模糊综合评价法与例题

合集下载

关于模糊综合评价的矩阵算法

关于模糊综合评价的矩阵算法

关于模糊综合评价的矩阵算法:1、按模糊矩阵运算(培训教材课堂上的例题):a、权重系数会事先给出,由此会得出集合A = [ 0.2, 0.2, 0.2, 0.4 ]b、指标集和评价集按下式列出,代入数据表示成集合R评价集V1V2V3V4V5指U10 0.1 0.2 0.3 0.4标U2 0.1 0.1 0.4 0.2 0.2 代入数据表示成集U3 0 0.1 0.2 0.6 0.1U4 0 0.2 0.5 0.3 0C、综合评价集合的计算B=A·R即用集合A中第一个数和集合R中的沿第一列方向的第一个数模糊相乘(0.2︿0),然后再模糊相加(﹀)集合A中第二个数和集合R中的沿第一列方向的第二个数模糊相乘(0.2︿0.1),依次类推得到下式(0.2︿0)﹀(0.2︿0.1) ﹀(0.2︿0) ﹀(0.4︿0)按相乘取小,相加取大得出= 0 ﹀0.1﹀0 ﹀0 = 0.1然后再用集合A中第一个数和集合R中的沿第二列方向的第一个数模糊相乘(0.2︿0.1),然后再模糊相加(﹀)集合A中第二个数和集合R中的沿第二列方向的第二个数模糊相乘(0.2︿0.1),依次类推得到下列各算式,按相乘取小,相加取大得出各数值(0.2︿0.1)﹀(0.2︿0.1)﹀(0.2︿0.1)﹀(0.4︿0.2)= 0.2(0.2︿0.2)﹀(0.2︿0.4)﹀(0.2︿0.2)﹀(0.4︿0.5)= 0.4(0.2︿0.3)﹀(0.2︿0.2)﹀(0.2︿0.6)﹀(0.4︿0.3)= 0.3(0.2︿0.4)﹀(0.2︿0.2)﹀(0.2︿0.1)﹀(0.4︿0)= 0.2即A·R = [ 0.1, 0.2, 0.4, 0.3, 0.2 ]归一化:[0.1/1.2, 0.2/1.2, 0.4/1.2, 0.3/1.2, 0.2/1.2]= [ 0.083, 0.167,0.333,0.250,0.167 ]2、按经典矩阵运算(新第二版教材上的例题):a、权重系数会事先给出,由此会得出集合A = [ 0.2, 0.2, 0.2, 0.4 ]b、指标集和评价集按下式列出,代入数据表示成集合R评价集V1V2V3V4V5指U10 0.1 0.2 0.3 0.4标U2 0.1 0.1 0.4 0.2 0.2 代入数据表示成集U3 0 0.1 0.2 0.6 0.1U4 0 0.2 0.5 0.3 0C、综合评价集合的计算B=A·R即用集合A中第一个数和集合R中的沿第一列方向的第一个数相乘0.2×0,然后再相加(+)集合A 中第二个数和集合R中的沿第一列方向的第二个数相乘0.2×0.1,依次类推得到下式(0.2×0)+(0.2×0.1)+(0.2×0 )+(0.4×0)=0.02然后再用集合A中第一个数和集合R中的沿第二列方向的第一个数相乘0.2×0.1,然后再相加(+)集合A中第二个数和集合R中的沿第二列方向的第二个数相乘0.2×0.1,依次类推得到下列各算式及值(0.2×0.1)+(0.2×0.1)+(0.2×0.1)+(0.4×0.2)= 0.14(0.2×0.2)+(0.2×0.4)+(0.2×0.2)+(0.4×0.5)= 0.36(0.2×0.3)+(0.2×0.2)+(0.2×0.6)+(0.4×0.3)= 0.34(0.2×0.4)+(0.2×0.2)+(0.2×0.1)+(0.4×0)= 0.14即A·R = [ 0.02, 0.14, 0.36,0.34, 0.14](因0.02+0.14+0.36+0.34+0.14=1,无需再归一化)3、考试时采用模糊矩阵运算,因教材上给出的全是模糊矩阵运算公式,而此节讲的又是模糊理论方法,理应采用模糊矩阵运算,但不知为啥教材上用经典矩阵计算。

模糊综合评价模型及实例

模糊综合评价模型及实例

模糊综合评价模型模糊综合评价模型(Fuzzy Synthetic Evaluation Model)目录[隐藏]1 什么是模糊综合评价模型?2 模糊评价的基本思想3 模糊综合评价模型类别[1]o 3.1 模糊评价基本模型o 3.2 置信度模糊评价模型4 模糊综合评价模型的运用5 模糊综合评价模型案例分析o 5.1 案例一:模糊综合评价模型在企业跨国并购风险评价中的应用[2]6 参考文献[编辑]什么是模糊综合评价模型?模糊综合评价方法是模糊数学中应用的比较广泛的一种方法。

在对某一事务进行评价时常会遇到这样一类问题,由于评价事务是由多方面的因素所决定的,因而要对每一因素进行评价;在每一因素作出一个单独评语的基础上,如何考虑所有因素而作出一个综合评语,这就是一个综合评价问题。

[编辑]模糊评价的基本思想许多事情的边界并不十分明显,评价时很难将其归于某个类别,于是我们先对单个因素进行评价,然后对所有因素进行综合模糊评价,防止遗漏任何统计信息和信息的中途损失,这有助于解决用“是”或“否”这样的确定性评价带来的对客观真实的偏离问题。

[编辑]模糊综合评价模型类别[1][编辑]模糊评价基本模型设评判对象为P: 其因素集 ,评判等级集。

对U中每一因素根据评判集中的等级指标进行模糊评判,得到评判矩阵:(1)其中,r ij表示u i关于v j的隶属程度。

(U,V,R) 则构成了一个模糊综合评判模型。

确定各因素重要性指标(也称权数)后,记为,满足,合成得(2)经归一化后,得 ,于是可确定对象P的评判等级。

[编辑]置信度模糊评价模型(1) 置信度的确定。

在(U,V,R)模型中,R中的元素r ij是由评判者“打分”确定的。

例如 k 个评判者,要求每个评判者u j对照作一次判断,统计得分和归一化后产生, 且 , 组成 R0。

其中既代表 u j关于v j的“隶属程度”,也反映了评判u j为 v j的集中程度。

数值为1 ,说明 u j为 v j是可信的,数值为零为忽略。

模糊综合评判法的应用案例精选全文完整版

模糊综合评判法的应用案例精选全文完整版

可编辑修改精选全文完整版第三节 模糊综合评判法的应用案例二、在物流中心选址中的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。

在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。

基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。

这些模型及算法相当复杂。

其主要困难在于:(1) 即使简单的问题也需要大量的约束条件和变量。

(2) 约束条件和变量多使问题的难度呈指数增长。

模糊综合评价方法是一种适合于物流中心选址的建模方法。

它是一种定性与定量相结合的方法,有良好的理论基础。

特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。

1.模型⑴ 单级评判模型① 将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满足:1, ki ij i U U U U φ===② 权重A 的确定方法很多,在实际运用中常用的方法有:Delphi 法、专家调查法和层次分析法。

③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。

④单级综合评判B A R⑵多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。

无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。

所以,需采用分层的办法来解决问题。

2.应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。

根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中心选址的三级模型因素集U 分为三层: 第一层为 {}12345,,,,U u u u u u =第二层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。

模糊综合评价法及例题

模糊综合评价法及例题

指标
很好

一般

疗效
治愈
显效
好转
无效
住院日
≤15
16~20
21~25
>25
费用(元) ≤1400 1400~1800 1800~2200 >2200
表2 两年病人按医疗质量等级的频数分配表
指标
很好 质量好 等级一般 差
疗效 住院日 费用
01年 02年
01年 02年
01年 02年
160 170
180 200
•模糊概念 秃子悖论: 天下所有的人都是秃子
设头发根数n n=1 显然 若n=k 为秃子 n=k+1 亦为秃子
模糊概念:从属于该概念到不属于该概念之间 无明显分界线
年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨、礼品。
共同特点:模糊概念的外延不清楚。 模糊概念导致模糊现象 模糊数学就是用数学方法研究模糊现象。
模糊综合评价
▪ 假设评价科研成果,评价指标集合U={学术水 平,社会效益,经济效益}其各因素权重设为
W {0.3,0.3,0.4}
模糊综合评价
▪ 请该领域专家若干位,分别对此项成果每一因素进行单因素 评价(one-way evaluation),例如对学术水平,有50%的 专家认为“很好”,30%的专家认为“好”,20%的专家认为 “一般”,由此得出学术水平的单因素评价结果为
• 术语来源 Fuzzy: 毛绒绒的,边界不清楚的 模糊,不分明,弗齐,弗晰,勿晰
模糊数学的产生与基本思想
•产生 1965年,L.A. Zadeh(扎德) 发表了文章《模糊集 》
(Fuzzy Sets,Information and Control, 8, 338-353 )

模糊综合评判法(举例)

模糊综合评判法(举例)

评语集:
V={好,较好,一般,较差,差};
(1)建立模糊综合评判矩阵 当学科评审组的每个成员对评判的对象进 行评价,假定学科评审组由7人组成,用打分 或投票的方法表明各自的评价
例如对王,学科评审组中有4人认为政治表 现及工作态度好,2人认为较好,1人认为一般, 对其他因素作类似评价。
评判集 因素集 政治表现及 工作态度 教学水平 科研水平 外语水平
例4: 模糊综合评判在不同厂商工程机械产 品的社会评价中的应用 备择对象: X={x1,x2,x3}={徐工挖掘机,中联挖掘 机,三一挖掘机} 确定指标集: U={u1,u2,u3,u4,u5}={工作性能,性价比, 驾驶舒适度,外观,售后服务}
确定评语集:
V={v1,v2}={好,一般} 确定权重矢量: A=(a1,a2,a3,a4,a5)=(0.5,0.2,0.1,0.05,0.15)
首先对图像进行评价: 假设有30%的人认为很好,50%的人认为较好, 20%的人认为一般,没有人认为不好,这样得 到图像的评价结果为: (0.3,0.5,0.2 ,0) 同样对声音有:(0.4,0.3,0.2,0.1) 对价格为: (0.1,0.1,0.3 ,0.5) 所以有模糊评价矩阵:
0 .3 0 .5 0 .2 0 R 0 .4 0 .3 0 .2 0 .1 0 .1 0 .1 0 .3 0 .5
•模糊综合评价模型
对方案、人才、成果的评价,人们的考虑
的因素很多,而且有些描述很难给出确切 的表达,这时可采用模糊评价方法。它可 对人、事、物进行比较全面而又定量化的 评价,是提高领导决策能力和管理水平的 一种有效方法。
•模糊综合评价的基本步骤:
(1)首先要求出模糊评价矩阵R 其中Rij表示方案X在第i个指标处于第j级 评语的隶属度,当对多个目标进行综合评 价时,还要对各个目标分别加权,设第i个 目标权系数为Wi,则可得权系数向量:

模糊综合评价法及例题 1 ppt课件

模糊综合评价法及例题 1 ppt课件

0.4)
0.5 0.3
0.3 0.4
0.2 0.2
0 0.1
0.2 0.2 0.3 0.2
0 .30 .30 .30 .2
2020/12/12
24
算子
▪ (2) M(•,)算子
m
skj 1 (jrj) k = 1 m j ma jr x jk, k 1 ,2 , ,n
(0.3
0.3
0.4)
0.5 0.3
0.3 0.4
0.2 0.2
0 0.1
0 .10 5 .10 2 .10 2 .0 8
0.2 0.2 0.3 0.2
2020/12/12
25
算子
▪ (3) M(,)
m
skm 1 i,nmij,n rjk,
k 1,2, ,n
j 1
(0.3
0.3
0.4)
0.5 0.3
R 1 0 . 5 ,0 . 3 ,0 . 2 ,0
R 2 0 . 3 ,0 . 4 ,0 . 2 ,0 . 1
R1 0.5 0.3 0.2 0 RR20.3 0.4 0.2 0.1
R3 0.2 0.2 0.3 0.2
2020/12/12
22
模糊综合评价
r11
SW R1,2, ,mr21
6
什么是模糊数学
•模糊概念 秃子悖论: 天下所有的人都是秃子
设头发根数n n=1 显然 若n=k 为秃子 n=k+1 亦为秃子
模糊概念:从属于该概念到不属于该概念之间 无明显分界线
年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨、礼品。
2020/12/12

(完整版)多级模糊综合评判法案例

(完整版)多级模糊综合评判法案例

第三节 模糊综合评判法的应用案例二、在物流中心选址中的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。

在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。

基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。

这些模型及算法相当复杂。

其主要困难在于:(1) 即使简单的问题也需要大量的约束条件和变量。

(2) 约束条件和变量多使问题的难度呈指数增长。

模糊综合评价方法是一种适合于物流中心选址的建模方法。

它是一种定性与定量相结合的方法,有良好的理论基础。

特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。

1.模型⑴ 单级评判模型① 将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满足:1, ki ij i U U U U φ===② 权重A 的确定方法很多,在实际运用中常用的方法有:Delphi 法、专家调查法和层次分析法。

③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。

④ 单级综合评判B A R =⑵多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。

无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。

所以,需采用分层的办法来解决问题。

2.应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。

根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中心选址的三级模型因素集U 分为三层: 第一层为 {}12345,,,,U u u u u u =第二层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。

模糊综合评价方法案例

模糊综合评价方法案例

模糊综合评价方法在物流中心选址的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。

在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。

基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。

这些模型与算法相当复杂。

其主要困难在于:(1)即使简单的问题也需要大量的约束条件和变量; (2)约束条件和变量多使问题的难度呈指数增长。

模糊综合评判方法是一种适合于物流中心选址的建模方法。

它是一种定性与定量相结合的方法,有良好的理论基础。

特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。

1、模型(1)单级评判模型①将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为且应满足:1,ki i j i U U U U ===∅②权重A 的确定方法很多,在实际运用中常用的方法有:层次分析法、Delphi 法、专家调查法、加权平均法。

③通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。

④单级综合评判B A R =. (2)多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。

无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。

所以,需采用分层的办法来解决问题。

2、应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。

根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见下表:物流中心选址的三级模型 第一级指标 第二级指标第三级指标 自然环境1u(0.1) 气象条件11u (0.25) 地质条件12u (0.25) 水文条件13u (0.25) 地形条件14u (0.25)交通运输2u(0.2) 经营环境3u(0.3)侯选址4u(0.2) 面积41u (0.1)形状42u (0.1) 面积43u (0.4) 面积44u (0.4)公共设施5u(0.2)三供51u (0.4)供水511u (1/3) 供电512u (1/3) 供气513u (1/3) 废物处理52u (0.3)排水521u(0.5)固体废物处理513u(0.5)通信53u (0.2) 道路设施54u (0.1)因素集U 分为三层:第一层为{}12345,,,,U u u u u u =第二层为}{111121314,,,u u u u u =;}{441424344,,,u u u u u =;}{551525354,,,u u u u u = 第三层为}{51511512513,,u uu u =;}{52521522,u u u = 假设某区域有8个候选地址,决断集}{,,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊集合论的基础知识
模糊集合论的基础知识
模糊集合论的基础知识
模糊集合论的基础知识
模糊集合论的基础知识
▪ 模糊集合的运算
模糊集合论的基础知识
模糊集合论的基础知识
模糊集合论的基础知识
▪ 分解定理
模糊数学应用
▪ 模糊综合评价 ▪ 模糊综合评价的一般步骤如下: ▪ (1) 确定评价对象的因素集; ▪ (2) 确定评语集; ▪ (3) 作出单因素评价; ▪ (4) 综合评价。 ▪ 例表表:示示评外质价 观 量某 式 。种 样牌 ,号x2表的示手走表时U=准{确x1,,x2x,x3表3,x示4},价其格中,xx14 ▪ 评示语满集意为 ,Vy3=表{示y1,不y2满,y3意},。其中y1表示很满意,y2表
0.8 0.8 0.7 0.3
模糊综合评价
▪ 以上四个算子在综合评价中的特点是
模糊综合评价
▪ 最后通过对模糊评判向量S的分析作出综合结 论.一般可以采用以下三种方法:
▪ (1) 最大隶属原则 M max( S1, S2 , , Sn )
▪ (2) 加权平均原则
S 0.3 , 0.3 , 0.3 , 0.2
R1 0.5 , 0.3 , 0.2 , 0
R2 0.3 , 0.4 , 0.2 , 0.1
R1 0.5 0.3 0.2 0 R R2 0.3 0.4 0.2 0.1
R3 0.2 0.2 0.3 0.2
模糊综合评价
算子
▪ (3) M ( , )
m

sk min1 , min j , rjk , k 1 , 2 , , n
j1

0.5 0.3 0.2 0
(0.3 0.3 0.4) 0.3 0.4 0.2 0.1
0.2 0.2 0.3 0.2
第四讲 模糊综合评判法 (9学时)
•学生汇报点评,引出模糊综合评价 •模糊数学基本概念 •隶属度的含义及确定【重点】 •模糊集合的表示方法 •模糊集合的运算【重点、难点】 •模糊集合分解定理【重点、难点】 •模糊综合评判法的步骤 •常见模糊算子【重点、难点】 •模糊综合评判法的应用【重点、难点】
模糊(Fuzzy)综合评价法
j 1

r
jk
)= max 1 j m
min
j , rjk
, k 1, 2, , n
(0.3
0.3
0.5 0.3 0.2 0
0.4) 0.3 0.4 0.2 0.1
0.3 0.3 0.3 0 M (•,)算子
设头发根数n n=1 显然 若n=k 为秃子 n=k+1 亦为秃子
模糊概念:从属于该概念到不属于该概念之间 无明显分界线
年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨、礼品。
共同特点:模糊概念的外延不清楚。 模糊概念导致模糊现象 模糊数学就是用数学方法研究模糊现象。
• 术语来源 Fuzzy: 毛绒绒的,边界不清楚的 模糊,不分明,弗齐,弗晰,勿晰
模糊数学的产生与基本思想
•产生 1965年,L.A. Zadeh(扎德) 发表了文章《模糊集 》
(Fuzzy Sets,Information and Control, 8, 338-353 )
•基本思想 用属于程度代替属于或不属于。 某个人属于秃子的程度为0.8, 另一个人属于 秃子的程度为0.3等.
模糊集合论的基础知识
▪ 定义1: 从论域U到闭区间[0,1]的任意一个映
射: A:U 0,,1对任意
u∈U,u %A % Au ,Au
U的一个模糊%子集,A%u
0,1 ,那么 A 叫做
叫做u的隶属函%数,也
记做 A u。
%
%
模糊集合论的基础知识
▪ 常用表示方法
问题10 ·“模糊”是否指“糊里糊涂”?
问题20 ·元素a=55岁的人、b=65的人与模糊集 A 的关系? ~
能说 a A 或a A ?
~
~
问题30 ·如何用隶属函数求隶属度?
如:55岁的人X1∈A={Q}集合的程度 65岁的人X2∈A={Q}集合的程度
什么是模糊数学
•模糊概念 秃子悖论: 天下所有的人都是秃子
模糊综合评价
▪ 假设评价科研成果,评价指标集合U={学术水 平,社会效益,经济效益}其各因素权重设为
W {0.3,0.3,0.4}
模糊综合评价
▪ 请该领域专家若干位,分别对此项成果每一因素进行单因素 评价(one-way evaluation),例如对学术水平,有50%的 专家认为“很好”,30%的专家认为“好”,20%的专家认为 “一般”,由此得出学术水平的单因素评价结果为
0.8 0.8 0.7 0.3
算子
▪ (4) M (• , )
sk
min1 ,
m
j rjk
j 1
,
k 1, 2, , n
0.5 0.3 0.2 0
(0.3 0.3 0.4) 0.3 0.4 0.2 0.1
0.2 0.2 0.3 0.2
n
( i ) sik
u * i1 n sik i 1
评价等级集合为={很好,好,一般,差},各等级赋值分别为{4,3,2,
r11 r12 r1n
S
W
R 1 , 2
,
,
m


r21 rm1
r22 rm2

r2n rmn


s1 , s2
,
, sn

▪ 其中“ ”为模糊合成 算子
算子
▪ (1) M (,)算子
m
sk

(j
m
sk

( j
j 1

r
jk
)= max 1 j m
j
rjk
,
k 1, 2, , n
0.5 0.3 0.2 0
(0.3 0.3 0.4) 0.3 0.4 0.2 0.1 0.15 0.12 0.12 0.08
0.2 0.2 0.3 0.2
相关文档
最新文档