八年级数学鲁教版三角形的中位线1教学设计
八年级数学下册《三角形的中位线》教案、教学设计

4.学生在小组内分享解题思路,教师巡回指导,解答学生的疑问。
(四)课堂练习,500字
1.教师出示一组练习题,要求学生独立完成,运用中位线定理解决问题。
2.学生完成练习题后,教师选取部分题目进行讲解,强调解题方法和技巧。
引导学生思考中位线定理在生活中的应用,激发他们的创新意识。同时,鼓励学生探索其他几何图形的中位线性质,提高他们的几何图形识别和分析能力。
6.总结反馈,情感交流
在课堂结束时,教师组织学生总结本节课的学习内容,分享学习心得。同时,关注学生的情感态度,鼓励他们积极面对学习中的困难,培养自信、坚韧的品质。
7.课后作业,延伸学习
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握三角形的中位线定理及其证明,这是本章节的核心内容,也是学生学习的重点和难点。学生对中位线定理的理解程度,直接影响到后续几何知识的学习。
2.能够运用中位线定理解决实际问题,培养学生将理论知识应用于实际情境的能力。
3.提高学生的几何证明和逻辑推理能力,使他们能够熟练运用几何知识分析和解决问题。
4.教师详细讲解中位线定理的证明过程,强调证明方法及逻辑推理的重要性。
5.针对学生的疑问,进行个别辅导,确保他们掌握中位线定理。
(三)学生小组讨论,500字
1.教师将学生分成小组,每组发放一张三角形图形,要求学生在图中找出中位线,并讨论中位线的性质。
2.各小组汇报讨论成果,教师点评并总结中位线的认识和运用有了更深入的理解。
5.教师布置适量的课后作业,巩固课堂所学知识,并鼓励学生利用课余时间探索几何知识。
五、作业布置
为了巩固学生对三角形中位线知识的掌握,提高他们的几何图形识别、分析和解决问题的能力,特布置以下作业:
三角形的中位线教案

三角形的中位线教案第一章:三角形的中位线概念1.1 教学目标让学生了解三角形的中位线的定义和性质。
培养学生通过图形直观判断和证明三角形中位线的性质。
培养学生运用三角形中位线解决实际问题的能力。
1.2 教学内容三角形中位线的定义三角形中位线与三角形边长的关系三角形中位线的性质定理1.3 教学方法采用图形演示、学生自主探究、小组讨论、教师讲解相结合的方法。
1.4 教学步骤1.4.1 导入通过展示实际问题,引发学生对三角形中位线的思考。
1.4.2 新课导入介绍三角形中位线的定义,引导学生通过图形直观理解中位线。
1.4.3 性质探究引导学生通过画图和观察,发现三角形中位线与三角形边长的关系。
1.4.4 例题讲解通过典型例题,讲解如何运用三角形中位线定理解决问题。
1.4.5 练习巩固布置相关练习题,让学生巩固所学内容。
第二章:三角形中位线的应用2.1 教学目标让学生掌握三角形中位线的应用方法。
培养学生运用三角形中位线解决实际问题的能力。
2.2 教学内容三角形中位线在几何图形中的应用三角形中位线在实际问题中的运用2.3 教学方法采用案例分析、学生自主探究、小组讨论、教师讲解相结合的方法。
2.4 教学步骤2.4.1 导入通过展示实际问题,引导学生运用三角形中位线解决。
2.4.2 性质应用讲解三角形中位线在几何图形中的应用,如构造平行线、证明线段相等等。
2.4.3 案例分析分析实际问题,引导学生运用三角形中位线定理解决问题。
2.4.4 练习巩固布置相关练习题,让学生巩固所学内容。
第三章:三角形中位线的证明3.1 教学目标让学生掌握三角形中位线证明的方法。
培养学生运用证明方法解决几何问题的能力。
3.2 教学内容三角形中位线的证明定理及方法3.3 教学方法采用图形演示、学生自主探究、小组讨论、教师讲解相结合的方法。
3.4 教学步骤3.4.1 导入通过展示实际问题,引导学生对三角形中位线证明的思考。
3.4.2 性质证明引导学生运用图形演示和证明方法,证明三角形中位线的性质。
三角形的中位线数学教案

三角形的中位线数学教案一、教学目标:1. 让学生理解三角形的中位线的概念,掌握中位线的性质和作法。
2. 培养学生运用中位线解决三角形相关问题的能力。
3. 培养学生的观察能力、推理能力和动手实践能力。
二、教学内容:1. 三角形的中位线概念。
2. 三角形中位线的性质。
3. 三角形中位线的作法。
4. 三角形中位线在解决实际问题中的应用。
三、教学重点与难点:1. 教学重点:三角形的中位线概念、性质和作法。
2. 教学难点:三角形中位线在解决实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生探究三角形中位线的性质。
2. 利用几何画板软件,动态展示三角形中位线的作法。
3. 通过实例分析,让学生学会运用中位线解决实际问题。
4. 组织小组讨论,培养学生合作学习的意识。
五、教学过程:1. 导入:利用几何画板软件,展示一个任意三角形,引导学生观察并思考:能否找到一条线段,使得这条线段垂直于三角形的两边,并且平分第三边?3. 探究三角形中位线的性质:让学生通过几何画板软件,尝试改变三角形的形状,观察中位线的变化。
引导学生发现中位线的性质,如:中位线等于第三边的一半,中位线平行于第三边等。
4. 学习三角形中位线的作法:引导学生利用直尺和圆规,尝试作出一个任意三角形的中位线。
讲解中位线的作法步骤,并强调注意事项。
5. 应用实例:让学生运用中位线解决实际问题,如:已知三角形两边长度,求第三边长度;已知三角形两边和其中一边上的高,求三角形面积等。
六、教学反馈与评价:1. 在课后,通过布置适量的练习题,收集学生的学习反馈,了解学生对三角形中位线概念、性质和作法的掌握情况。
2. 在下一节课开始时,安排一个简短的小测验,测试学生对三角形中位线的理解和应用能力。
3. 根据学生的练习情况和测试结果,对教学方法和教学内容进行调整,以提高教学效果。
七、课后作业:1. 请学生运用三角形中位线的知识,解决一些相关的几何问题,如求三角形的面积、判断三角形的形状等。
(八年级数学教案)三角形的中位线的

三角形的中位线的八年级数学教案一、设计思路(一)教材分析本课时所要探究的三角形中位线定理是学生以前从未接触过的内容。
因此,在教学中通过创设有趣的情境问题,激发学生的学习兴趣,注重新旧知识的联系,强调直观与抽象的结合,鼓励学生大胆猜想,大胆探索新颖独特的证明方法和思路,让学生充分经历探索一发现一猜想一证明”这一过程,体会合情推理与演绎推理在获得结论的过程中发挥的作用,同时渗透归纳、类比、转化等数学思想方法。
通过本节课的学习,应使学生理解三角形中位线定理不仅指出了三角形的中位线与第三边的位置关系和数量关系,而且为证明线段之间的位置关系和数量关系(倍分关系)提供了新的思路,从而提高学生分析问题、解决问题的能力。
(二)学情分析本班学生基础知识比较扎实,接受新知识的意识较强,对于本章有关平行四边形的性质和判定的内容掌握较好,但知识迁移能力较差,数学思想方法运用不够灵活。
因此,本节课着眼于基础,注重能力的培养,积极引导学生首先通过实际操作获得结论,然后借助于平行四边形的有关知识进行探索和证明。
在此过程中注重知识的迁移同时重点渗透转化、类比、归纳的数学思想方法, 使学生的优势得以发挥,劣势得以改进,从而提高学生的整体水平。
三)教学目标1•知识目标1)了解三角形中位线的概念。
2)掌握三角形中位线定理的证明和有关应用。
2•能力目标1)经历探索一发现一猜想一证明”的过程,进一步发展推理论证能力。
2)能够用多种方法证明三角形的中位线定理,体会在证明过程中所运用的归纳、类比、转化等数学思想方法。
3)能够应用三角形的中位线定理进行有关的论证和计算,逐步提高学生分析问题和解决问题的能力。
3.情感目标通过学生动手操作、观察、实验、推理、猜想、论证等自主探索与合作交流的过程,激发学生的学习兴趣,让学生真正体验知识的发生和发展过程,培养学生的创新意识。
(四)教学重点与难点教学重点:三角形中位线的概念与三角形中位线定理的证明八年级数学教案(五)教学方法与学法指导对于三角形中位线定理的引入采用发现法,在教师的引导下,学生通过探索、猜测等自主探究的方法先获得结论再去证明。
三角形的中位线--教学设计

《三角形的中位线》教学设计一、教学内容分析三角形中位线是三角形中重要的线段,三角形中位线定理是三角形一个重要性质定理,它是前面已学过的平行线、全等三角形、平行四边形判定和性质的应用和深化,又是几何推理、证明中的常用依据。
在三角形中位线定理的证明及应用中,处处渗透了化归思想,是发展学生合情推理能力与演绎推理能力重要的题材,同时让学生进一步了解三角形的性质。
本节课,教材对有关内容采用了边探索边证明这种“合二为一”的处理方式,更注重让学生经历“探索-猜想-验证”的过程,达到学生发现并掌握知识的结果。
二、学生学情分析本班学生基础较好,总体能较快的接受新知识,对于本章平行四边形的性质和判定掌握较好,但知识迁移能力处于弱势,数学思想方法的灵活运用也有待提高。
因此,本节课着眼于基础,注重能力的培养,积极引导学生首先通过实际操作获得结论,然后借助于全等三角形的有关知识进行探索和证明,使学生的优势得以发挥,劣势得以改进,从而提高学生的整体水平。
三、教学目标设置根据教学大纲要求结合教材内容和学生现状,本节课确定以下目标:1、知识技能:(1)理解三角形中位线的概念;(2)初步掌握三角形中位线定理。
2、数学思考:(1)经历探索、证明三角形中位线定理的过程,发展合情推理和演绎推理的能力(2)体会化归的数学思想。
3、问题解决:初步学会用三角形中位线定理解决一些简单问题。
4、情感态度:培养学生的探究精神,体会事物之间的相互联系,进一步感受数学的价值。
四、教学策略分析(一)教学重点和教学难点:教学重点是:三角形中位线定理及其应用;从学生知识掌握的现状分析来看,如何适当添加辅助线、如何利用化归思想来解决问题,是学生学习的困难所在,因此确立本节教学难点是:三角形中位线定理的证明。
(二)教学组织形式由于我们的班级有小组模式,于是我将充分运用小组合作,并结合教师为主导,学生为主体的新课改教育理念进行教学。
(三)教学方法及学法指导结合本节课内容的特点,采用问题驱动、引导发现、合作探究相结合的教学方法。
鲁教版数学八年级上册5.3《三角形的中位线》说课稿

鲁教版数学八年级上册5.3《三角形的中位线》说课稿一. 教材分析鲁教版数学八年级上册5.3《三角形的中位线》这一节主要介绍了三角形的中位线的性质。
在初中数学中,三角形的中位线是一个非常重要的概念,它不仅在几何学习中有着重要的作用,而且对于培养学生的空间想象能力和逻辑思维能力也有着积极的影响。
教材从生活实例出发,引导学生探究三角形中位线的性质,通过学生自主探究、合作交流的方式,让学生在实践中掌握知识,体验学习的乐趣。
教材内容由浅入深,层层递进,既有基础知识的巩固,又有拓展提升,使学生在学习过程中不断挑战自我,提高自我。
二. 学情分析学生在学习这一节内容时,已经有了一定的几何基础,对三角形的基本概念有了了解,同时他们也已经掌握了平行四边形的性质,这为学习三角形的中位线提供了良好的基础。
此外,学生的探究能力和合作能力也有了较大的提高,他们在课堂上能够积极参与,勇于发表自己的观点。
然而,学生对于三角形中位线的证明可能还存在一定的困难,这就需要我们在教学中加以引导和帮助。
同时,学生对于三角形中位线在实际问题中的应用可能还不够熟练,我们在教学中也要注重培养学生的应用能力。
三. 说教学目标1.知识与技能目标:让学生掌握三角形的中位线的性质,能够运用三角形的中位线解决一些实际问题。
2.过程与方法目标:通过学生自主探究、合作交流,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:让学生在探究过程中体验学习的乐趣,增强对数学的兴趣。
四. 说教学重难点1.教学重点:三角形的中位线的性质。
2.教学难点:三角形中位线的证明,以及三角形中位线在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用学生自主探究、合作交流的教学方法,让学生在实践中掌握知识。
2.教学手段:利用多媒体课件,直观展示三角形的中位线性质,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:从生活实例出发,引导学生关注三角形的中位线,激发学生的学习兴趣。
初中数学_三角形的中位线教学设计学情分析教材分析课后反思

《三角形的中位线》教学设计一、课标要求探索并证明三角形中位线定理.二、学习目标1、理解中位线概念,掌握中位线定理并会应用.2、探索并证明三角形中位线定理.3、通过中位线定理的应用,体会数学的价值,培养培养学生的探索精神和科学态度.三、教材分析本节内容是鲁教版八年级上册第五章第三节第一课时,《标准》的要求是探索并证明三角形中位线定理.教科书对本部分的内容力求突出图形性质的探索和证明过程,方法是“边探索边证明”,本节内容是在学习完平行四边形的性质和判定的基础上,借助对三角形的剪拼,形成平行四边形,然后利用平行四边形的相关性质来研究中位线的性质,把合情推理与演绎推理融为一体,为学生提供自主探索发现的空间,再现图形丰富多彩的探究过程,在此基础上,鼓励学生思考有关结论的证明思路和证明方法,特别要引导学生探索不同的证明思路和方法,并使证明成为探索活动的自然延续和必要发展,整个学习过程经历“探索―发现―猜想―证明”的完整过程,通过学生自主、交流、讨论,发展学生的推理论证能力.基于以上分析,所以本节课的重点就是掌握中位线定理及其证明,并能简单应用.四、学情分析由于学生已有平行线、三角形、四边形(主要是平行四边形)等平面几何图形的基础,也已经积累了一定的数学活动经验,几何直观与推理能力都得到了一定的培养和提高,而通过对本章前面两节平行四边形的性质和判定的学习,具备了一定基础的平移、旋转等图形变换的基础,对几何图形的剪拼已有了一定的直观印象,虽然理论依据不够清楚,但猜想方向还是正确的,所以对于三角形中位线的性质容易得出,但在推理证明方面遇到了障碍,而中位线定理的探索与证明,就是建立在此基础上的.所以本节课的难点就是用不同思路和方法探索证明中位线定理.五、评价目标通过环节一、二达成目标2;通过环节三、四达成目标1,3.六、教学过程 【第一环节】导入1、师生活动问题1你能把四个全等的四边形拼成一个大三角形吗? 问题2李大爷有四个儿子,他准备把一块肥沃的三角形田平均分给他们,可儿子们却要求将这块田分成形状和大小都完全一样的四块三角形,这可为难李大爷了,他怎么想也得不出结果. 同学们,你愿意为李大爷解决这个问题吗?问题3如何把这个三角形纸片ABC 用剪刀只剪一刀,把三角形分 成两部分,然后拼成一个平行四边形?2、设计目的这三个问题都是基于动手操作和实际背景的问题,让学生认识数学价值,培养其科学精神,本环节是设疑环节,问题1为问题2做铺垫提示,问题1在拼的过程中会出现等边对不上,或三角形的方向不对,经过讨论是可以解决的,问题2学生能够根据问题1猜想出具体做法,但理由说不出来,推理产生障碍;问题3是基于本章前两节内容的基础上,将三角形变换为平行四边形,其中也有问题1,2的影子,为后面中位线定理的证明中辅助线添加埋下伏笔,学生同样在操作过程中遇到障碍,学生能根据生活经验做出,但同样根据不足. 3、活动预期问题(1)虽有难度,但可以交流解决,问题(2),(3)学生通过交流,能够猜想出操作方法,但讲不出理由,会出现推理障碍,这为引入下一环节做铺垫.【第二环节】探索证明1、师生活动教师适时提出中位线概念(同时与三角形中线进行比较)通过学生 交流、讨论(观察或测量),师生归纳得出中位线定理.三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 已知:△ABC 中,点D ,E 分别是AB ,AC 边的中点.ACB AEDBC求证:DE ∥BC ,DE =BC .2、设计目的此环节为探究合作环节,师生共同探索并进行证明,受问题1和问题2的启发,猜想辅助线的添加方法,在交流讨论的过程中,衍生出其它合理的证明方法,让学生体会交流合作的重要性,提升团队凝聚力,然后教师利用几何画板软件进行动态操作,加深学生对不同思路和证明方法的理解,体会不同方法之间的共性和差别,以发展学生的推理论证能力. 3、活动预期学生在前面剪拼的基础上,通过交流合作能够将中位线延长或做平行线,但对于旋转和构造平行四边形的方法还是比较陌生,需要教师适当点拨,另外,部分学生对于添加辅助线的语言叙述及推理证明的严谨性还有差距,需要学生之间多口述.【第三环节】定理巩固1、知识技能1.在△ABC 中,D ,E 是AB ,AC 的中点,若DE =2,则BC =_______.2.一个三角形的三边长分别为4,5,6,则连结各边中点所得 三角形的周长为__________.3.如图所示,△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,AB =10 cm ,AC =6 cm ,则四边形ADEF 的周长为 . <选做题>1.如图,在△ABC 中,AB =AC =6,BC =8,AE 平分∠BAC 交BC 于 点E ,点D 为AB 的中点,连接DE ,则△BDE 的周长是 .BC(旋转)AEDBCF(延长或平行)A EDBCF(构造平行四边形)ADBECDAE DBCF2.如图,□ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是 CD 的中点,BD =12,则△DOE 的周长为 .问题解决如图1,A ,B 两地被池塘隔开,在尺子长度不够,而无法直接测量A ,B 之间距离的情况下,你有什么办法?<拓展>如图2,如果C ,D 之间还有阻碍,又怎么办呢? 2、设计目的知识技能部分主要是让学生直接运用定理解决,只要是认真听讲,难度不大,但要注意解题步骤的叙述.选做题为学有余力的学生提供,稍加变化,难度中;问题解决是生活实际中的数学应用,需要学生交流合作来解决,即能体会数学的价值,又可以提高学生的合作能力,发挥团队精神. 3、活动预期知识技能部分不会有太大难度,但要注意步骤,问题解决需要给予学生足够的时间交流,大部学生是可以解决的.【第四环节】能力提升1、师生活动做一做任意作一个四边形,并将其四边中点依次连接起来,得到一个 新的四边形,这个新四边形有什么特征?能力提升A图1图2ACP DBAEBF CGD H1.已知:如图,在四边形ABCD 中,点E ,F ,G ,H 分别 是AB ,CD ,AC ,BD 的中点.求证:四边形EGFH 是平行四边形. <选作题>1.已知:如图,△ABC 是锐角三角形,分别以AB ,AC 为 边向外侧作等边三角形ABM 和等边三角形CAN ,D ,E ,F 分别 是MB ,BC ,CN 的中点,连结DE ,FE .求证:DE =FE . 2、设计目的通过“做一做”来提示学生围绕中点构造三角形,再通过变式练习,既可以加深对本节知识的理解,又能加强与其它知识点的的链接,系统化所学,发展学生的逻辑推理能力. 3、活动预期“做一做”通过交流学生可以顺利连接对角线来解决,而能力提升需要足够的时间交流,部分学生可能全部完成有难度,可以放到课后进行.【第五环节】课堂小结1、自我总结1.学生交流讨论,对照学习目标检查自己的学习情况.2.学生谈谈本节课的收获(主要围绕知识掌握及学习方法、团队合作等). 2、设计目的通过自主思考、合作交流等,对照本节课的学习目标,看看自己的学习任务完成情况;收获方面除了知识掌握和学习方法以外,更重要的可以谈谈与他人合作交流的感想体会,从而认识到团队力量、团队精神的重要性. 3、活动预期对照学习目标学生不难看出自己的学习达成情况,收获方面很容易谈到知识掌握和学习方法等情况,但却往往容易忽视他人在自己学习过程中的作用,让学生学会感恩.【第六环节】作业布置一、必做题1.如图,点D ,E 分别为△ABC 的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若∠CDE =48°,则∠APD 等于( ) A.42° B.48° C.52° D.58°ABECFN DM2.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为.3.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB,AC,CD、BD的中点,则四边形EFGH的周长是.4.如图所示,在四边形ABCD中,AB=CD,点M,N,P分别是AD,BC,BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数.5.如图,在△ABC中,CE平分∠ACB,AE⊥CE,延长AE交BC于点F,点D是AB的中点,BC=20,AC=14,求DE的长.二、选做题1.如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的()A.6 B.8 C.10 D.122.如图,已知四边形ABCD中,点R,P分别是BC,CD上的点,点E,F分别是AP,RP的中点,当点P在CD上从点C向点D移动而点R不动时,那么下列结论成立的是( )A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长与点P的位置有关1、设计目的必做题针对大多数学生,加深他们对本节内容的进一步理解,巩固基本应用;选做题对学有余力的学生适当提高一下难度,提高这部分学生的能力,使每个人学生在自己的高度都AB R CPDEFB F CAD EB N CDAMP有所收获,增强学习数学的信心.2、活动预期必做题应该能解决,也能加深对本节内容的理解,选做题由于有一定的综合性,有些难度,需要学生间的合作.《三角形中位线》学情分析由于学生已有平行线、三角形、四边形(主要是平行四边形)等平面几何图形的基础,也已经积累了一定的数学活动经验,几何直观与推理能力都得到了一定的培养和提高,而通过对本章前面两节平行四边形的性质和判定的学习,具备了一定基础的平移、旋转等图形变换的基础,对几何图形的剪拼已有了一定的直观印象,虽然理论依据不够清楚,但猜想方向还是正确的,所以对于三角形中位线的性质容易得出,但在推理证明方面可能遇到障碍,而中位线定理的探索与证明,就是建立在此基础上的.所以本节课的难点就是用不同思路和方法探索证明中位线定理.《三角形的中位线》效果分析从教师教的层面来看,预设目标达成顺利,每个环节基本达到了预期的效果.在导入过程中,依次展示三个问题,由操作--实践--操作问题,作为本节课的切入点,也就是设疑,由问题1的操作转到问题2的应用,再到问题3的操作,引导学生逐渐向本节课靠拢,进而引出本节课的学习目标,层层设疑,引起猜想,出现理论障碍,由于没有依据,需要严密的推理证明,从而实现预期目的,顺利进入本节课内容的学习.本环节大多学生能够沿着预设走下去,猜想正确,参与度较高。
三角形的中位线数学教案

三角形的中位线数学教案一、教学目标:1. 让学生理解三角形的中位线的概念,掌握中位线的性质。
2. 培养学生通过画图、观察、推理、归纳等方法探究数学问题的能力。
3. 提高学生运用中位线解决实际问题的能力。
二、教学内容:1. 三角形的中位线定义及性质。
2. 中位线与三角形边长的关系。
3. 中位线在几何证明中的应用。
三、教学重点与难点:1. 教学重点:三角形的中位线性质及其应用。
2. 教学难点:中位线在几何证明中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究中位线的性质。
2. 利用几何画板或实物模型,直观展示中位线的特点。
3. 运用案例分析法,让学生通过实际问题体会中位线的作用。
五、教学过程:1. 引入新课:通过展示一组三角形,引导学生观察并思考:能否找到一条线段,使得这条线段与这三条边有关?2. 探究中位线定义:让学生画出三角形的中位线,并观察、比较、讨论,总结出中位线的定义。
3. 归纳中位线性质:引导学生通过实验、观察、推理、归纳等方法,总结出中位线的性质。
4. 应用中位线性质:让学生运用中位线性质解决实际问题,如三角形面积计算、几何证明等。
5. 总结与拓展:对本节课的内容进行总结,布置课后作业,引导学生进一步探究中位线在其他几何问题中的应用。
六、课后作业:1. 复习本节课所学的中位线性质,并完成相关练习题。
2. 探究中位线在其他几何问题中的应用,如四边形、多边形等。
七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生的作业完成情况,评估学生对知识的掌握程度。
3. 学生互评:组织学生进行相互评价,促进学生之间的交流与学习。
八、教学反思:在教学过程中,关注学生的学习反馈,根据实际情况调整教学节奏和策略。
不断丰富自己的教学方法,提高教学质量。
九、教学资源:1. 几何画板或实物模型。
2. 相关练习题及答案。
3. 三角形中位线的相关案例分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 三角形的中位线(1)
一、学生知识状况分析
本节课是在学生学习了全等三角形、平行四边形的性质与判定的基础上学习三角形中位线的概念和性质。
三角形中位线是继三角形的角平分线、中线、高线后的第四种重要线段。
三角形中位线定理为证明直线的平行和线段的倍分关系提供了新的方法和依据,也是后续研究梯形中位线的基础。
三角形中位线定理所显示的特点既有线段的位置关系又有线段的数量关系,因此对实际问题可进行定性和定量的描述,在生活中有着广泛的应用。
二、教学任务分析
本节课以“问题情境——建立模型——巩固训练——拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。
利用制作的多媒体课件,让学生通过课件进行探究活动,使他们直观、具体、形象地感知知识,进而达到化解难点、突破重点的目的。
教学目标
1、认知目标
(1)知道三角形中位线的概念,明确三角形中位线与中线的不同。
(2)理解三角形中位线定理,并能运用它进行有关的论证和计算。
(3)通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力.
2、能力目标
引导学生通过观察、实验、联想来发现三角形中位线的性质,培养学生
观察问题、分析问题和解决问题的能力。
3、德育目标
对学生进行事物之间相互转化的辩证的观点的教育。
4、情感目标
利用制作的Powerpoint课件,创设问题情景,激发学生的热情和兴趣,
激活学生思维。
教学重难点
【重点】:三角形中位线定理
【难点】:难点是证明三角形中位线性质定理时辅助线的添法和性质的灵活应用.
三、教学过程分析
本节课设计了七个教学环节:第一环节:创设情景,导入课题;第二环节:教师讲授、传授新知;第三环节:师生共析、证明定理;第四环节:灵活运用、自我检测;第五环节:回顾小结、共同提升;第六环节:分层作业,拓展延伸;第七环节:课后反思。
第一环节:创设情景,导入课题
1.怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?
操作:(1)剪一个三角形,记为△ABC
(2)分别取AB,AC中点D,E,连接DE
(3)沿DE将△ABC剪成两部分,并将△ABC绕点E旋转180°,得四边形BCFD.
2、思考:四边形ABCD是平行四边形吗?
3、探索新结论:若四边形ABCD是平行四边形,那么DE与BC有什么位
置和数量关系呢?
目的:通过一个有趣的动手操作问题入手入手,激发学生学习兴趣,然后设置一连串的递进问题,启发学生逆向类比猜想:DE ∥BC ,DE =2
1BC . 由此引出课题.。
效果:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣。
第二环节:教师讲授,传授新知
内容: 引入三角形中位线的定义和性质
1.定义三角形的中位线,强调它与三角形的中线的区别.
2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一
半
目的:通过学生前期的猜测,测量,初步感知三角形中位线的定理和性质。
第三环节:师生共析,证明定理
内容:已知:如图6-20(1),DE 是△ABC 的中位线.
求证:DE ∥BC,DE=1/2BC
证明:如图6-20(2),延长DE 到F,使
DE=EF,连接CF.
在△ADE 和△CFE 中
∵AE=CE,∠1=∠2,DE=FE
∴△ADE ≌△CFE
∴∠A=∠ECF,AD=CF
∴CF ∥AB
∵BD=AD
∴BD=CF
∴四边形DBCF 是平行四边形
∴DF ∥BC,DF=BC
∴DE ∥BC,DE=1/2BC
目的:通过严密的几何证明将三角形中位线定理进行证明,由感性到理性,使学生经历定理的探究过程,积累数学活动的经验.
第四环节:灵活运用,自我检测
内容:如图,顺次连结四边形四条边的中点,所得的四边形有什么特点?
学生容易发现:四边形ABCD是平行四边形
已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图4-94.求证:四边形EFGH是平行四边形.
分析:
(1)已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的
边之间的关系.而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造“三角形的中位线”的基本图形.
练一练:
1.A、B两点被池塘隔开,在没有任何测量工具的情况下,小明通过下面的方法估测出了A,B间的距离:在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN = 20m,那么A、B两点的距离是多少?为什么?
2.已知:三角形的各边分别为6cm,8cm, 10cm,则连结各边中点所成三角形的周长为cm,面积为cm2,为原三角形面积的。
3.如图,在四边形ABCD中,E、F、G、H分别是AB、
CD、AC、BD的中点。
四边形EGFH是平行四边形
吗?请证明你的结论。
目的:巩固三角形中位线定理,同时也兼顾平行四边形判定定理的熟练运用
第五环节:回顾小结,共同提升
1.教师提问引起学生思考:
(1)这节课学习了哪些具体内容:
(2)用什么思维方法提出猜想的?
(3)应注意哪些概念之间的区别?
第六环节:分层作业,拓展延伸
C组习题5.7 1, 2, 3题B组习题5.7问题解决第4题
第七环节:课后反思
本节课以探究三角形中位线的性质及证明为主线,开展教学活动。
在三角形中位线定理探究过程中,学生先是通过动手画图、观察、测量、猜想出三角形中位线的性质,然后师生利用几何画板的测量和动态演示功能验证猜想的正确性,再引导学生尝试构造平行四边形进行证明。
通过知识的形成过程,使学生体会探究数学问题的基本方法;通过定理的探究与证明,努力培养学生分析问题和解决问题的能力,提升学生数学的思维品质。
同时,问题是创造性思维的起点,是兴趣的激发点。
好的问题情境,可以调动学生主动积极的探究。
本课采用问题驱动,从概念的产生,到概念的辨析、再到定理的发现及证明,设计了一个个问题,层层递进,激活了学生的思维,促使学生不断的深入思考。