2第2课时正弦余弦函数的单调性与最值课件新人

[跟踪训练] 1.(1)函数y=sin3x+π6,x∈-π3,π3的单调递减区间为________. (2)已知函数y=cosπ3-2x,则它的单调减区间为________. (1)-π3,-29π,π9,π3 (2)kπ+π6,kπ+23π(k∈Z) [(1)由π2+2kπ≤3x+π6≤32π+2kπ(k∈Z), 得π9+23kπ≤x≤49π+23kπ(k∈Z).
π 2
,α>
π 2
-β,α∈
0,π2,π2-β∈0,π2,
所以cos α<cosπ2-β=sin β.]
(2)①cos158π=cosπ8,cos149π=cos49π,因为0<π8<49π<π,而y=cos x在[0,π] 上单调递减,
所以cosπ8>cos49π, 即cos158π>cos149π. ②因为cos 1=sinπ2-1,而0<π2-1<1<π2且y=sin x在0,π2上单调递增, 所以sinπ2-1<sin 1, 即cos 1<sin 1.
[跟踪训练]
2.(1)已知α,β为锐角三角形的两个内角,则以下结论正确的是( )
A.sin α<sin β
B.cos α<sin β
C.cos α<cos β
D.cos α >cos β
(2)比较下列各组数的大小:
①cos158π,cos149π;②cos 1,sin 1.
(1)B
[(1)α,β为锐角三角形的两个内角,α+β>
性由自变量的大 [思路探究] 用诱导公式化简 → 小推出对应函数
值的大小
[解] (1)∵-π2<-1π0<-1π8<π2, ∴sin-1π8>sin-1π0. (2)sin 196°=sin(180°+16°)=-sin 16°, cos 156°=cos(180°-24°)=-cos 24°=-sin 66°, ∵0°<16°<66°<90°, ∴sin 16°<sin 66°, 从而-sin 16°>-sin 66°, 即sin 196°>cos 156°.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦、余弦函数的 图象
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象? 途径:利用单位圆中正弦、余弦线来解决。
y=sinx x[0,2]
终边相同角的三角函数值相等 即: sin(x+2k)=sinx, kZ
f ( x 2k ) f ( x) 利用图象平移
y=sinx xR
正弦、余弦函数的图象
y 1
2
o -1
2
3 2
2
x
y=sinx x[0,2] y=sinx xR
y
1
正弦曲 线
2
-4
-3
-2
-
o
-1
3
4
5
6
x
如何由正弦函数图像得y 到余弦函数图像?
-4 -3 -2 -
正弦、余弦函数的图象
1
o
-1
2
3
4
5
函数y A sin( x )及y A cos( x ), x R ( A, , 为常数, A 0, 0)的周期T 2
新课讲解. 正弦函数、余弦函数的性质 (三)关于奇偶性(复习)
一般地, •如果对于函数f( x )的定义域内任意一个x, 都有f(- x )= f( x ),那么就说f( x )是偶函数 •如果对于函数f( x )的定义域内任意一个x, 都有f(- x )= -f( x ),那么就说f( x )是奇函数 结论:正弦函数是奇函数,余弦函数是偶 函数
, 0)
今日作业
书本P46.A组3.10
B组3+附加
附加.判断下列函数的奇偶性
1) y 2 cos 2 x
2) y sin x 1
复习回顾
一.正弦余弦函数的作图: “五点法”作简图
二.周期性:
2 函数y A sin( x )和y Acos( x ),x R的周期T | |
对称中心为
2
k ,0(k Z )
y cos x, x R 的对称轴为 x k , k Z ,
k , 0 ( k Z ) 对称轴是对应函数图像 对称中心为 2 的最高点或者最低点
练:导学案
对称中心是 与x轴的交点
在此处f ( x) 0
新课讲解. 例3.下列函数是奇函数的为: D
1 sin x cos x 例5.试判断函数 f ( x) 在下列区间上的奇偶性 1 sin x cos x
(1) x ( . ).......(2) x [ . ] 2 2 2 2 注意大前提:定义域关于原点对称
f(x+T)=f(x)
那么函数f(x)就叫做周期函数.非零常数T 叫做这个函数的周期. 注意:如果在周期函数f(x)的所有周期中 存在一个最小的正数,那么这个最小正数 就叫做f(x)的最小正周期.
知识探究(三):认识正余弦函数的周期
2k , k z x R 的周期为_____________, (1)函数 y sin x, 2 最小正周期为_______.
三.奇偶性:
y sin x为奇函数,图像关于原点对称; y cos x为偶函数图像关于y轴对称。
四.正、余弦余弦函数的对称轴、对称中心
课后作业
1.书本P36练习,做书上. 2.P46习题A组2(把本题改为:求下列函数的 周期)6,7,10 3.判断下列函数的奇偶性
1) y 2 cos 2 x 2) y sin x 1
函数y=Asin( x )对称轴的求法:
令sin (x ) 1, 得到x k
2
(k Z )
2k 2 所以函数的图像的对称轴就为x 2
函数y=Asin( x )对称中心的求法:
令sin (x ) 0, 得到x k (k Z ) 所以函数的图像的对称中心就为( k
2k , k z (2)函数 y cos x , x R 的周期为______________ 2 最小正周期为________.
新课讲解. 正弦函数、余弦函数的性质 例2.求下列函数的周期: ---利用结论
1) y sin( x 2) y cos 3 x
3
)
1 3) y 3sin( x ), x R 一般 3 5 结论:
3、正、余弦函数的对称性
y
1 -4 -3 -2 -
o
-1
2
3
4
5
6
x
正弦函数的图象 y=cosx=sin(x+ ), xR
2
正弦曲 线
形状完全一样 只是位置不同
余弦函数的图象
y
1
余弦曲 线
2 3 4 5 6
-4
-3
-2
-
o
-1
x
y sin x, x R 的对称轴为x k , k Z ,
6
x
正弦函数的图象 y=cosx=sin(x+ ), xR
2
正弦曲 线
形状完全一样 只是位置不同
余弦函数的图象
y
(0,1) 1
3 ( ,0) 2
( 2 ,1) 2 3 4
余弦曲 线
5 6
-4
-3
-2
-
(o ,0) 2 -1
( ,-1)
x
新课讲解. 正弦函数、余弦函数的性质 一周期性 1.周期性的定义 对于函数f(x),如果存在一个非零常数T, 使得当x取定义域内的每一个值时,都有