【同步检测】2020届江苏省高考数学应用题模拟试题选编(十二)

合集下载

江苏省2020版高考数学一模试卷(理科)(II)卷

江苏省2020版高考数学一模试卷(理科)(II)卷

江苏省2020版高考数学一模试卷(理科)(II)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2017高三下·西安开学考) 已知全集U=R,M={x|y=ln(1﹣x)},N={x|2x(x﹣2)<1},则(∁UM)∩N=()A . {x|x≥1}B . {x|1≤x<2}C . {x|0≤x<1}D . {x|0<x≤1}2. (2分)(2017·大连模拟) 若i为复数单位,复数z= 在复平面内对应的点在直线x+2y+5=0上,则实数a的值为()A . 4B . 3C . 2D . 13. (2分)(2020·龙岩模拟) 保护生态环境是每个公民应尽的职责!某校随机抽取100名同学进行“垃圾分类”的问卷测试,测试结果发现这100名同学的得分都在内,按得分分成5组:、、、、,得到如图所示的频率分布直方图,则估计这100名同学的得分的众数为()A . 70B . 72.5C . 80D . 754. (2分) (2019高三上·广东期末) 拿破仑为人好学,是法兰西科学院院士,他对数学方面很感兴趣,在行军打仗的空闲时间,经常研究平面几何。

他提出了著名的拿破仑定理:以三角形各边为边分别向外(内)侧作等边三角形,则它们的中心构成一个等边三角形。

如图所示,以等边的三条边为边,向外作个正三角形,取它们的中心,顺次连接,得到,图中阴影部分为与的公共部分。

若往中投掷一点,则该点落在阴影部分内的概率为()A .B .C .D .5. (2分)(2017·长春模拟) 某几何体的三视图如图所示,则其表面积为()A .B .C .D .6. (2分)已知的终边在第一象限,则“”是“”()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分与不必要条件7. (2分)过抛物线y =ax2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则等于()A . 2aB .C . 4aD .8. (2分) (2020高二下·广东月考) 当时,展开式中的系数是()A .B .C .D .9. (2分) (2020高一下·北京期末) 已知一个正方体和一个圆柱等高,并且侧面积相等,则这个正方体和圆柱的体积之比为()A .B .C .D .10. (2分)(2017·长沙模拟) 已知抛物线的焦点为,准线与轴的交点为,点在抛物线上,且,则的面积为()A . 4B . 6C . 8D . 1211. (2分)要得到一个奇函数,只需将的图象()A . 向右平移个单位B . 向右平移个单位C . 向左平移个单位D . 向左平移个单位12. (2分) (2015高二下·九江期中) 已知直线y=﹣x+m是曲线y=x2﹣3lnx的一条切线,则m的值为()A . 0B . 2C . 1D . 3二、填空题: (共4题;共4分)13. (1分) (2016高一上·晋中期中) 已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递减,若f(log2a)+f(2log a)≥2f(﹣1),则实数a的取值范围是________.14. (1分)如果在数列{an}中,a1=1,对任何正整数n,等式an+1=an都成立,那么数列{an}的通项公式为________15. (1分) (2016高二下·辽宁期中) 设随机变量ξ服从正态分布N(2,9),若P(ξ>c+1)=P(ξ<c ﹣1),则c=________.16. (1分) (2016高二上·温州期末) 己知点O为坐标原点,△ABC为圆C1:(x﹣1)2+(y﹣)2=1的内接正三角形,则•()的最小值为________.三、解答题: (共7题;共55分)17. (10分)(2020高一下·宁波期中) 已知分别为三个内角的对边,.(1)求A;(2)若,求的取值范围.18. (5分)(2017·石嘴山模拟) 2017年,嘉积中学即将迎来100周年校庆.为了了解在校同学们对嘉积中学的看法,学校进行了调查,从三个年级任选三个班,同学们对嘉积中学的看法情况如下:对嘉积中学的看法非常好,嘉积中学奠定了很好,我的中学很快乐很充实我一生成长的起点A班人数比例B班人数比例C班人数比例(Ⅰ)从这三个班中各选一个同学,求恰好有2人认为嘉积中学“非常好”的概率(用比例作为相应概率);(Ⅱ)若在B班按所持态度分层抽样,抽取9人,在这9人中任意选取3人,认为嘉积中学“非常好”的人数记为ξ,求ξ的分布列和数学期望.19. (10分) (2015高一上·银川期末) 如图,已知二面角α﹣MN﹣β的大小为60°,菱形ABCD在面β内,A、B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥面α,垂足为O.(1)证明:AB⊥平面ODE;(2)求异面直线BC与OD所成角的余弦值.20. (10分)(2014·新课标I卷理) 设函数f(x)=aexlnx+ ,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(1)求a、b;(2)证明:f(x)>1.21. (5分)(2017·仁寿模拟) 已知椭圆C: + =1(a>b>0)经过点(1,),离心率为,点A为椭圆C的右顶点,直线l与椭圆相交于不同于点A的两个点P(x1 , y1),Q(x2 , y2).(Ⅰ)求椭圆C的标准方程;(Ⅱ)当⊥ =0时,求△OPQ面积的最大值.22. (5分)已知抛物线M的参数方程为(t为参数),在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆N的方程ρ2﹣6ρsinθ=﹣8.求过抛物线M的焦点和圆心N的直线的直角坐标方程.23. (10分) (2016高三上·荆州模拟) 已知函数f(x)=|x﹣2|+|2x+a|,a∈R.(1)当a=1时,解不等式f(x)≥5;(2)若存在x0满足f(x0)+|x0﹣2|<3,求a的取值范围.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题: (共7题;共55分) 17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、。

【附加15套高考模拟】2020年江苏高考数学模拟试卷(1-10)全套精品含答案

【附加15套高考模拟】2020年江苏高考数学模拟试卷(1-10)全套精品含答案

2020年江苏高考数学模拟试卷(1-10)全套精品一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数1z ,2z 在复平面内对应的点关于虚轴对称,若112z i =-,则12z z =( ) A .3455i - B .3455i -+ C .3455i -- D .3455i +2.若1294a ⎛⎫= ⎪⎝⎭,83log 3b =,1323c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .c b a <<B .a b c <<C .b a c <<D .c a b <<3.在区间[1,2]-上随机取一个数k ,使直线(4)y k x =-与圆224x y +=相交的概率为( )A .3B .3C .23D .36 4.已知函数()21x f x x =-,则( )A .()f x 在()0,1单调递增B .()f x 的最小值为4C .()y f x =的图象关于直线1x =对称 D .()y f x =的图象关于点()1,2对称5.已知1x e=是函数()ln()1f x x ax =+的极值点,则a =( ) A .12 B .1C .1e D .26.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为( ) A .3B .2C .1D .07.运行程序框图,如果输入某个正数后,输出的,那么的值为( )A .3B .4C .5D .68.已知函数()32cos f x x x =+,若2(3),a f =(2),b f =2(log 7),c f =则,,a b c 的大小关系是( ). A .a b c << B .c a b << C .b a c <<D .b c a <<9.如图,已知正方体1111ABCD A B C D -的棱长为2,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为过三点B 、E 、F 的面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法错误..的是( )A .HF BE PB .三棱锥的体积14B BMN V -=C .直线MN 与面11A B BA 的夹角是45︒D .11:1:3D G GC =10.已知函数()y f x =在区间(-∞,0)内单调递增,且()()f x f x -=,若()1.2121log 3,2,2a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系为( )A .b c a >>B .a c b >>C .b a c >>D .a b c >>11.已知三棱锥P ABC -的四个顶点都在半径为2的球面上,AB BC CA 22===,PA⊥平面ABC ,则三棱锥P ABC -的体积为( )A .6B .22C .94D .8312.已知六人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为( )A .72B .96C .120D .288二、填空题:本题共4小题,每小题5分,共20分。

江苏省2020年高考理科数学模拟试题及答案

江苏省2020年高考理科数学模拟试题及答案

元.
( 3)根据题意及
,揽件数每增加 ,可使前台工资和公司利润增加
7
(元),
将题目中的天数转化为频率,得
若不裁员,则每天可揽件的上限为
件,公司每日揽件数情况如下:
故公司平均每日利润的期望值为 若裁员 人,则每天可揽件的上限为
(元); 件,公司每日揽件数情况如下:
故公司平均每日利润的期望值为
(元)

以记录的 天的揽件数的频率作为各揽件数发生的概率
( 1)计算该公司 天中恰有 天揽件数在
的概率;
( 2)估计该公司对每件包裹收取的快递费的平均值;
( 3)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用做其他费用,目
前前台有工作人员 人,每人每天揽件不超过
件,每人每天工资 元,公司正在考虑是否将前台
∴kAM∈(
,0) (0, ),
8
(Ⅱ)由题意 F( ,0), M(x 0,y 0),其中 x0≠± 2,则
1,
直线 AM的方程为 y
( x+2),令 x=0,得点 P 的坐标为( 0,
),
∵kBM
=kAQ
,∴直线 AQ的方程为 y
( x+2),
令 x=0,得点 Q的坐标为( 0,
),由
(,
),
(,
的焦点距离相等,那么这样的点 P 有( )
A. 0 个
B. 1 个
C. 2 个
D. 无数个
7. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,则该几何体的表面积为1源自.B.C.D.
8. 从 2 个不同的红球, 2 个不同的黄球, 2 个不同的蓝球中任取两个,放入颜色分别为红、黄、蓝

2020年高考江苏(专用)全真模拟 数学试题(附答案与全解全析)

2020年高考江苏(专用)全真模拟 数学试题(附答案与全解全析)

2020年高考江苏(专用)全真模拟试题数 学(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:高中全部内容。

一、填空题:本题共14个小题,每题5分,满分70分.1.定义一种集合运算(){|AB x x A B =∈⋃,且()}x A B ∉⋂},设{}|22M x x =-<<,{}|13N x x =<<,则MN 所表示的集合是________.2.已知复数z 满足(1)13i z i +=+,则z =________.3.已知数列{}n a 为等差数列,若159a a a π++=,则28sin()a a +=________ 4.函数()f x =的定义域为_______. 5.已知sin cos 11cos 2ααα=-,1tan()3αβ-=,则tan β=________.6.如图,在ABC V 中,若AB a =u u u v v ,AC b =u u u v v,线段AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP ma nb =+u u u v v v,则m n +=_____.7.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是___________.8.设样本数据x 1,x 2,…,x 2 017的方差是4,若y i =x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2 017的方差为______.9.在长方体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,若其外接球的表面积为16π,则异面直线1BD 与1CC 所成的角的余弦值为__________.10.曲线()x f x xe =在点(1,(1))f 处的切线在y 轴上的截距是_______. 11.定义在R 上的奇函数()f x ,若()1f x +为偶函数,且()12f -=,则()()1213f f +的值等于______.12.根据如图所示算法流程图,则输出S 的值是__.13.已知双曲线()2222:10,0x y C a b a b -=>>的左焦点为F ,圆222:O x y a +=与双曲线的渐近线在第二象限相交于点M (O 为坐标原点),若直线MF 的斜率为ba,则双曲线C 的离心率为______. 14.已知偶函数满足,若在区间内,函数有4个零点,则实数的取值范围_________.二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤. 15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足cos sin 0b A a B -=. (1)求角A 的大小; (2)已知b =ABC ∆的面积为1,求边a .16.如图,已知PA ⊥平面ABCD ,底面ABCD 是矩形,1PA AB ==,AD =,F 是PB 中点,点E在BC 边上.()f x []2(2)(),1,0()f x f x x f x x -=∈-=且当时,[]13-,()()()log 2a g x f x x =-+a(1)求三棱锥E PAD -的体积; (2)求证:AF PE ⊥;(3)若//EF 平面PAC ,试确定E 点的位置.17.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,右焦点为F ,以原点O 为圆心,椭圆C 的短半轴长为半径的圆与直线0x y -=相切.(1)求椭圆C 的方程;(2)如图,过定点(2,0)P 的直线l 交椭圆C 于,A B 两点,连接AF 并延长交C 于M ,求证:PFM PFB ∠=∠.18.已知函数()2ln 1f x x x kx =+--.(I )讨论函数()f x 的单调性;(II )若()f x 存在两个极值点()1212,x x x x <,求证:()()210f x f x <<. 19.已知数列{}n a 中,11a =, 且()21232,1n n n na a n n n N n -*-=+≥∈-g . (1)求23,a a 的值及数列{}n a 的通项公式;(2)令()13n n nb n N a -*=∈, 数列{}n b 的前n 项和为n S , 试比较2nS 与n 的大小;(3)令()11n n a c n N n *+=∈+, 数列()221n n c c ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭的前n 项和为n T , 求证: 对任意n N *∈, 都有2n T <. 20.如图所示,某镇有一块空地OAB ∆,其中3OA km =,OB =,AOB 90∠=o 。

2020届江苏省高考数学应用题模拟试题选编(含解析)

2020届江苏省高考数学应用题模拟试题选编(含解析)

2020届高考应用题模拟试题选编(十)1、(省如皋市2019—2020学年高三年级第二学期语数英学科模拟(二)数学试题)现有一块废弃的半圆形钢板,其右下角一小部分因生锈无法使用,其形状如图所示,已知该钢板的圆心为O,线段AOB为其下沿,且OA=2m,OB=2m.现欲从中截取一个四边形AMPQ,其要求如下:点P,Q均在圆弧上,AP平分∠QAB,且PM⊥OB,垂足M在边OB 上.设∠QAB=θ,四边形AMPQ的面积为S(θ)m2.(1)求S(θ)关于θ的函数解析式,并写出其定义域;(2)当cosθ为何值时,四边形AMPQ的面积最大?(第1题)(第2题)2、(省合作联盟学校2020届高三阶段性调研测试)如图,某校打算在长为1千米的主干道AB一侧的一片区域临时搭建一个强基计划高校咨询和宣传台,该区域由直角三角形区域ACB(∠ACB为直角)和以BC为直径的半圆形区域组成,点P(异于B,C)为半圆弧上一点,点H在线段AB上,且满足CH⊥AB.已知∠PBA=60°,设∠ABC=θ,且θ∈[18π,3π).初步设想把咨询台安排在线段CH,CP上,把宣传海报悬挂在弧CP和线段CH上.(1)若为了让学生获得更多的咨询机会,让更多的省高校参展,打算让CH+CP最大,求该最大值;(2)若为了让学生了解更多的省外高校,贴出更多高校的海报,打算让弧CP和线段CH的长度之和最大,求此时的θ的值.3、(省2020年高考数学全真模拟试卷(六(教研室))为了打击海盗犯罪,甲、乙、丙三国海军进行联合军事演习,分别派出一艘军舰A,B,C.演习要求: 任何时刻军舰A,B,C均不得在同一条直线上.(1) 如图1, 若演习过程中,A,B间的距离始终保持 3 n mile, B,C间的距离始终保持2 n mile,求∠ACB的最大值.(第3题)ACDB(图2)(图1)B CA(2) 如图2, 若演习过程中,A ,C 间的距离始终保持1n mile ,B ,C 间的距离始终保持 2 nmile .且当∠ACB 变化时, 模拟海盗船D 始终保持: 到B 的距离与A ,B 间的距离相等,∠ABD = 90°, 与C 在直线AB 的两侧,求C 与D 间的最大距离.4、(省2020年高考数学全真模拟试卷四 (教研室))图1是某高架桥箱梁的横截面,它由上部路面和下部支撑箱两部分组成.如图2,路面宽度AB =10m,下部支撑箱CDEF 为等腰梯形(CD >EF ),且AC =BD .为了保证承重能力与稳定性,需下部支撑箱的面积为8m 2,高度为2m 且2m ≤EF ≤3m 若路面AB 、侧边CF 和DE 、底部EF 的造价分别为4a 千元/m,5a 千元/m,6a 千元/m (a 为正常数),∠DCF = θ. (1) 试用θ表示箱梁的总造价y (千元);(2) 试确定cos θ的值,使总造价最低?并求最低总造价.5、(省2020年高考原创卷数学试题)图1是某公司计划开发的一级方程式汽车赛道的规划图纸.其中一段赛道AB ,是“S 型弯道”,在平面直角坐标系xOy 中,该段赛道的图象拟用函数的一段图象(如图2)来表示,其中 A (0,0), B(2,4) .注:“S 型弯道”是指该段函数(不包括端点)既有极大值点又有极小值点.(1) 数a 的取值围; (2) 记函数图象上任意一点处的切线斜率为g(x),曲率为()()1()g x Q x g x '=+.为为比赛安全,官方要求赛道每一点处曲率的绝对值都小于4.问:是否存在整数,使该“S 型弯道”符合官方要求?若存在,求整数a 的值;若不存在,请说明理由.(第4题)(图1)(图2)A CFBD Eθ(第5题图1) (第5题图2)6、(省2020年高考数学全真模拟试卷七 (教研室))如图,为了保卫祖国海疆、我军在某海岸线(近似地看成直线)上相距20nmle 的A ,B 两处设立海防哨所.记某外轮所在位置为P ,在A 处测得∠BAP =α,在B 处测得∠ABP =β.按照《联合国海洋法公约》规定:领海宽度不超过12nmile ,外国船只除特许外,不得私自进入我国领海.(1)若α=45°, β=60°,则该外轮是否已进入我国领海?请说明理由.(2)若该外轮航行至点P 处(距海岸线 403n mile ,且此时tan α=-2)请求靠岸补给,我军立刻同意并要求其继续保持到B 处的距离是到A 处距离的2倍航行直至靠岸,求该外轮从 发出请求到靠岸所航行的里程(π取3.14,结果保留1位小数).(第7题)7、(省市十校2020届高三下学期5月调研试题数学)疫情期间,某小区超市平面图如图所示,由矩形OABC 与扇形OCD 组成,省市十校2020届高三下学期5月调研试题数学含OA =30米,AB =50米,∠COD =6π,经营者决定在O 点处安装一个监控摄像头,摄像头的监控视角∠EOF =3π,摄像头监控区域为图中阴影部分,要求点E 在弧CD 上,点F (第6题) A 海岸线领海线P在线段AB 上.设∠FOC =θ.(1)求该监控摄像头所能监控到的区域面积S 关于θ的函数关系式,并求出tan θ的取值围;(2)求监控区域面积S 最大时,角θ的正切值.8、(省2020年高考数学全真模拟试卷八 (教研室))如图1,某十字路口的花圃中央有一个底面半径为2 m 的圆柱形花柱, 四周斑马线的侧连线构成边长为20 m 的正方形. 因工程需要, 测量员将使用仪器沿斑马线的侧进行测量, 其中仪器P 的移动速度为1.5 m/s, 仪器Q 的移动速度为1 m/s. 若仪器P 与仪器Q 的对视光线被花柱阻挡, 则称仪器Q 在仪器P 的“盲区”中.(1)如图2, 斑马线的侧连线构成正方形ABCD ,仪器P 在点A 处,仪器Q 在BC 上距离点 C4 m 处,试判断仪器Q 是否在仪器P 的“盲区”中,并说明理由;(2)如图3,斑马线的侧连线构成正方形ABCD ,仪器P 从点A 出发向点D 移动,同时仪器Q 从点C 出发向点B 移动,在这个移动过程中,仪器Q 在仪器P 的“盲区”中的时长为多少?9、(省2020届数学最后一卷8)某市准备开发一个边界近似为半圆的城市休闲广场,半圆的直径在一条东西走向的公路上,,半圆边界上点处是娱乐休闲区域,且圆心在正北方向.(1)若在圆心北偏西某一方向的圆周上设立另一个休闲点,问当点在何处时,四边形观赏区域的面积最大?(2)若计划修建一条从点出发,经过点到达点处的栈道(其中点在半径上,为直线段),已知段每千米修建费用为万元,段每千米修建费用为万元,设,问当为何值时,修建栈道的费用最少?最少是多少万元?(第8题)(图2)・ A DBC QP ADBC Q(图3)(图1)(第9题)(第10题)10、(省2020届数学最后一卷4)在《折纸中的数学》课外兴趣小组的一次活动中,指导老师要求同学们将带来的长,宽()的矩形纸片(如图所示)按下列要求进行折叠:沿折痕进行翻折,使点和点与边上的点重合. 设,,其中和均为锐角.(1)若在学生中甲折好的图中测得,,,求学生甲的这矩形纸片的面积;(2)若在指导老师要求矩形纸片折好后的图形恰好满足,试判断学生乙用一长与宽的比值为的矩形纸片能否完成这次折叠?并说明理由.1、2、3、4、5、6、7、8、10、。

2020年江苏省高考数学模拟试卷含答案解析

2020年江苏省高考数学模拟试卷含答案解析

2020年江苏省高考数学模拟试卷一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(∁U B)=.2.已知复数,则z的共轭复数的模为.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.4.运行如图所示的伪代码,其结果为.5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为.6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值为.7.若函数是偶函数,则实数a的值为.8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为.9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集是.10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为.11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象上存在区域D上的点,则a的取值范围是.12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是.13.若函数同时满足以下两个条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣1,1),f(x)g(x)<0.则实数a的取值范围为.14.若b m为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.已知角α终边逆时针旋转与单位圆交于点,且.(1)求的值,(2)求的值.16.在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D 一个平面角.(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.17.在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为.(1)求证:动点P恒在一个定椭圆C上运动;(2)过的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.18.将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).(1)求V关于α的函数关系式;(2)当α为何值时,V取得最大值;(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.19.设首项为1的正项数列{a n}的前n项和为S n,且S n+1﹣3S n=1.(1)求证:数列{a n}为等比数列;(2)数列{a n}是否存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由;(3)设,试问是否存在正整数p,q(1<p<q)使b1,b p,b q成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.20.(1)若ax>lnx恒成立,求实数a的取值范围;(2)证明:∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.三.数学Ⅱ附加题部分【理科】[选做题](本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤)A[选修4-1几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.B[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=,B=,求矩阵A﹣1B.C[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,设直线l过点,且直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点,求实数a的值.D[选修4-5:不等式选讲](本小题满分0分)24.求函数的最大值.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.26.设数列{a n}按三角形进行排列,如图,第一层一个数a1,第二层两个数a2和a3,第三层三个数a4,a5和a6,以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3,a2=a4+a5,a3=a5+a6,….(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?2020年江苏省高考数学模拟试卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(∁U B)=(﹣1,0] .【考点】交、并、补集的混合运算.【分析】求出集合B中的一元二次不等式的解集,确定出集合B,由全集R,求出集合B的补集,求出集合A与集合B的补集的交集即可【解答】解:由A={x|﹣1<x<1}=(﹣1,1),B={x|x2﹣2x<0}=(0,2),∴C u B=(﹣∞,0]∪[2,+∞),∴A∩∁U B=(﹣1,0],故答案为:(﹣1,0].2.已知复数,则z的共轭复数的模为.【考点】复数求模.【分析】根据复数与它的共轭复数的模相等,即可求出结果.【解答】解:复数,则z的共轭复数的模为||=|z|====.故答案为:.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.【考点】等可能事件的概率.【分析】求出所有基本事件,两数之积为偶数的基本事件,即可求两数之积为偶数的概率.【解答】解:从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,基本事件共有4×4=16个,∵两数之积为偶数,∴两数中至少有一个是偶数,A中取偶数,B中有4种取法;A中取奇数,B中必须取偶数,故基本事件共有2×4+2×2=12个,∴两数之积为偶数的概率是=.故答案为:.4.运行如图所示的伪代码,其结果为.【考点】伪代码.【分析】根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=++…+的值,用裂项法即可求值得解.【解答】解:根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=++…+的值,所以S=S=++…+=×(1﹣+﹣…+﹣)=(1﹣)=.故答案为:.5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为﹣=1.【考点】双曲线的简单性质.【分析】求得已知双曲线的渐近线方程,设出所求双曲线的方程为﹣=1(a,b>0),求出渐近线方程和准线方程,由题意可得=,=,结合a,b,c的关系,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线的渐近线为y=±x,设所求双曲线的方程为﹣=1(a,b>0),渐近线方程为y=±x,准线方程为y=±,由题意可得=,=,又a2+b2=c2,解得a=2,b=,即有所求双曲线的方程为﹣=1.故答案为:﹣=1.6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值为﹣2.【考点】函数恒成立问题.【分析】由题意可得a≤f(x)的最小值,运用单调性,可得f(0)取得最小值,即可得到a的范围,进而得到a的最大值.【解答】解:由,可得0≤x≤4,由f(x)=﹣,其中y=在[0,4]递增,y=﹣在[0,4]递增,可得f(x)在[0,4]递增,可得f(0)取得最小值﹣2,可得a≤﹣2,即a的最大值为﹣2.故答案为:﹣2.7.若函数是偶函数,则实数a的值为﹣.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】由题意可得,f(﹣)=f(),从而可求得实数a的值.【解答】解:∵f(x)=asin(x+)+sin(x﹣)为偶函数,∴f(﹣x)=f(x),∴f(﹣)=f(),即﹣=a,∴a=﹣.故答案为:﹣.8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为20.【考点】棱柱、棱锥、棱台的体积.【分析】求出底面中心到边的距离,棱锥的高,然后求解棱锥的体积.【解答】解:设正五棱锥高为h,底面正五边形的角为108°,底面正五边形中心到边距离为:tan54°,h=,则此正五棱锥体积为:×=20.故答案为:20.9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集是(1,3).【考点】分段函数的应用.【分析】判断f(x)在R上递增,由f(x2﹣2x)<f(3x﹣4),可得或,解不等式即可得到所求解集.【解答】解:当x<3时,f(x)=﹣x2+6x=﹣(x﹣3)2+9,即有f(x)递增;故f(x)在R上单调递增.由f(x2﹣2x)<f(3x﹣4),可得或,解得或,即为1<x≤或<x<3,即1<x<3.即有解集为(1,3).故答案为:(1,3).10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为[,1).【考点】余弦定理.【分析】设=t(0≤t≤1),=﹣=t﹣,=﹣=﹣.由于⊥,可得•=0.化为:﹣16t+12(+1)cos∠BAC﹣=0,整理可得:cos∠BAC==(32﹣)=f(t),(0≤t≤1).利用函数的单调性即可得出.【解答】解:设=t(0≤t≤1),=﹣=t﹣,=﹣=﹣.∴•=(t﹣)•(﹣)=﹣t2+(+1)•﹣2.∵⊥,∴•=﹣t2+(+1)•﹣2=0.化为:﹣16t+12(+1)cos∠BAC﹣=0,整理可得:cos∠BAC==(32﹣)=f(t),(0≤t≤1).由于f(t)是[0,1]是的单调递增函数,∴f(0)≤f(t)≤f(1),即:≤f(t)≤,即:≤cosA≤,∵A∈(0,π),∴cosA<1,∴cosA的取值范围是:[,1).故答案为:[,1).11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象上存在区域D上的点,则a的取值范围是(0,1)∪[3,+∞).【考点】简单线性规划的应用.【分析】由题意作平面区域,从而结合图象可知y=a x的图象过点(3,1)时为临界值a=3,从而解得.【解答】解:由题意作平面区域如下,,结合图象可知,y=a x的图象过点(3,1)时为临界值a=3,且当0<a<1时,一定成立;故答案为:(0,1)∪[3,+∞).12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是{a|a≤﹣4或a≥0} .【考点】利用导数研究函数的极值.【分析】函数f(x)=x2+2x+alnx在区间(0,1)内无极值点⇔函数f(x)在(0,1)内单调⇔函数f′(x)≥0或f′(x)≤0a∈R)在(01,)内恒成立.再利用导数的运算法则、分离参数法、函数的单调性即可得出.【解答】解:函数f(x)=x2+2x+alnx在区间(0,1)内无极值⇔函数f(x)=x2+2x+alnx 在区间(0,1)内单调⇔函数f′(x)≥0或f′(x)≤0a∈R)在(0,1)内恒成立.由f′(x)=2x+2≥0在(0,1)内恒成立⇔a≥(﹣2x﹣2x2)max,x∈(0,1).即a≥0,由f′(x)=2x+2≤0在(0,1)内恒成立⇔a≤(﹣2x﹣2x2)min,x∈(0,1).即a≤﹣4,故答案为:a≤﹣4或a≥0.故答案为:{a|a≤﹣4或a≥0}.13.若函数同时满足以下两个条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣1,1),f(x)g(x)<0.则实数a的取值范围为(2,4).【考点】全称命题;特称命题.【分析】由①可得当x≤﹣1时,g(x)<0,根据②可得g(1)=a(1﹣a+3)>0,由此解得实数a的取值范围.【解答】解:∵已知函数,根据①∀x∈R,f(x)<0,或g(x)<0,即函数f(x)和函数g(x)不能同时取非负值.由f(x)≥0,求得x≤﹣1,即当x≤﹣1时,g(x)<0恒成立,故,解得:a>2;根据②∃x∈(﹣1,1),使f(x)•g(x)<0成立,∴g(1)=a(1﹣a+3)>0,解得:0<a<4,综上可得:a∈(2,4),故答案为:(2,4)14.若b m为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为64或65.【考点】数列递推式.【分析】由题意可得:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,则2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得d<4,d为正整数,得出d=1,2,3,分类讨论后求得满足条件的正整数A的值.【解答】解:依题意:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,∴2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得:2t≤A<2t+1,2t+d﹣3≤A<2t+d﹣2,,故max{}≤A<min{},由以下关系:2t+d﹣3<2t+1,,得d<4,∵d为正整数,∴d=1,2,3.当d=1时,max{}=max{}=2t,min{}=min{}=<2t,不合题意,舍去;当d=2时,max{}=max{}=2t,min{}=min{}=<2t,不合题意,舍去;当d=3时,max{}=max{}=2t,min{}=min{}=>2t,适合题意.此时2t≤A<,b1=t,b2=t+3,b5=t+6,∴t+3≤b3≤t+6.∵b3=10,∴4≤t≤7,∵t为整数,∴t=4,t=5,t=6或t=7.∵f(3)=27A,b3=10,∴210≤27A<211,∴≤A<.当t=4时,24≤A<,∴无解.当t=5时,25≤A<,∴无解.当t=6时,26≤A<,∴64≤A<.当t=7时,27≤A<,∴无解.则26≤A<.∵A∈N*,∴A=64或A=65.综上:A=64或65.故答案为:64或65.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.已知角α终边逆时针旋转与单位圆交于点,且.(1)求的值,(2)求的值.【考点】三角函数的化简求值;任意角的三角函数的定义.【分析】(1)利用已知条件求出sin()与cos(),然后利用二倍角公式以及两角和的正弦函数化简求解即可.(2)求出正切函数的二倍角的值,利用两角和的正切函数化简求解即可.【解答】解:(1)角α终边逆时针旋转与单位圆交于点,可得sin()=,cos()=,sin(2)=2sin()cos()==,cos(2)=2×=.=sin(2﹣)=sin(2)cos﹣sin cos(2)==.(2)∵,∴tan(2α+2β)===.sin(2)=,cos(2)=.tan(2)=.tan(2α+2β)=tan[()+(2)]==,解得=.16.在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D 一个平面角.(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)由已知得PA⊥AB,PA⊥AD,从而BD⊥PA,由四边形ABCD是菱形,得AC ⊥BD,由此能证明BD⊥平面PAC.(2)由四边形ABCD是梯形,且平面PAB∩平面PCD=l,得CD与AB有交点P,从而直线l∩平面ABCD=P,由此得到直线l不能与平面ABCD平行.【解答】证明:(1)∵在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D一个平面角,∴PA⊥AB,PA⊥AD,又AB∩AD=A,∴PA⊥平面ABCD,∵BD⊥PA,∵四边形ABCD是菱形,∴AC⊥BD,∵AC∩PA=A,∴BD⊥平面PAC.解:(2)直线l不能与平面ABCD平行.理由如下:∵四边形ABCD是梯形,且平面PAB∩平面PCD=l,∴CD与AB有交点P,∴P∈l,∴直线l∩平面ABCD=P,∴直线l不能与平面ABCD平行.17.在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为.(1)求证:动点P恒在一个定椭圆C上运动;(2)过的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.【考点】椭圆的简单性质.【分析】(1)设P(x,y),由题意可得k PD•k PE=﹣,运用直线的斜率公式,化简即可得到所求轨迹方程;(2)设过F的直线为x=my+,代入椭圆方程x2+2y2=4,设A(x1,y1),B(x2,y2),运用韦达定理,点满足直线方程,再由过O的直线x=﹣my交椭圆C于M,N两点,求得M,N的坐标,运用直线的斜率公式,化简整理,即可得到直线AM与直线BN斜率之和为定值0.【解答】解:(1)设P(x,y),由题意可得k PD•k PE=﹣,即有•=﹣,化为+=1;(2)设过F的直线为x=my+,代入椭圆方程x2+2y2=4,可得(2+m2)y2+2my﹣2=0,设A(x1,y1),B(x2,y2),即有y1+y2=﹣,y1y2=﹣,x1=my1+,x2=my2+,由题意可得,过O的直线x=﹣my交椭圆C于M,N两点,解得M(﹣,),N(,﹣),可得k AM+k BN=+,通分后的分子=x2y1﹣x2﹣y1+x1y2+x1+y2+=2my1y2+(y1+y2)+(x1﹣x2)+(y2﹣y1)+=﹣﹣+(y1﹣y2)+(y2﹣y1)+=0.即有直线AM与直线BN斜率之和为定值0.18.将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).(1)求V关于α的函数关系式;(2)当α为何值时,V取得最大值;(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.【考点】旋转体(圆柱、圆锥、圆台);基本不等式在最值问题中的应用.【分析】(1)根据面积得出圆锥的底面半径,利用勾股定理求出圆锥的高,代入体积公式即可;(2)利用基本不等式得出体积的最值及取得最值得条件;(3)求出圆锥内切球的半径,与0.5比较大小.【解答】解:(1)由题意知圆锥的母线l=3,设圆锥的底面半径为r,则2πr=3α,∴r=,∴圆锥的高h===.∴V==.(2)V==≤=2.当且仅当4π2﹣α2=即α=时,取等号.∴当α=时,体积V取得最大值.(3)当圆锥体积最大时,圆锥的底面半径r=.设圆锥轴截面△ABC的内切圆⊙O半径为R,如图所示,则OD=R,CD=CE=,AC=3,∴AE=,AD=3﹣.由△AOD∽△ACE得,∴,解得R=3≈0.8.∵0.8>0.5,∴容积最大的圆锥形容器能完全盖住桌面上一个半径为0.5分米的球.19.设首项为1的正项数列{a n}的前n项和为S n,且S n+1﹣3S n=1.(1)求证:数列{a n}为等比数列;(2)数列{a n}是否存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由;(3)设,试问是否存在正整数p,q(1<p<q)使b1,b p,b q成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.【考点】数列的求和;等比关系的确定.=1作差可知a n+1=3a n(n≥2),进而可知数列{a n}【分析】(1)通过S n+1﹣3S n=1与S n﹣3S n﹣1是首项为1、公比为3的等比数列;(2)通过(1)可知a n=3n﹣1、S n=(3n﹣1),假设存在满足题意的项a k,则3k﹣1=S r+t﹣S t,进而化简可知不存在r满足3r﹣x﹣=2,进而可得结论;(3)通过(1)可知b n=,假设存在正整数p,q(1<p<q)使b1,b p,b q成等差数列,通过化简可知q=3q﹣p(2p﹣3p﹣1),利用当p≥3时2p﹣3p﹣1<0可知当p≥3时不满足题意,进而验证当p=2时是否满足题意即可.【解答】(1)证明:∵S n+1﹣3S n=1,=1,∴当n≥2时,S n﹣3S n﹣1两式相减得:a n+1=3a n,又∵S n+1﹣3S n=1,a1=1,∴a2=S2﹣S1=2a1+1=3满足上式,∴数列{a n}是首项为1、公比为3的等比数列;(2)解:结论:不存在满足题意的项a k;理由如下:由(1)可知a n=3n﹣1,S n==(3n﹣1),假设数列{a n}中存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和,则3k﹣1=S r+t﹣S t=(3r+t﹣1)﹣(3t﹣1)=(3r+t﹣3t)=•3t(3r﹣1),于是(3r﹣1)=3x(其中x为大于1的自然数),整理得:3r﹣x﹣=2,显然r无解,故假设不成立,于是不存在满足题意的项a k;(3)解:结论:存在唯一的数组(p,q)=(2,3)满足题意;理由如下:由(1)可知b n=,假设存在正整数p,q(1<p<q)使b1,b p,b q成等差数列,则2b p=b1+b q,即2=+,整理得:2p•3q﹣p=3q﹣1+q,∴q=2p•3q﹣p﹣3q﹣1=3q﹣p(2p﹣3p﹣1),∵当p≥3时2p﹣3p﹣1<0,∴当p≥3时不满足题意,当p=2时,2=+即为:=+,整理得:=,解得:q=3,综上所述,存在唯一的数组(p,q)=(2,3)满足题意.20.(1)若ax>lnx恒成立,求实数a的取值范围;(2)证明:∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.【考点】函数恒成立问题.【分析】(1)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间,(2)先求出当直线和y=lnx相切时a的取值,然后进行讨论求解即可.【解答】解:(1)若ax>lnx恒成立,则a>,在x>0时恒成立,设h(x)=,则h′(x)==,由h′(x)>0得1﹣lnx>0,即lnx<1,得0<x<e,由h′(x)<0得1﹣lnx<0,即lnx>1,得x>e,即当x=e时,函数h(x)取得极大值同时也是最大值h(e)==.即a>.(2)设f(x)=lnx,g(x)=ax,(x>0),则f′(x)=,当g(x)与f(x)相切时,设切点为(m,lnm),则切线斜率k=,则过原点且与f(x)相切的切线方程为y﹣lnm=(x﹣m)=x﹣1,即y=x﹣1+lnm,∵g(x)=ax,∴,得m=e,a=.即当a>时,ax>lnx恒成立.当a=时,当x0≥时,要使ax>lnx恒成立.得当x>x0时,ax>lnx恒成立.当0<a<时,f(x)与g(x)有两个不同的交点,不妨设较大的根为x1,当x0≥x1时,当x>x0时,ax>lnx恒成立.∴∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.三.数学Ⅱ附加题部分【理科】[选做题](本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤)A[选修4-1几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.【考点】与圆有关的比例线段.【分析】连结OD、AD,证出△ADB≌△ODC,得到AB=CO,从而证出结论.【解答】证明:如图示:,连结OD、AD,∵AB是圆O的直径,∴∠ADB=90°,AB=2AO,∵DC是⊙O的切线,∴∠CDO=90°,∵DB=DC,∴∠B=∠C,∴△ADB≌△ODC,∴AB=CO,即2OA=OA+CA,∴CA=AO.B[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=,B=,求矩阵A﹣1B.【考点】几种特殊的矩阵变换.【分析】设矩阵A﹣1=,通过AA﹣1为单位矩阵可得A﹣1,进而可得结论.【解答】解:设矩阵A的逆矩阵为,则=,即=,故a=﹣1,b=0,c=0,d=,从而A﹣1=,∴A﹣1B==.C[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,设直线l过点,且直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点,求实数a的值.【考点】简单曲线的极坐标方程.【分析】求出点A,B的直角坐标,利用点斜式方程得出直线l的直角坐标方程,再求出曲线C的普通方程,求出圆心和半径,利用d=r构建出a的方程,解出a的值.【解答】解:由直线l过点,可得A,B的直角坐标为A(,),B(0,3),直线AB的斜率k==,即有直线l的方程为:y﹣3=x,即y=x+3,由曲线C:ρ=asinθ(a>0),可得曲线C的普通方程为x2+y2﹣ay=0,即有圆心C(0,),r==,直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点即直线和圆相切,可得,解得a=2或﹣6,由a>0,可得a=2.D[选修4-5:不等式选讲](本小题满分0分)24.求函数的最大值.【考点】函数的最值及其几何意义.【分析】根据条件利用平方关系结合一元二次函数的性质进行求解即可.【解答】解:由得,即5≤x≤7,由平方得y2=x﹣5+7﹣x+2=2+2,∵5≤x≤7,∴当x=6时,函数y2=2+2取得最大值为y2=2+2=4,当x=5或7时,函数y2=2+2取得最小值为y2=2,即2≤y2≤4,则≤y≤2,即函数的最大值为2.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.【考点】二面角的平面角及求法;异面直线及其所成的角.【分析】(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PC与BD所成角的余弦值.(2)求出平面PBC的法向量和平面PCD的法向量,利用向量法能求出钝二面角B﹣PC﹣D的大小.【解答】解:(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,设AP=AB=AD=2BC=2,则P(0,0,2),C(2,1,0),B(2,0,0),D(0,2,0),=(2,1,﹣2),=(﹣2,2,0),设异面直线PC与BD所成角为θ,则cosθ===.∴异面直线PC与BD所成角的余弦值为.(2)=(2,0,﹣2),=(2,1,﹣2),=(0,2,﹣2),设平面PBC的法向量=(x,y,z),则,取x=1,得=(1,0,1),设平面PCD的法向量=(a,b,c),则,取b=1,得=(1,2,2),设钝二面角B﹣PC﹣D的平面角为θ,cosθ=﹣|cos<>|=﹣||=﹣,∴θ=135°,∴钝二面角B﹣PC﹣D的大小为135°.26.设数列{a n}按三角形进行排列,如图,第一层一个数a1,第二层两个数a2和a3,第三层三个数a4,a5和a6,以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3,a2=a4+a5,a3=a5+a6,….(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?【考点】归纳推理.【分析】(1)若第四层四个数为0或1,则a1=a7+2a8+2a9+a10,由a1为奇数,可得a7,a10中一个为1,一个为0,进而得到答案;(2)若第十一层十一个数为0或1,a1为5的倍数,则a56,a66中一个为1,一个为0,且a57+a58+…+a65=2,或a57+a58+…+a65=7,进而得到答案.【解答】解:(1)若第二层的两个数为0或1,则a1=a2+a3,由a1为奇数,可得第二层的两个数有2种不同的取法;若第三层的三个数为0或1,则a1=a4+2a5+a6,由a1为奇数,可得第三层的三个数有4种不同的取法;若第四层四个数为0或1,则a1=a7+2a8+2a9+a10,由a1为奇数,可得第四层的四个数有8种不同的取法;(2)根据(1)中结论,若第十一层十一个数为0或1,则a1=a56+2(a57+a58+…+a65)+a66,若a1为5的倍数,则a56,a66中一个为1,一个为0,a57+a58+…+a65=2,或a57+a58+…+a65=7,即a57,a58,…,a65中有2个1或2个0,则第十一层十一个数共有=144种不同取法.2020年8月12日。

2020届江苏高三数学模拟试题以及答案

2020届江苏高三数学模拟试题以及答案

2020届江苏高三数学模拟试题以及答案1.已知集合U={-1.0.1.2.3.23},A={2.3},则U-A={-1.0.1.4.5.23}。

2.已知复数z=a+bi是纯虚数,则a=0.3.若输出y的值为4,则输入x的值为-1.4.该组数据的方差为 9.5.2只球都是白球的概率为 3/10.6.不等式f(x)>f(-x)的解集为x2.7.S3的值为 61/8.8.该双曲线的离心率为 sqrt(3)/2.9.该几何体的体积为27π/2.10.sin2α的值为 1/2.11.λ+μ的值为 1/2.12.离墙距离为 3.5m时,视角θ最大。

13.实数a的值为 2.14.CD的最小值为 3/2.15.在△ABC中,已知$a$,$b$,$c$分别为角$A$,$B$,$C$所对边的长度,且$a(\sin A-\sin B)=(c-b)(\sin B+\sin C)$。

1)求角$C$的值;2)若$a=4b$,求$\sin B$的值。

16.如图,在四棱锥$P-ABCD$中,底面$ABCD$是平行四边形,平面$BPC$⊥平面$DPC$,$BP=BC$,$E$,$F$分别是$PC$,$AD$的中点。

证明:(1)$BE\perp CD$;(2)$EF\parallel$平面$PAB$。

17.如图,在平面直角坐标系$xOy$中,已知椭圆$C$:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,经过点$M(0,1)$。

1)求椭圆$C$的方程;2)过点$M$作直线$l_1$交椭圆$C$于$P$,$Q$两点,过点$M$作直线$l_1$的垂线$l_2$交圆$N(x_0,0)$于另一点$N$。

若$\triangle PQN$的面积为$3$,求直线$l_1$的斜率。

18.南通风筝是江苏传统手工艺品之一。

现用一张长$2$米,宽$1.5$米的长方形牛皮纸$ABCD$裁剪风筝面,裁剪方法如下:分别在边$AB$,$AD$上取点$E$,$F$,将三角形$AEF$沿直线$EF$翻折到$A'EF$处,点$A'$落在牛皮纸上,沿$A'E$,$A'F$裁剪并展开,得到风筝面$AEA'F$,如图$1$。

【精品高考数学】[2020年江苏高考仿真模拟卷-数学]+答案

【精品高考数学】[2020年江苏高考仿真模拟卷-数学]+答案

2020年江苏高考仿真模拟卷数学 2020.4满分:150分 考试时间:120分钟一、填空题1.(5分)已知集合M ={x |x >2},集合N ={x |x ≤1},则M ∪N =__________. 2.(5分)已知复数z 满足z +2z =6+i ,则z 的实部为__________.3.(5分)已知一组数据4.8,4.9,5.2,5.5,5.6,则该组数据的方差是__________. 4.(5分)函数f (x )=lg (4x ﹣2x +1)的定义域为__________.5.(5分)将100粒大小一样的豆子随机撒入图中长3cm ,宽2cm 的长方形内,恰有30粒豆子落在阴影区域内,则阴影区域的面积约为__________cm 26.(5分)如图是一个算法的伪代码,其输出的结果为__________.7.(5分)已知双曲线x 23−y 2b =1的两条渐近线与直线x =√3围成正三角形,则双曲线的离心率为__________.8.(5分)公差不为零的等差数列{a n }的前n 项和为S n ,若a 3是a 2与a 6的等比中项,S 3=3,则S 9的值为__________.9.(5分)下面四个命题:其中所有正确命题的序号是__________. ①函数y =sin|x |的最小正周期为π;②在△ABC 中,若AB →⋅BC →>0,则△ABC 一定是钝角三角形; ③函数y =2+log a (x ﹣2)(a >0且a ≠1)的图象必经过点(3,2);④若命题“∃x ∈R ,x 2+x +a <0”是假命题,则实数a 的取值范围为[14,+∞);⑤y =cos x ﹣sin x 的图象向左平移π4个单位,所得图象关于y 轴对称.10.(5分)四棱锥S ﹣ABCD 中,底面ABCD 是边长为2的正方形,侧面SAD 是以AD 为斜边的等腰直角三角形,若∠SAB ∈[π3,2π3],则四棱锥S ﹣ABCD 的体积的取值范围为__________.11.(5分)若直线y =ax +b 与曲线y =lnx +1相切,则ab 的最大值为__________. 12.(5分)设关于x 的不等式ax +b >0的解集为{x |x <2},则关于x 的不等式ax+bx −5x−6≥0的解集为__________.13.(5分)如图,在等腰△ABC 中,AB =AC =3,D ,E 与M ,N 分别是AB ,AC 的三等分点,且DN →•ME →=−1,则cos A =__________.14.(5分)函数y =f (x )的定义域为[﹣2.1,2],其图象如图所示,且f (﹣2.1)=﹣0.96. (1)若函数y =f (x )﹣k 恰有两个不同的零点,则k =__________.(2)已知函数g (x )={2x +1,x ≤0x 3+2x −16,x >0,y =g [f (x )]有__________个不同的零点.二、解答题15.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别是AD,PB的中点.(1)求证:PE⊥CD;(2)求证:EF∥平面PCD;(3)求证:平面P AB⊥平面PCD.16.(14分)已知等比数列{a n}的前n项和为S n,且S2=2a2﹣2,a3=a4﹣2a2.(1)求等比数列{a n}的通项公式;(2)若数列{a n}为递增数列,数列{b n}是等差数列,且b2=2,b4=4;数列{a n b n}的前n项和为T n,求T n.17.(14分)随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为p(0<p <1),且各个时间段每套系统监测出排放超标情况相互独立.(Ⅰ)当p=12时,求某个时间段需要检查污染源处理系统的概率;(Ⅱ)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.18.(16分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1、F 2,左右顶点分别为A 、B ,上顶点为T ,且△TF 1F 2为等边三角形. (1)求此椭圆的离心率e ;(2)若直线y =kx +m (k >0)与椭圆交与C 、D 两点(点D 在x 轴上方),且与线段F 1F 2及椭圆短轴分别交于点M 、N (其中M 、N 不重合),且|CM |=|DN |. ①求k 的值;②设AD 、BC 的斜率分别为k 1,k 2,求k 1k 2的取值范围.19.(16分)定义在R 上的函数f (x )满足f (x )=12•f '(1)•e 2x ﹣2f (0)•x +x 2,g (x )=e x ﹣a (x ﹣1).(1)求函数f (x )的解析式; (2)求函数g (x )的单调区间;(3)给出定义:若s ,t ,r 满足|s ﹣r |<|t ﹣r |,则称s 比t 更接近于r ,当x ≥1时,试比较ex和e x﹣1+3哪个更接近Inx ,并说明理由.20.(16分)设数列{a n },{b n },{c n }的前n 项和分别为A n ,B n ,∁n ,且对任意的都有A n =B n +∁n ,已知A n =n2(a n +1)(n ∈N *),数列{b n }和{c n }是公差不为0的等差数列,且各项均为非负整数. (1)求证:数列{a n }是等差数列;(2)若数列{a n }的前4项删去1项后按原来顺序成等比数列,求所有满足条件的数列{a n }; (3)若a 2=4,且B n >∁n ,n ∈N *,求数列{b n },{c n }的通项公式.21.(10分)已知a ,b ∈R ,向量α→=[−12]是矩阵A =[a 1−1b ]的属于特征值﹣1的一个特征向量.(1)求a ,b 的值;(2)若曲线C 1:x ﹣2y +3=0在矩阵A 对应变换作用下得到另一曲线C 2,求C 2的方程.22.(10分)在平面直角坐标系x 0y 中,直线l 1的参数方程为{x =t −√3y =kt (t 为参数),直线l 2的参数方程为{x =√3−my =m3k(m 为参数).设直线l 1与l 2的交点为P .当k 变化时点P 的轨迹为曲线C 1.(Ⅰ)求出曲线C 1的普通方程;(Ⅱ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线C 2的极坐标方程为ρsin(θ+π4)=3√2,点Q 为曲线C 1上的动点,求点Q 到直线C 2的距离的最大值.23.(选做题)已知a ,b ,c ∈(0,+∞),且1a+2b+3c=2,求a +2b +3c 的最小值及取得最小值时a ,b ,c 的值.24.(10分)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,P A =AD =12AB =1,点E 、M 分别在线段AB 、PC 上,且AE AB=PM PC=λ,其中0<λ<1,连接CE ,延长CE 与DA 的延长线交于点F ,连接PE ,PF ,ME . (Ⅰ)求证:ME ∥平面PFD ;(Ⅱ)若λ=12时,求二面角A ﹣PE ﹣F 的正弦值;(Ⅲ)若直线PE 与平面PBC 所成角的正弦值为√55时,求λ值.25.(10分)一种掷骰子走跳棋的游戏:棋盘山标有第0站、第1站、第2站、…、第100站,共101站,设棋子跳到第n站的概率为P n,一枚棋子开始在第0站,棋手每掷一次骰子,棋子向前跳动一次,若掷出奇数点,则棋子向前跳动一站;若掷出偶数点,则向前跳动两站,直到棋子跳到第99站(获胜)或100站(失败)时,游戏结束(骰子是用一种均匀材料做成的立方体形状的玩具,它的六个面分别标有点数1,2,3,4,5,6).(1)求P0,P1,P2,并根据棋子跳到第n站的情况,试用P n﹣2和P n﹣1表示P n;(2)求证:{P n﹣P n﹣1}(n=1,2…,100)是等比数列;(3)求玩该游戏获胜的概率.2020年江苏高考仿真模拟卷数学2020.4满分:150分考试时间:120分钟一、填空题1.(5分)已知集合M={x|x>2},集合N={x|x≤1},则M∪N=__________.【解析】∵M={x|x>2},N={x|x≤1},∴M∪N={x|x≤1或x>2}.故答案为:{x|x≤1或x>2}.2.(5分)已知复数z满足z+2z=6+i,则z的实部为__________.【解析】设z=a+bi,(a,b∈R).∵复数z满足z+2z=6+i,∴3a﹣bi=6+i,可得:3a=6,﹣b=1,解得a=2,b=1.则z的实部为2.故答案为:2.3.(5分)已知一组数据4.8,4.9,5.2,5.5,5.6,则该组数据的方差是__________.【解析】数据4.8,4.9,5.2,5.5,5.6的平均数为:x=15×(4.8+4.9+5.2+5.5+5.6)=5.2,∴该组数据的方差为:S2=15×[(4.8﹣5.2)2+(4.9﹣5.2)2+(5.2﹣5.2)2+(5.5﹣5.2)2+(5.6﹣5.2)2]=0.1.故答案为:0.1.4.(5分)函数f(x)=lg(4x﹣2x+1)的定义域为__________.【解析】函数f(x)=lg(4x﹣2x+1),令4x﹣2x+1>0,即(2x)2﹣2•2x>0,解得2x>2,即x>1,所以f(x)的定义域为(1,+∞).故答案为:(1,+∞).5.(5分)将100粒大小一样的豆子随机撒入图中长3cm,宽2cm的长方形内,恰有30粒豆子落在阴影区域内,则阴影区域的面积约为__________cm2【解析】设阴影部分的面积为x,由概率的几何概型知,30100=x2×3,解得x=1.8.故答案为:1.8.6.(5分)如图是一个算法的伪代码,其输出的结果为__________.【解析】模拟执行伪代码,可得:S =0+11×2+12×3+⋯+110×11=(1−12)+(12−13)+…+(110−111)=1−111=1011.故答案为:1011.7.(5分)已知双曲线x 23−y 2b =1的两条渐近线与直线x =√3围成正三角形,则双曲线的离心率为__________. 【解析】双曲线x 23−y 2b =1的两条渐近线与直线x =√3围成正三角形,所以双曲线的渐近线的倾斜角为30°和150°,所以√3=√33,所以b =1,所以双曲线的离心率为:e =ca =3=2√33. 故答案为:2√33. 8.(5分)公差不为零的等差数列{a n }的前n 项和为S n ,若a 3是a 2与a 6的等比中项,S 3=3,则S 9的值为__________.【解析】公差d 不为零的等差数列{a n },若a 3是a 2与a 6的等比中项, 可得a 2a 6=a 32,即(a 1+d )(a 1+5d )=(a 1+2d )2,化为d =﹣2a 1,又S 3=3,可得3a 1+3d =3,解得a 1=﹣1,d =2,则S 9=9a 1+36d =﹣9+72=63, 故答案为:63.9.(5分)下面四个命题:其中所有正确命题的序号是__________. ①函数y =sin|x |的最小正周期为π;②在△ABC 中,若AB →⋅BC →>0,则△ABC 一定是钝角三角形; ③函数y =2+log a (x ﹣2)(a >0且a ≠1)的图象必经过点(3,2);④若命题“∃x ∈R ,x 2+x +a <0”是假命题,则实数a 的取值范围为[14,+∞); ⑤y =cos x ﹣sin x 的图象向左平移π4个单位,所得图象关于y 轴对称.【解析】对于①,函数y =sin|x |={sinx ,x ≥0−sinx ,x <0,该函数不是周期函数,①错误;对于②,△ABC 中,若AB →⋅BC →>0,则∠ABC 的外角是锐角, 所以∠ABC 是钝角,△ABC 是钝角三角形,②正确; 对于③,令x ﹣2=1,解得x =3,此时y =2+log a 1=2;所以函数y =2+log a (x ﹣2)(a >0且a ≠1)的图象必过点(3,2),③正确; 对于④,命题“∃x ∈R ,x 2+x +a <0”是假命题时,它的否命题“∀x ∈R ,x 2+x +a ≥0”是真命题,所以△=1﹣4a ≤0,解得a ≥14, 所以实数a 的取值范围是[14,+∞),④正确;对于⑤,y =cos x ﹣sin x =√2cos (x +π4),y 的图象向左平移π4个单位,得y =√2cos (x +π2)=−√2sin x 的图象,所得图象不关于y 轴对称,⑤错误. 综上知,正确的命题序号是②③④. 故答案为:②③④.10.(5分)四棱锥S ﹣ABCD 中,底面ABCD 是边长为2的正方形,侧面SAD 是以AD 为斜边的等腰直角三角形,若∠SAB ∈[π3,2π3],则四棱锥S ﹣ABCD 的体积的取值范围为__________.【解析】如图,分别取AD 与BC 的中点M 、N ,连接MS ,MN . 由题意知AD ⊥平面SMN ,作SO ⊥MN ,垂足为O .则SO ⊥AD . 由AD ∩MN =M ,∴SO ⊥平面ABCD ,即四棱锥S ﹣ABCD 的高为SO ,过O 作OE ∥AD 交AB 于点E ,连接SE .由题意知∠SEA =90°,其中SA =√2. 当∠SAB ∈[π3,2π3]时,sin ∠SAB ∈[√32,1],SE =SA ,sin ∠SAB ∈[√62,√2],EO =1. ∴SO =√SE 2−1∈[√22,1],∴V S ﹣ABCD =13×4×SO∈[2√23,43].故答案为:[2√23,43].11.(5分)若直线y =ax +b 与曲线y =lnx +1相切,则ab 的最大值为__________.【解析】设切点为(x 0,lnx 0+1),则切线为y =1x 0(x −x 0)+lnx 0+1=1x 0x +lnx 0,所以1x 0=a ,lnx 0=b ,则ab =lnx 0x 0,令g (x )=lnx x ,所以g ′(x )=1−lnxx 2, 所以g (x )在(0,e )上单调递增,在(e ,+∞)上单调递减, 则g(x)max =g(e)=1e ,即ab 的最大值为1e,故答案为:1e.12.(5分)设关于x 的不等式ax +b >0的解集为{x |x <2},则关于x 的不等式ax+bx 2−5x−6≥0的解集为__________.【解析】∵不等式ax +b >0的解集为{x |x <2},∴2是方程ax +b =0的解,且a <0, ∴2a +b =0(a <0),ax+b x 2−5x−6≥0⇒ax−2ax 2−5x−6≥0⇒a (x ﹣2)(x ﹣6)(x +1)≥0且x ≠6,x ≠﹣1由标根法得x <﹣1或2≤x <6.∴原不等式的解集为:{x |x <﹣1或2≤x <6}. 故答案为:{x |x <﹣1或2≤x <6}.13.(5分)如图,在等腰△ABC 中,AB =AC =3,D ,E 与M ,N 分别是AB ,AC 的三等分点,且DN →•ME →=−1,则cos A =__________.【解析】以边BC 所在直线为x 轴,以边BC 的中垂线为y 轴,建立如图所示平面直角坐标系, 设A (0,b ),B (﹣a ,0),C (a ,0),且D ,E 与M ,N 分别是AB ,AC 的三等分点, ∴D(−a 3,2b 3),E(−2a 3,b 3),M(a 3,2b 3),N(2a 3,b3),∴DN →=(a ,−b 3),ME →=(−a ,−b3),且DN →⋅ME →=−1, ∴−a 2+b29=−1①,又AC =3,∴a 2+b 2=9②,联立①②得,a 2=95,在△ABC 中,由余弦定理得,cosA =9+9−4a 22×3×3=18−36518=35.故答案为:35.14.(5分)函数y =f (x )的定义域为[﹣2.1,2],其图象如图所示,且f (﹣2.1)=﹣0.96. (1)若函数y =f (x )﹣k 恰有两个不同的零点,则k =__________.(2)已知函数g (x )={2x +1,x ≤0x 3+2x −16,x >0,y =g [f (x )]有__________个不同的零点.【解析】(1)∵y =f (x )﹣k 恰有两个不同的零点,∴y =f (x )和y =k 图象有两个不同的交点. y =f (x )的图象如图:∴k =4或k =0. (2)∵g (x )={2x +1,x ≤0x 3+2x −16,x >0,当x ≤0时,2x +1=0,得x =−12;此时f (x )=−12,由图可知有一个解;当x >0时,g (x )=x 3+2x ﹣16单调递增, ∵g (2)=﹣4,g (3)=17,∴g (x )在(2,3)有一个零点x 0,即f (x )=x 0∈(2,3) 由图可知有三个解,∴共有四个解. 故答案为4或0;4.二.解答题15.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别是AD,PB的中点.(1)求证:PE⊥CD;(2)求证:EF∥平面PCD;(3)求证:平面P AB⊥平面PCD.【解析】(1)∵P A=PD,E是AD的中点,∴PE⊥AD,∵平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,∴PE⊥平面ABCD,∵CD⊂平面ABCD,∴PE⊥CD.(2)取BC中点G,连结EG,FG,∵E,F分别是AD,PB的中点,∴FG∥PC,EF∥DC,∵FG∩EG=G,∴平面EFG∥平面PCD,∵EF⊂平面EFG,∴EF∥平面PCD.(3)∵底面ABCD为矩形,∴CD⊥AD,由(1)得CD⊥PE,又AD∩PE=E,∴CD⊥平面P AD,∵AP⊂平面P AD,∴CD⊥AP,∵P A⊥PD,PD∩CD=D,∴P A⊥平面PCD,∵P A⊂平面P AB,∴平面P AB⊥平面PCD.16.(14分)已知等比数列{a n}的前n项和为S n,且S2=2a2﹣2,a3=a4﹣2a2.(1)求等比数列{a n}的通项公式;(2)若数列{a n}为递增数列,数列{b n}是等差数列,且b2=2,b4=4;数列{a n b n}的前n项和为T n,求T n.【解析】(1)等比数列{a n}中有a3=a4﹣2a2,则q2﹣q﹣2=0,所以q=2或﹣1,因为S2=2a2﹣2,所以a1+a2=2a2﹣2,所以a1=a1q﹣2,当q=2时,a1=2,此时a n=2n;当q=﹣1时,a1=﹣1,此时a n=(−1)n;(2)因为数列{a n}为递增数列,所以a n=2n,数列{b n}是等差数列,且b2=2,b4=4,公差设为d,则有b4﹣b2=2d=4﹣2=2,所以d=1,所以b n=b2+(n﹣2)d=2+(n﹣2)×1=n,即b n=n,所以a n b n=n⋅2n,所以T n=1×2+2×22+3×23+⋯+n×2n,2T n=1×22+2×23+3×24+⋯+n×2n+1,两式相减得−T n=2+22+23+⋯+2n−n⋅2n+1,−T n=2−2n+11−2−n⋅2n+1=(1−n)⋅2n+1−2,即T n=(n−1)⋅2n+1+2.17.(14分)随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为p(0<p <1),且各个时间段每套系统监测出排放超标情况相互独立.(Ⅰ)当p=12时,求某个时间段需要检查污染源处理系统的概率;(Ⅱ)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.【解析】(Ⅰ)∵某个时间段在开启3套系统就被确定需要检查污染源处理系统的概率为C 32(12)3+C 33(12)3=12,某个时间段在需要开启另外2套系统才能确定需要检查污染源处理系统的概率为C 31(12)3[1−(12)2]=932,∴某个时间段需要检查污染源处理系统的概率为12+932=2532;(Ⅱ)设某个时间段环境监测系统的运行费用为X 元,则X 的可能取值为900,1500,∵P(X =1500)=C 31p(1−p)2,P(X =900)=1−C 31p(1−p)2,∴E(X)=900×[1−C 31p(1−p)2]+1500×C 31p(1−p)2=900+1800p (1﹣p )2,令g (p )=p (1﹣p )2,p ∈(0,1),则g '(p )=(1﹣p )2﹣2p (1﹣p )=(3p ﹣1)(p ﹣1), 当p ∈(0,13)时,g '(p )>0,g (p )在(0,13)上单调递增; 当p ∈(13,1)时,g '(p )<0,g (p )在上(13,1)单调递减, ∴g (p )的最大值为g(13)=427,∴实施此方案,最高费用为100+9000×(900+1800×427)×10−4=1150(万元), ∵1150<1200,故不会超过预算. 18.(16分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1、F 2,左右顶点分别为A 、B ,上顶点为T ,且△TF 1F 2为等边三角形. (1)求此椭圆的离心率e ;(2)若直线y =kx +m (k >0)与椭圆交与C 、D 两点(点D 在x 轴上方),且与线段F 1F 2及椭圆短轴分别交于点M 、N (其中M 、N 不重合),且|CM |=|DN |. ①求k 的值;②设AD 、BC 的斜率分别为k 1,k 2,求k 1k 2的取值范围.【解析】(1)设x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,由△TF 1F 2为等边三角形.得a =2c ,即椭圆的离心率e =ca =12;(2)①设C (x 1,y 1),D (x 2,y 2),由y =kx +m ,可知M(−mk ,0),N (0,m ), 联立y =kx +m 与x 2a 2+y 2b 2=1,整理得(a 2k 2+b 2)x 2+2kma 2x +a 2m 2﹣a 2b 2=0,其中△=4a 2b 2(a 2k 2+b 2﹣m 2)>0, 易值,x 1+x 2=x M +x N ,即−2kma 2a 2k 2+b2=−mk,解得k 2=b 2a2=1−e 2=34,因为,k >0,所以k =√32,②由M 在线段F 1F 2,且M ,N 不重合, 可知,x M =−m k =−amb ∈[−c ,0)∪(0,c], 从而m ∈[−bc a ,0)∪(0,bca ], 即k 1=y 2x 2+a ,k 1=y1x 1−a,并结合在曲线上,则有, 所以k 12k 22=y 22y 12⋅(x 1−a)2(x 2+a)2=a 2−x 22a−x 12⋅(x 1−a)2(x 2+a)2=(x 1−a )(x 2−a )(x 1+a )(x 2+a )=x 1x 2−a (x 1+x 2)+a 2x 1x 2+a (x 1+x 2)+a 2=(m+b)2(m−b)2,从而可得,k 1k 2=−m+b m−b =−1−2b m−b∈[a−c a+c ,1)∪(1,a+ca−c], 所以k 1k 2的取值范围为[13,1)∪(1,3].19.(16分)定义在R 上的函数f (x )满足f (x )=12e2•f '(1)•e 2x ﹣2f (0)•x +x 2,g (x )=e x ﹣a (x ﹣1).(1)求函数f (x )的解析式; (2)求函数g (x )的单调区间;(3)给出定义:若s ,t ,r 满足|s ﹣r |<|t ﹣r |,则称s 比t 更接近于r ,当x ≥1时,试比较ex和e x﹣1+3哪个更接近Inx ,并说明理由.【解析】(1)∵f (x )=12e2•f '(1)•e 2x ﹣2f (0)•x +x 2, ∴f ′(x )=f '(1)•e 2x ﹣2﹣2f (0)+2x ,令x =1可得,f ′(1)=f '(1)﹣2f (0)+2,可得f (0)=1, 由f (x )=12e 2•f '(1)•e 2x ﹣2f (0)•x +x 2,可得f (0)=12e 2•f '(1)=1, ∴f ′(1)=2e 2,∴f (x )=e 2x ﹣2x +x 2,(2)∵g (x )=e x ﹣a (x ﹣1).∴g ′(x )=e x ﹣a ,①当a≤0时,g′(x)>0,g(x)单调递增,②当a>0时,当x>lna,g′(x)>0,g(x)单调递增,x<lna,g′(x)<0,g(x)单调递减,(3)设p(x)=ex−lnx,q(x)=e x﹣1﹣lnx+3,易得p(x)在[1,+∞)上单调递减,故当e≥x≥1时,p(x)≥p(e)=0,当x>e时,p(x)<0,而q′(x)=e x−1−1 x,q′′(x)=e x−1+12>0,故q′(x)在[1,+∞)单调递增,q′(x)≥q′(1)=0,则q(x)在[1,+∞)上单调递增,q(x)≥q(1)=4>0,①1≤x≤e时,|p(x)|﹣|q(x)|=p(x)﹣q(x)=e x−e x−1−3=m(x),∴m′(x)=−ex2−e x−1<0,故m(x)单调递减,m(x)≤m(1)=e﹣4<0,∴|p(x)|<|q(x)|即ex比e x﹣1+3更接近lnx,②x>e时,|p(x)|﹣|q(x)|=﹣p(x)﹣q(x)=−e x−e x−1−3+2lnx<﹣e x﹣1+2lnx﹣3=n(x),∴n′(x)=﹣e x﹣1+2x,n′′(x)=﹣e x﹣1−2x2<0,∴n′(x)单调递减,n′(x)<n′(e)<0,故n(x)单调递减,n(x)<n(e)<0,∴|p(x)|<|q(x)|,即ex比e x﹣1+3更接近lnx,综上可得,当x≥1时,ex比e x﹣1+3更接近lnx,20.(16分)设数列{a n},{b n},{c n}的前n项和分别为A n,B n,∁n,且对任意的都有A n=B n+∁n,已知A n=n2(a n+1)(n∈N*),数列{b n}和{c n}是公差不为0的等差数列,且各项均为非负整数.(1)求证:数列{a n}是等差数列;(2)若数列{a n}的前4项删去1项后按原来顺序成等比数列,求所有满足条件的数列{a n};(3)若a2=4,且B n>∁n,n∈N*,求数列{b n},{c n}的通项公式.【解析】(1)∵A n=n2(a n+1),①∴A n+1=n+12(a n+1+1),②②﹣①得:2a n+1=(n+1)a n+1﹣na n+1,即(n﹣1)a n+1=na n﹣1,③na n+2=(n+1)a n+1﹣1,④④﹣③得:2na n+1=na n+2+na n,即2a n+1=a n+2+a n,∵n∈N*,∴数列{a n }是等差数列;(2)解:在A n =n 2(a n +1)中,令n =1,得a 1=1, 设数列{a n }的公差为d ,则a n =1+(n ﹣1)d ,∵数列{a n }的前4项删去1项后按原来顺序成等比数列,∴有:①若删去a 1或a 4,剩下的三项连续,若成等比数列,则d =0,则数列的通项公式为a n =1;②若删去a 2,即a 1,a 3,a 4成等比数列,则(1+2d )2=1×(1+3d ),解得d =0或d =−14, 则数列{a n }的通项公式为a n =1或a n =5−n4; ③若删去a 3,即a 1,a 2,a 4成等比数列,则(1+d )2=1×(1+3d ),解得d =0或d =1. 则数列{a n }的通项公式为a n =1或a n =n . 综上所述,满足条件的数列{a n }有a n =1或a n =5−n4或a n =n ; (3)解:A 2=a 1+a 2=a 1+4=22×(4+1),则a 1=1,a n =3n ﹣2, ∵对任意n ∈N *,都有A n =B n +∁n ,∴对任意n ∈N *,都有a n =b n +c n , 设数列{b n },{c n }的公差分别为d 1,d 2,则 b 1+(n ﹣1)d 1+c 1+(n ﹣1)d 2=3n ﹣2,n ∈N *, ∴{d 1+d 2=3b 1+c 1−d 1−d 2=−2,即{d 1+d 2=3b 1+c 1=1,① ∵对任意n ∈N *,都有B n >∁n ,∴nb 1+n(n−1)2d 1>nc 1+n(n−1)2d 2, 整理得:d 1−d 22n 2+(b 1−c 1−d 1−d 22)n >0,n ∈N *,∴d 1−d 22≥0,且由n =1可得b 1﹣c 1>0,②由数列{b n }和{c n }的各项均为非负整数, ∴由②得d 1≥d 2>0,b 1>c 1≥0,③ 由①③得{b 1=1c 1=0且{d 1=2d 2=1.∴b n =2n ﹣1,c n =n ﹣1.21.(10分)已知a ,b ∈R ,向量α→=[−12]是矩阵A =[a 1−1b ]的属于特征值﹣1的一个特征向量.(1)求a ,b 的值;(2)若曲线C 1:x ﹣2y +3=0在矩阵A 对应变换作用下得到另一曲线C 2,求C 2的方程.【解析】(1)由向量α→=[−12]是矩阵A =[a 1−1b ]的属于特征值﹣1的一个特征向量,得[a 1−1b ] [−12]=−1×[−12],所以﹣a +2=1,1+2b =﹣2,解得a =1,b =−32; (2)由(1)得A =[11−1−32], 设点P (x ,y )为曲线C 1的任意一点,点P 在矩阵A 的变换下得到点P ′(x 0,y 0), 则[11−1−32] [x y ]=[x +y −x −32y ]=[x 0y 0],所以x =3x 0+2y 0,y =﹣2x 0﹣2y 0,代入C 1得7x 0+6y 0+3=0, 即有C 2:7x +6y +3=022.(10分)在平面直角坐标系x 0y 中,直线l 1的参数方程为{x =t −√3y =kt (t 为参数),直线l 2的参数方程为{x =√3−my =m3k(m 为参数).设直线l 1与l 2的交点为P .当k 变化时点P 的轨迹为曲线C 1.(Ⅰ)求出曲线C 1的普通方程;(Ⅱ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线C 2的极坐标方程为ρsin(θ+π4)=3√2,点Q 为曲线C 1上的动点,求点Q 到直线C 2的距离的最大值. 【解析】(Ⅰ)直线l 1的参数方程为{x =t −√3y =kt (t 为参数),转换为直角坐标方程为y =k(x +√3)①.直线l 2的参数方程为{x =√3−m y =m3k(m 为参数).转换为直角坐标方程为y =13k (√3−x)②. 所以①×②得到x 23+y 2=1(y ≠0).(Ⅱ)直线C 2的极坐标方程为ρsin(θ+π4)=3√2,转换为直角坐标方程为x +y ﹣6=0. 设曲线C 1的上的点Q (√3cosθ,sinθ)到直线x +y ﹣8=0的距离d =|√3cosθ+sinθ−6|2=|2sin(θ+π3)−6|√2,当sin(θ+π3)=−1时,d max =82=4√2. 23.(选做题)已知a ,b ,c ∈(0,+∞),且1a+2b +3c=2,求a +2b +3c 的最小值及取得最小值时a ,b ,c 的值.【解析】由于(1a +2b +3c )(a +2b +3c )=[(√1a)2+(√2b)2+(√3c)2][(√a)2+(√2b)2+(√3c)2]≥(√1a √a +√2b √2b +√3c √3c)2=36(5分) 又1a +2b +3c=2,∴a +2b +3c ≥18,当且仅当a =b =c =3时等号成立当a =b =c =3时,a +2b +3c 取得最小值18 (10分)24.(10分)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,P A =AD =12AB =1,点E 、M 分别在线段AB 、PC 上,且AEAB=PM PC=λ,其中0<λ<1,连接CE ,延长CE 与DA 的延长线交于点F ,连接PE ,PF ,ME . (Ⅰ)求证:ME ∥平面PFD ;(Ⅱ)若λ=12时,求二面角A ﹣PE ﹣F 的正弦值; (Ⅲ)若直线PE 与平面PBC 所成角的正弦值为√55时,求λ值.【解析】(Ⅰ)在线段PD 上取一点N ,使得PN PD=λ,∵PN PD=λ=PM PC,∴MN ∥DC 且MN =1λDC ,∵AEAB=λ,∴AE =1λAB ,AB ∥DC 且AB =DC ,∴且AE =MN ,∴四边形为平行四边形,∴ME ∥AN , 又∵AN ⊂平面PFD ,ME ⊄平面PFD ,∴ME ∥平面PFD .(Ⅱ)以A 为坐标原点,分别以AF ,AB ,AP 为x ,y ,z 轴建立空间直角坐标系A (0,0,0),P (0,0,1),B (0,2,0),C (﹣1,2,0),D (﹣1,0,0), ∵λ=12,∴E (0,1,0),F (1,0,0)设平面PEA 的一个法向量为n →=(x ,y ,z), PE →=(0,1,−1),AP →=(0,0,1),{n →⋅PE →=y −z =0n →⋅AP →=z =0,令z =1,∴y =1,∴m →=(0,1,1), 设平面PEF 的一个法向量为m →=(x ,y ,z),PE →=(0,1,−1),PF →=(1,0,−1),{m →⋅PE →=y −z =0m →⋅PF →=x −z =0, 令z =1,∴x =1,y =1,∴m →=(1,1,1),∴cos <m →,n →>=m →⋅n →|m →|⋅|n →|=2⋅3=√33,sin <m →,n →>=√1−cos 2<m →,n →>=√63,二面角A ﹣PE ﹣F 的正弦值为√63.( III )令E (0,h ,0),0≤h ≤2,PE →=(0,ℎ,−1),设平面PEA 的一个法向量为n 1→=(x ,y ,z),PB →=(0,2,−1),BC →=(−1,0,0),{n 1→⋅PB →=2y −z =0n 1→⋅PB →=−x =0,令y =1,∴z =1,∴n 1→=(0,1,2)由题意可得:|cos <PE →,n 1→>|=|PE →⋅n 1→||PE →|⋅|n 1→|=|ℎ−2|√ℎ+1⋅√5=√55,∴ℎ=34,∴AE =34,λ=AE AB =38.25.(10分)一种掷骰子走跳棋的游戏:棋盘山标有第0站、第1站、第2站、…、第100站,共101站,设棋子跳到第n 站的概率为P n ,一枚棋子开始在第0站,棋手每掷一次骰子,棋子向前跳动一次,若掷出奇数点,则棋子向前跳动一站;若掷出偶数点,则向前跳动两站,直到棋子跳到第99站(获胜)或100站(失败)时,游戏结束(骰子是用一种均匀材料做成的立方体形状的玩具,它的六个面分别标有点数1,2,3,4,5,6).(1)求P0,P1,P2,并根据棋子跳到第n站的情况,试用P n﹣2和P n﹣1表示P n;(2)求证:{P n﹣P n﹣1}(n=1,2…,100)是等比数列;(3)求玩该游戏获胜的概率.【解析】(1)根据题意,棋子跳到第n站的概率为p n,则p0即棋子跳到第0站的概率,则p0=1,p1即棋子跳到第1站的概率,则p1=1 2,p2即棋子跳到第2站的概率,有两种情况,即抛出2次奇数或1次偶数,则p2=12p0+12p1=34;故跳到第n站p n有两种情况,①在第n﹣2站抛出偶数,②在第n﹣1站抛出奇数;所以p n=12p n−1+12p n−2;(2)证明:∵p n=12p n−1+12p n−2,∴p n−p n−1=−12(p n−1−p n−2),又∵p1−p0=−1 2;∴数列{P n﹣P n﹣1}(n=1,2…,100)是以−12为首项,−−12为公比的等比数列.(3)玩游戏获胜即跳到第99站,由(2)可得p n−p n−1=(−12)n(1≤n≤100),∴p1−p0=−1 2,p2−p1=14,p3−p2=−18,p99−p98=(−12)99,∴p99−p0=(−12)×[1−(−12)99]1−(−12),∴p99=23[1−(12)100].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届江苏高考应用题模拟试题选编(十二)1、(江苏省淮阴中学2020届高三阶段模拟考试试题)一个拐角处为直角的走廊如图所示,走廊宽2m.,为了美化环境,现要在拐角位置布置一处盆景. 盆景所在区域为图中阴影部分,其中直角边OA ,OB 分别位于走廊拐角的外侧. 为了不影响走廊中正常的人流走动. 要求拐角最窄处CH 不得小于32m.(1) 若OA=OB=1m ,试判断是否符合设计要求;(2) 若O1=2OB ,且拐角最处恰好为32m 时,求盆景所在区域的面积;(3) 试判断对满足AB =52m 的任意位置的A ,B ,是否均符合设计要求? 请说明理由.(第1题) (第2题) 2、(江苏省如皋市2019—2020学年高三年级第二学期语数英学科模拟(三)数学试题)杭州西溪国家湿地公园是以水为主题的公园,以湿地良好生态环境和多样化湿地景观资源为基础的生态型主题公园.欲在该公园内搭建一个平面凸四边形ABCD 的休闲、观光及科普宣教的平台,如图所示,其中DC =4百米,DA =2百米,△ABC 为正三角形.建成后△BCD 将作为人们旅游观光、休闲娱乐的区域,△ABD 将作为科普宣教湿地功能利用、弘扬湿地文化的区域.(1)当∠ADC =3π时,求旅游观光、休闲娱乐的区域△BCD 的面积;(2)求旅游观光、休闲娱乐的区域△BCD 的面积的最大值.3、(上海市杨浦区2020届高三下学期第二次模拟数学试题)某地出现了虫害,农业科学家引入了“虫害指数”数列{}n I ,{}n I 表示第n 周的虫害的严重程度,虫害指数越大,严重程度越高,为了治理虫害,需要环境整治、杀灭害虫,然而由于人力资源有限,每周只能采取以下两个策略之一:策略A :环境整治,“虫害指数”数列满足:1 1.020.20n n I I +=-; 策略B :杀灭害虫,“虫害指数”数列满足:1 1.080.46n n I I +=-; 当某周“虫害指数”小于1时,危机就在这周解除.B 。

(第 4题)(1)设第一周的虫害指数1[1,8]I ∈,用哪一个策略将使第二周的虫害的严重程度更小?(2)设第一周的虫害指数13I =,如果每周都采用最优的策略,虫害的危机最快在第几周解除?4、(江苏省南通市基地学校2020届高三第三次大联考数学试题)如图, 某地有一块半径为R 的扇形 AOB 公园, 其中O 为扇形所在圆的圆心,∠AOB=120。

,OA, OB, ⋂AB 为公园原有道路. 为满足市民观赏和健身的需要, 市政部门拟在⋂AB 上选取一点M ,新建道路OM 及与 OA 平行的道路MN (点N 在线段OB 上), 设 ∠AOM = θ(1)如何设计, 才能使市民从点O 出发沿道路OM, MN 行走至点N 所经过的路径最长?请说明理由(2)如何设计, 才能使市民从点A 出发沿道路AM, MN 行走至点N 所经过的路径最长?请说明理由.(第5题) 5、(江苏省苏锡常镇四市2020届高三教学情况调研(二)数学试题)某地开发一片荒地,如图,荒地的边界是以C 为圆心,半径为1千米的圆周.已有两条互相垂直的道路OE ,OF ,分别与荒地的边界有且仅有一个接触点A ,B .现规划修建一条新路(由线段MP ,»PQ ,线段QN 三段组成),其中点M ,N 分别在OE ,OF上,且使得MP ,QN 所在直线分别与荒地的边界有且仅有一个接触点P ,Q ,»PQ所对的圆心角为6π.记∠PCA =2θ(道路宽度均忽略不计). (1)若512πθ=,求QN 的长度;(2)求新路总长度的最小值.6、(江苏省2020届高考数学全真模拟试卷(五)(南通教研室))为了提升学生“数学建模”核心素养,某校数学兴趣活动小组指导老师给学生布置了一项探究任务:如图,有一张边长为27cm 的等边三角形纸片ABC ,从中裁出等边三角形纸片111A B C 作为底面,从剩余梯形11ABB A 中裁出三个全等的矩形作为侧面,围成一个无盖的三棱柱(不计损耗).(1)若三棱柱的侧面积等于底面积,求此三棱柱的底面边长; (2)当三棱柱的底面边长为何值时,三棱柱的体积最大?(第6题) (第7题)7、(江苏省南京市2020届高三年级第三次模拟考试数学试题)如图,港口A 在港口O 的正东100海里处,在北偏东方向有条直线航道OD ,航道和正东方向之间有一片以B 为圆心,半径为85海里的圆形暗礁群(在这片海域行船有触礁危险),其中OB =2013海里,tan ∠AOB =23,cos ∠AOD 5现一艘科考船以5海里/小时的速度从O 出发沿OD 方向行驶,经过2个小时后,一艘快艇以50海里/小时的速度准备从港口A 出发,并沿直线方向行驶与科考船恰好相遇. (1)若快艇立即出发,判断快艇是否有触礁的危险,并说明理由; (2)在无触礁危险的情况下,若快艇再等x 小时出发,求x 的最小值. 8、(江苏省2020届模拟数学试题)如图所示,在某海滨城市A 附近的海面出现台风活动.据监测,目前台风中心位于城市A 的东偏南60°方向、距城市A300km 的海面点P 处,并以20km/h 的速度向西偏北30°方向移动.如果台风影响的范围是以台风中心为圆心的圆形区域,半径为1003km ,将问题涉及范围内的地球表面看成平面,判断城市A 是否会受到上述台风的影响.如果会,求出受影响的时间;如果不会,说明理由.(第8题) (第10题)9、(江苏省天一中学2020届第二学期高三6月模拟试题)给出两块相同的正三角形铁皮(如图1,图2),(1) 要求用其中一块剪拼成一个三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,① 请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明; ② 试比较你剪拼的正三棱锥与正三棱柱的体积的大小(2) 设正三角形铁皮的边长为a ,将正三角形铁皮的三个角切去三个全等的四边形,再把它的边沿虚线折起(如图3),做成一个无盖的正三角形底铁皮箱,当箱底边长为多少时,箱子容积最大? 最大容积是多少?10、(江苏省盐城市2020届高三年级第四次模拟考试数学试题)如图,在一旅游区内原有两条互相垂直且相交于点O 的道路l 1,l 2,一自然景观的边界近似为圆形,其半径约为1千米,景观的中心C 到l 1,l 2的距离相等,点C 到点O 的距离约为 10千米.现拟新建四条游览道路方便游客参观,具体方案:在线段OC 上取一点P ,新建一条道路OP ,并过点P 新建两条与圆C 相切的道路PM ,PN (M ,N 为切点),同时过点P 新建一条与OP 垂直的道路AB (A ,B 分别在l 1,l 2上).为促进沿途旅游经济,新建道路长度之和越大越好,求新建道路长度之和的最大值.(所有道路宽度忽略不计)(第9题)(图1)(图2)(图3)1、2、3、4、5、解:(1)连接CB ,CN ,CM ,OM ⊥ON ,OM ,ON ,PM ,QN 均与圆C 相切 ∴CB ⊥ON ,CA ⊥OM ,CP ⊥MP ,CQ ⊥NQ ,∴CB ⊥CA∵∠PCA =2θ56π=,∠PCQ =6π,∴∠QCB =526622πππππ---=, 此时四边形BCQN 是正方形,∴QN =CQ =1, 答:QN 的长度为1千米;(2)∵∠PCA =2θ,可得∠MCP =θ,∠NCQ =23πθ-, 则MP =tan θ,»PQ 6π=,NQ =2tan tan 233tan()233tan 11tan tan πθπθπθθ--==-+ 设新路长为()f θ,其中θ∈(6π,2π),即3tan θ≥ ∴tan 3323()tan tan 663tan 13tan 3f πθπθθθθθ+=+=--,23+6≥,当tan 3θ=时取“=”,答:新路总长度的最小值为23+6π.6、】设三棱柱的底面边长为xcm ,即1AC x =, 则127A A x =-.因为ABC V 为等边三角形,所以三棱柱的高为1(27))326x x ⨯⨯-=-.(1)因为三棱柱的底面积为212x x x ⨯=⨯,侧面积为23))62x x x x ⨯⨯-=-,所以22)42x x x =-, 解得18x =或0x =(舍去). 即三棱柱的底面边长为18cm.(2)三棱柱的体积2231)(27)8V x x x x =-=-.因为0x >,)06x ->, 所以027x <<.因为213(543)(18)88V x x x x '=-=-, 所以当018x <<时,0V '>,故V 单调递增; 当1827x <<时,0V '<,故V 单调递减. 所以当18x =时,V 取到极大值,也是最大值,23max 1729(271818)82V =⨯-=.即当底面边长为18cm 时,三棱柱的体积最大,为3729cm 2. 7、解:如图,以O 为原点,正东方向为x 轴,正北方向为y 轴,建立直角坐标系xOy .因为OB =2013,tan ∠AOB =23,OA =100,所以点B(60,40),且A(100,0).(1)设快艇立即出发经过t小时后两船相遇于点C,则OC=105(t+2),AC=50t.因为OA=100,cos∠AOD=55,所以AC2=OA2+OC2-2OA·OC·cos∠AOD,即(50t)2=1002+[105(t+2)]2-2×100×105(t+2)×55.化得t2=4,解得t1=2,t2=-2(舍去),所以OC=405.因为cos∠AOD=55,所以sin∠AOD=255,所以C(40,80),所以直线AC的方程为y=-43(x-100),即4x+3y-400=0.因为圆心B到直线AC的距离d=|4×60+3×40-400|42+32=8,而圆B的半径r=85,所以d<r,此时直线AC与圆B相交,所以快艇有触礁的危险.答:若快艇立即出发有触礁的危险.(2)设快艇所走的直线AE与圆B相切,且与科考船相遇于点E.设直线AE的方程为y=k(x-100),即kx-y-100k=0.因为直线AE与圆B相切,所以圆心B到直线AC的距离d=|60k-40-100k|12+k2=85,即2k2+5k+2=0,解得k=-2或k=-1 2.由(1)可知k=-12舍去.因为cos ∠AOD=55,所以tan ∠AOD =2,所以直线OD 的方程为y =2x . 由⎩⎪⎨⎪⎧y =2x , y =-2(x -100),解得⎩⎪⎨⎪⎧x =50,y =100,所以E(50,100),所以AE =50 5,OE =505,此时两船的时间差为50510 5-50550=5- 5,所以x ≥5- 5-2=3-5. 答:x 的最小值为(3-5)小时.8、如图所示,设台风的中心xh 后到达位置Q ,且此时1003km AQ =.在△AQP 中,有APQ ∠=60°-30°=30°,且300AP km =,20PQ xkm =, 100330020sin sin xAQP PAQ==∠∠. 从而可解得3sin 1003AQP ︒∠==AQP ∠=60°或AQP ∠=120°. 当60AQP ∠=o 时,180306090PAQ ︒︒︒︒∠=--=,因此100320sin 30x ︒=,103x = 当AQP ∠=120°时,1803012030PAQ ︒︒︒︒∠=--=,因此201003x =53x =. 这就说明,城市A 在3h 后会受到影响,持续的时间为1035353=(h ). 9、10、解:连接CM ,设∠PCM =θ,则PC =1cos θ,PM =PN =tan θ,OP =OC ﹣PC =10﹣1cos θ,AB =2OP =20﹣2cos θ, 设新建的道路长度之和为()f θ,则3()2tan 30cos f PM PN AB OP θθθ=+++=-+由1<PC ≤10得110≤θ<1,设01cos 10θ=,0θ∈(0,2π),则θ∈(0,0θ],0sin 10θ=,0223cos ()cos f θθθ-'=,令0()0f θ'=得2sin 3θ= 设12sin θ=,1θ∈(0,0θ],θ,0()f θ',()f θ的情况如下表:θ=,()30f θ=答:新建道路长度之和的最大值为30。

相关文档
最新文档