(新)高中数学高考总复习定积分与微积分基本定理习题及详解
高中数学之定积分与微积分基本定理含答案

专题06 定积分与微积分基本定理1.由曲线,直线轴所围成的图形的面积为()A.B.4C.D.6【答案】A【解析】联立方程得到两曲线的交点(4,2),因此曲线y,直线y=x﹣2及y轴所围成的图形的面积为:S.故选:A.2.设f(x)=|x﹣1|,则=()A.5 B.6 C.7 D.8【答案】A【解析】画出函数的图像如下图所示,根据定积分的几何意义可知,定积分等于阴影部分的面积,故定积分为,故选A.3.曲线与直线围成的封闭图形的面积是()A.B.C.D.【答案】D【解析】令,则,所以曲线围成的封闭图形面积为,故选D4.为函数图象上一点,当直线与函数的图象围成区域的面积等于时,的值为A.B.C.1D.【答案】C【解析】直线与函数的图象围成区域的面积S dx=∴故选:C5.由直线与曲线所围成的封闭图形的面积为( )A.B.1C.D.【答案】B【解析】题目所求封闭图形的面积为定积分,故选B.6.如图,矩形中曲线的方程分别是,在矩形内随机取一点,则此点取自阴影部分的概率为( )A.B.C.D.【答案】A【解析】依题意的阴影部分的面积,根据用几何概型概率计算公式有所求概率为,故选A.7.()A.B.-1C.D.【答案】C【解析】解:.故选:C.8.,则T的值为A.B.C.D.1【答案】A【解析】由题意得表示单位圆面积的四分之一,且圆的面积为π,∴,∴.故选A.9.下列计算错误..的是()A.B.C.D.【答案】C【解析】在A中,,在B中,根据定积分的几何意义,,在C中,,根据定积分的运算法则与几何意义,易知,故选C.10.定积分的值为()A.B.C.D.【答案】A【解析】表示以为圆心,以为半径的圆,定积分等于该圆的面积的四分之一,定积分,故选A.11.如果曲线与直线所围成的封闭图形的面积为,则以下正确的一个值为()A.1 B.2 C.3 D.4【答案】D【解析】如图,如果,则所围面积为,故,代入,则,矛盾,故A错.如果,则,代入,则,矛盾,故B错.代入,则,矛盾,故C错.代入,则,符合,故D正确.综上,选D.12.一物体以速度v=3t2+2t(v的单位:m/s)做直线运动,则它在t=0 s到t=3 s时间段内的位移是() A.31 m B.36 mC.38 m D.40 m【答案】B【解析】由题意物体在t=0s到t=3s时间段内的位移是:.故选:B.13.由曲线与直线所围成图形的面积等于__________.【答案】【解析】根据定积分的几何意义得到,面积S=(e x+x)d x=故答案为:14.___________【答案】【解析】表示半圆夹在直线部分的面积S。
专题2.14 定积分与微积分基本定理 (解析版)

第二篇 函数、导数及其应用专题2.14 定积分与微积分基本定理【考纲要求】1. 了解定积分的实际背景、基本思想及概念. 2.了解微积分基本定理的含义. 【命题趋势】定积分与微积分基本定理难度不大,常常考查定积分的计算和求曲边梯形的面积. 【核心素养】本讲内容可以突出对数学建模,数学运算,数学抽象的考查. 【素养清单•基础知识】 1.定积分的概念在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 2.定积分的性质(1) ⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数);(2) ⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛abf 2(x )d x ;(3) ⎠⎛a b f (x )d x =⎠⎛a b f (x )d x +⎠⎛ab f (x )d x (其中a <c <b ).求分段函数的定积分,可以先确定不同区间上的函数解析式,然后根据定积分的性质(3)进行计算. 3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),常把F (b )-F (a )记作F (x )|b a ,即⎠⎛ab f (x )d x =F (x )|b a =F (b )-F (a ).4.定积分的几何意义定积分⎠⎛ab f (x )d x 的几何意义是介于x 轴、曲线y =f (x )及直线x =a ,x =b 之间的曲边梯形的面积的代数和,其值可正可负,具体来说,如图,设阴影部分的面积为S . ①S =⎠⎛a b f (x )d x ;②S =-⎠⎛a b (x )d x ;③S =⎠⎛a b f (x )d x -⎠⎛ab f (x )d x ;④S =⎠⎛ab f (x )d x -⎠⎛a b g (x )d x =⎠⎛ab [f (x )-g (x )]d x .(1)定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可正可负.(2)当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零. 【素养清单•常用结论】 1.常见被积函数的原函数 (1) ⎠⎛a bc d x =cx |b a ;(2)⎠⎛ab x n d x =x n +1n +1|ba (n ≠-1); (3) ⎠⎛ab sin x d x =-cos x |b a ;(4) ⎠⎛abcos x d x =sin x |b a ;(5) ⎠⎛ab 1x d x =ln|x ||b a ;(6) ⎠⎛ab e x d x =e x |b a .2. 奇函数、偶函数定积分的两个重要结论 设函数f (x )在闭区间[-a ,a ]上连续,则有: (1)若f (x )是偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x ;(2)若f (x )是奇函数,则⎠⎛-aa f (x )d x =0. 【真题体验】1.若s 1=⎠⎛12x 2d x ,s 2=⎠⎛121x d x ,s 3=⎠⎛12e x d x ,则s 1,s 2,s 3的大小关系为( )A .s 1<s 2<s 3B .s 2<s 1<s 3C .s 2<s 3<s 1D .s 3<s 2<s 1【答案】B【解析】 因为s 1=13x 3∣21=13(23-13)=73<3,s 2=ln x ∣21=ln 2-ln 1=ln 2<1,s 3=e x ∣21=e 2-e>3,所以s 2<s 1<s 3. 2.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4【答案】D【解析】 由⎩⎪⎨⎪⎧y =4x ,y =x3得交点为(0,0),(2,8),(-2,-8), 所以S =⎠⎛02(4x -x 3)d x =⎝⎛⎭⎫2x 2-14x 4∣2 0=4,故选D .3.已知t >1,若⎠⎛1t (2x +1)d x =t 2,则t =__________.【答案】 2【解析】 ⎠⎛1t (2x +1)d x =(x 2+x )∣t 1=t 2+t -2,从而得方程t 2+t -2=t 2,解得t =2.4.汽车以36 km/h 的速度行驶,到某处需要减速停车,设汽车以加速度a =-2 m/s 2刹车,则从开始刹车到停车,汽车走的距离是__________m . 【答案】 25【解析】 t =0时,v 0=36 km/h =10 m/s ,刹车后,汽车减速行驶,速度为v (t )=v 0+at =10-2t ,由v (t )=0得t =5 s ,所以从刹车到停车,汽车所走过的路程为⎠⎛05v (t )d t =⎠⎛05(10-2t )d t =(10t -t 2)∣50=25(m).【考法拓展•题型解码】 考法一 定积分的计算 答题模板:计算定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积或和或差. (2)把定积分用定积分性质变形为求被积函数为初等函数的定积分. (3)分别用求导公式找到一个相应的原函数. (4)利用微积分基本定理求出各个定积分的值. (5)计算原始定积分的值. 【例1】 计算下列定积分.(1)⎠⎛01(-x 2+2x )d x ; (2)⎠⎛0π(sin x -cos x )d x ;(3)⎠⎛12⎝⎛⎭⎫e 2x +1x d x ; (4)⎠⎜⎛0π21-sin 2x d x . 【答案】见解析【解析】 (1)⎠⎛01(-x 2+2x )d x =⎠⎛01(-x 2)d x +⎠⎛012x d x=⎝⎛⎭⎫-13x 3∣10+(x 2)∣10=-13+1=23. (2)⎠⎛0π(sin x -cos x )d x =⎠⎛0πsin x d x -⎠⎛0πcos x d x=(-cos x )∣π0-sin x ∣π0=2.(3)⎠⎛12⎝⎛⎭⎫e 2x +1x d x =⎠⎛12e 2x d x +⎠⎛121xd x =12e 2x ∣21+ln x ∣21 =12e 4-12e 2+ln 2-ln 1=12e 4-12e 2+ln 2.(4)⎠⎜⎛0π21-sin 2x d x =⎠⎜⎛0π2|sin x -cos x |d x ,=⎠⎜⎛0π4(cos x -sin x )d x +⎠⎜⎜⎛π4π2(sin x -cos x )d x =(sin x +cos x )⎪⎪⎪π4+(-cos x -sin x )⎪⎪⎪π2π4=2-1+(-1+2)=22-2. 考法二 定积分的几何意义及应用 归纳总结(1)利用定积分求平面图形面积的步骤: ①根据题意画出图形;②借助图形确定出被积函数,求出交点坐标,确定定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案.(2)根据平面图形的面积求参数的方法:先利用定积分求出平面图形的面积,再根据条件构造方程(不等式)求解.【例2】 (1)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ) A .103B .4C .163D .6【答案】C【解析】作出曲线y =x 和直线y =x-2的草图(如图所示),所求面积为阴影部分的面积.由⎩⎨⎧y =x ,y =x -2得交点A (4,2).因此y =x 与y =x -2及y 轴所围成的图形的面积为⎠⎛04[x -(x -2)]d x =⎠⎛04(x -x +2)d x =⎝ ⎛⎭⎪⎫23x 32 -12x 2+2x ∣40=23×8-12×16+2×4=163. (2)(2019·湖南雅礼中学质检)在曲线y =x 2(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴所围成图形的面积为112.试求:切点A 的坐标和过切点A 的切线方程.【答案】见解析【解析】 (2)如图,设切点A (x 0,y 0),由y ′=2x ,得过A 点的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x -x 20.,令y =0,得x =x 02,即C ⎝⎛⎭⎫x 02,0.设由曲线和过A 点的切线及x 轴所围成图形的面积为S ,则S =S 曲边△AOB -S △ABC .S 曲边△AOB =⎠⎛0x 0x 2d x =13x 3⎪⎪⎪x 00=13x 30, S △ABC =12|BC |·|AB |=12⎝⎛⎭⎫x 0-x 02·x 20=14x 30, 即S =13x 30-14x 30=112x 30=112,所以x 0=1. 从而切点为A (1,1),切线方程为y =2x -1. 考法三 定积分在物理中的应用 归纳总结:定积分在物理中的两个应用(1)求变速直线运动的路程:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同的方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .【例3】 (1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2【答案】C【解析】由v (t )=7-3t +251+t =0,可得t =4,t =-83(舍去),因此汽车从刹车到停止一共行驶了4 s ,此期间行驶的距离为⎠⎛04v (t )d t =⎠⎛04⎝⎛⎭⎫7-3t +251+t d t =⎣⎡⎦⎤7t -32t 2+25ln (1+t )∣40=4+25ln 5(m). (2)一物体在力F (x )=⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向从x =0处运动到x =4(单位:m)处,则力F (x )做的功为__________J.【解析】由题意知,力F (x )所做的功为W =⎠⎛04F (x )d x =⎠⎛025 d x +⎠⎛24(3x +4)d x =5×2+⎝⎛⎭⎫32x 2+4x ∣42=10+⎣⎡⎦⎤32×42+4×4-⎝⎛⎭⎫32×22+4×2=36 (J). 【易错警示】易错点 定积分的几何意义理解错误【典例】 如图,函数y =f (x )定义在区间[a ,b ]上,则阴影部分的面积S 为( )A .⎠⎛ab f (x )d xB .⎠⎛a c f (x )d x -⎠⎛cb f (x )d xC .-⎠⎛a c f (x )d x -⎠⎛cb f (x )d xD .-⎠⎛a c f (x )d x +⎠⎛cb f (x )d x【错解】:A ,B ,C【错因分析】:在实际求解曲边梯形的面积时要注意在x 轴上方的面积取正号,在x 轴下方的面积取负号,而各部分面积的代数和为x 轴上方的定积分减去x 轴下方的定积分.【正解】:如图所示,在[a ,c]上,f(x)≤0;在[c ,b]上,f(x)≥0,所以函数y =f(x)在区间[a ,b]上的阴影部分的面积S =-⎠⎛a c f(x)dx +⎠⎛cb f(x)dx ,故选D .【跟踪训练】 (2019·山东淄博一模)如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( )A .⎠⎛02|x 2-1|d xB .⎪⎪⎪⎪⎠⎛02(x 2-1)dxC .⎠⎛02(x 2-1)dxD .⎠⎛01(x 2-1)dx +⎠⎛12(1-x 2)dx【答案】A【解析】 由曲线y =|x 2-1|的对称性知,所求阴影部分的面积与如下阴影部分的面积相等,即⎠⎛02|x 2-1|dx .1.定积分⎠⎛01x (2-x ) d x 的值为( )A .π4B .π2C .πD .2π【答案】A【解析】 令y =x (2-x ),则(x -1)2+y 2=1(y ≥0),由定积分的几何意义知,⎠⎛01x (2-x )d x 的值为区域⎩⎪⎨⎪⎧(x -1)2+y 2=1(y ≥0),0≤x ≤1的面积,即为π4.2.计算:⎠⎛-33(x 3cos x )d x =__________.【答案】 0【解析】 因为y =x 3cos x 为奇函数,所以⎠⎛-33(x 3cos x )d x =0.3.如图,由两条曲线y =-x 2,y =-14x 2及直线y =-1所围成的平面图形的面积为__________.【答案】 43【解析】 由⎩⎪⎨⎪⎧y =-x 2,y =-1得交点A (-1,-1),B (1,-1).由⎩⎪⎨⎪⎧y =-14x 2,y =-1得交点C (-2,-1),D (2,-1). 所以所求面积S =2⎣⎢⎡⎦⎥⎤⎠⎛01⎝⎛⎭⎫-14x 2+x 2d x +⎠⎛12⎝⎛⎭⎫-14x 2+1d x =43.4.如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机向圆O 内投一个点A ,则点A 落在区域M 内的概率为__________.【答案】4π3【解析】 阴影部分的面积为2⎠⎛0πsin x d x =2(-cos x )∣π0=4,圆的面积为π3,所以点A 落在区域M 内的概率是4π3.5.物体A 以速度v =3t 2+1(t 的单位:s ,v 的单位:m/s)在一直线上运动,在此直线上与物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t (t 的单位:s ,v 的单位:m/s)的速度与A 同向运动,当两物体相遇时,相遇地与物体A 的出发地的距离是__________m . 【答案】 130【解析】 设A ,B 两物体运动t s 后相遇,则⎠⎛0t (3t 2+1)d t -⎠⎛0t 10tdt =5,所以t 3+t -5t 2=5,解得t =5,所以A 物体从出发到相遇时的运动距离为53+5=130(m). 【考卷送检】 一、选择题1.⎠⎛01e x d x 的值等于( )A .eB .1-eC .e -1D .12(e -1)【答案】C【解析】 ⎠⎛01e x d x =e x ∣10=e 1-e 0=e -1,故选C .2.⎠⎛1e ⎝⎛⎭⎫2x +1x d x =( ) A .e 2-2 B .e -1 C .e 2 D .e +1【答案】C【解析】 ⎠⎛1e ⎝⎛⎭⎫2x +1x d x =(x 2+ln x )∣e 1=e 2,故选C . 3.求曲线y =x 2与直线y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x -x 2)d xB .S =⎠⎛01(x 2-x )d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y【答案】A【解析】 由图象可得S =⎠⎛01(x -x 2)d x .4.曲线y =2x 与直线y =x -1及直线x =4所围成的封闭图形的面积为( )A .2ln 2B .2-ln 2C .4-ln 2D .4-2ln 2【答案】D【解析】 由曲线y =2x 与直线y =x -1及x =4所围成的封闭图形如图中阴影部分所示,故所求图形的面积为S =⎠⎛24⎝⎛⎭⎫x -1-2x d x =⎝⎛⎭⎫12x 2-x -2ln x ∣42=4-2ln 2.5.若S 1=⎠⎛12x 2dx ,S 2=⎠⎛121x dx ,S 3=⎠⎛12e x dx ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1【答案】B【解析】 S 1=13x 3∣21=73,S 2=ln x ∣21=ln 2,S 3=e x ∣21=e 2-e.因为ln 2<1<73,e 2-e =e(e -1)>e>73,故S 2<S 1<S 3,故选B .6.如图,设D 是图中所示的矩形区域,E 是D 内函数y =cos x 图象上方的点构成的区域(阴影部分),向D 中随机投一点,则该点落入E 中的概率为( )A .2πB .1πC .12D .π-2π【答案】D【解析】 因为⎠⎜⎛0 π2cos x d x =sin x ⎪⎪⎪⎪π2=1,故所求概率为π-1×2π=π-2π.二、填空题7. ⎠⎜⎛0π2(cos x -sin x )d x =________.【答案】 0【解析】 ⎠⎜⎛0 π2(cos x -sin x )d x =(sin x +cos x )⎪⎪⎪⎪π2=0. 8.若函数f (x )=x +1x ,则⎠⎛1e f (x )d x =________.【答案】 e 2+12【解析】 ⎠⎛1e ⎝⎛⎭⎫x +1x d x =⎝⎛⎭⎫x 22+ln x ∣e 1=e 2+12. 9.由曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面图形(图中的阴影部分)的面积是________.【答案】 22-2【解析】 由图可得阴影部分面积S =2⎠⎜⎛0 π4(cos x -sin x )d x =2(sin x +cos x )⎪⎪⎪⎪π4=2(2-1). 三、解答题 10.求下列定积分. (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ; (2)⎠⎛-π0(cos x +e x )d x .【答案】【解析】 (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121xd x =x 22∣21-x 33∣21+ln x ∣21=32-73+ln 2=ln 2-56. (2)⎠⎛-π0(cos x +e x )d x =⎠⎛-π0cos x d x +⎠⎛-π0e x d x =,sin x ∣0-π+e x ∣0-π=1-1e π. 11.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g (x )=x 2围成的图形的面积. 【答案】【解析】 因为(1,2)为曲线f (x )=x 3-x 2+x +1上的点,设过点(1,2)处的切线的斜率为k ,则k =f ′(1)=(3x 2-2x +1)|x =1=2,所以在点(1,2)处的切线方程为y -2=2(x -1),即y =2x ,其与函数g (x )=x 2围成的图形如图.由⎩⎪⎨⎪⎧y =x 2,y =2x 可得交点A (2,4). 所以y =2x 与函数g (x )=x 2围成的图形的面积 S =⎠⎛02(2x -x 2)d x =⎝⎛⎭⎫x 2-13x 3∣20=4-83=43. 12.已知二次函数f (x )=ax 2+bx +c ,直线l 1:x =2,直线l 2:y =-t 2+8t (其中0≤t ≤2,t 为常数),若直线l 1,l 2与函数f (x )的图象以及l 2,y 轴与函数f (x )的图象所围成的封闭图形(阴影部分)如图所示.(1)求a ,b ,c 的值;(2)求阴影面积S 关于t 的函数S (t )的解析式. 【答案】见解析【解析】 (1)由图可知二次函数的图象过点(0,0),(8,0),并且f (x )的最大值为16,则⎩⎪⎨⎪⎧c =0,a ·82+b ·8+c =0,4ac -b 24a =16,解得⎩⎪⎨⎪⎧a =-1,b =8,c =0.(2)由(1)知函数f (x )的解析式为f (x )=-x 2+8x .由⎩⎪⎨⎪⎧y =-t 2+8t ,y =-x 2+8x得x 2-8x -t (t -8)=0,所以x 1=t ,x 2=8-t .因为0≤t ≤2,所以直线l 2与f (x )的图象位于l 1左侧的交点坐标为(t ,-t 2+8t ),由定积分的几何意义知:S (t )=⎠⎛0t[(-t 2+8t )-(-x 2+8x )]d x +⎠⎛t2[(-x 2+8x )-(-t 2+8t )]d x =⎣⎡⎦⎤(-t 2+8t )x -⎝⎛⎭⎫-x 33+4x 2∣t 0+⎣⎡⎦⎤⎝⎛⎭⎫-x 33+4x 2-(-t 2+8t )x ∣2t=-43t 3+10t 2-16t +403. 13.求曲线f (x )=sin x ,x ∈⎣⎡⎦⎤0,5π4与x 轴围成的图形的面积. 【答案】见解析【解析】 当x ∈[0,π]时,f (x )≥0,当x ∈⎝⎛⎦⎤π,5π4时,f (x )<0. 则所求面积S =⎠⎛0πsin x d x +⎝ ⎛⎭⎪⎫-⎠⎜⎛π 5π4sin x d x =-cos x ∣π0+cos x ⎪⎪⎪⎪5π4π=2+⎝⎛⎭⎫-22+1=3-22.。
高中数学新湘教版选修2-2 定积分与微积分基本定理

4.5定积分与微积分基本定理[读教材·填要点]1.曲边梯形的面积(1)曲边梯形:位于曲线y =f (x )(a ≤x ≤b )和x 轴之间的图形,叫作函数y =f (x )在区间[a ,b ]上的“曲边梯形”.(2)曲边梯形面积的计算方法:化整为零、以直代曲,即把一个曲边梯形分成多个小曲边梯形,再用矩形代替小曲边梯形.2.计算变力所做的功的方法 化整为零,以直代曲. 3.定积分的概念设f (x )是在区间[a ,b ]上有定义的函数,在a ,b 之间取若干分点a =x 0<x 1<x 2<…<x n =b .记小区间[x k -1,x k ]为Δk ,其长度x k -x k -1记作Δx k ,Δx k 中最大的记作d ,再在每个小区间Δk z k ,作和式:∑k =1nf (z k )Δx k . ①如果(不论如何取分点x k 和代表点z k )当d 趋于0时和式①以S 为极限,就说函数f (x )在[a ,b ]上可积,并且说S 是f (x )在[a ,b ]上的定积分,记作S =⎠⎛a bf (x )d x .4.微积分基本定理如果f (x )是在[a ,b ]上有定义的连续函数,F (x )在[a ,b ]上可导并且F ′(x )=f (x ), 则⎠⎛a bf (t )d t =F (b )-F (a ).[小问题·大思维]1.求曲边梯形面积时,对曲边梯形进行“以直代曲”,怎样才能尽量减小求得的曲边梯形面积的误差?提示:为了减小近似代替的误差,需要先分割再分别对每个小曲边梯形“以直代曲”,而且分割的曲边梯形数目越多,得到的面积的误差越小.2.求曲边梯形的面积与计算变速直线运动的路程有哪些相同点?提示:(1)求曲边梯形的面积与求变速直线运动的路程的共同本质是“以直代曲”“以不变代变”的思想方法.(2)求解的方法步骤相同.3.由定积分的定义可知,⎠⎛a b f (x )d x 是一个常数还是一个变量?⎠⎛a bf (x )d x 的值与哪些量有关?提示:由定义可得定积分⎠⎛a bf (x )d x 是一个常数,它的值仅取决于被积函数与积分上、下限,而与积分变量没有关系,即⎠⎛a bf (x )d x =⎠⎛a bf (t )d t =⎠⎛a bf (u )d u .4.如图所示,如何用阴影面积S 1,S 2,S 3表示定积分⎠⎛a bf (x )d x 的值?提示:⎠⎛a bf (x )d x =S 1-S 2+S 3.计算下列定积分:(1) ⎠⎛-13(4x -x 2)d x; (2)⎠⎛12(x -1)5 d x ; (3)⎠⎛12(t +2)d x; (4)⎠⎛121x (x +1)d x . [自主解答] (1)取F (x )=2x 2-x 33,因为F ′(x )=4x -x 2,所以⎠⎛-13(4x -x 2)d x =F (3)-F (-1)=⎝⎛⎭⎫2×32-333-⎣⎡⎦⎤2×(-1)2-(-1)33=203. (2)因为⎣⎡⎦⎤16(x -1)6′=(x -1)5, 所以⎠⎛12(x -1)5d x =F (2)-F (1)=16×(2-1)6-16×(1-1)6=16. (3)取F (x )=(t +2)x ,因为F ′(x )=t +2, 所以⎠⎛12(t +2)d x =F (2)-F (1) =2(t +2)-(t +2)=t +2.(4)f (x )=1x (x +1)=1x -1x +1,取F (x )=ln x -ln(x +1)=ln x x +1, 则F ′(x )=1x -1x +1.所以⎠⎛121x (x +1)d x =⎠⎛12⎝⎛⎭⎫1x -1x +1d x =F (2)-F (1)=ln 43.运用微积分基本定理求定积分时的4个注意点(1)对被积函数要先化简,再求积分;(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和;(3)对于含有绝对值符号的被积函数,要先去掉绝对值号再求积分; (4)注意用“F ′(x )=f (x )”检验积分的对错.1.计算下列定积分:(1)⎠⎛-13(3x 2-2x +1)d x ; (2) ⎠⎛12⎝⎛⎭⎫x -1x d x ; (3) ⎠⎛0π (sin x -cos x )d x ; (4) ⎠⎛02|1-x |d x . 解:(1)取F (x )=x 3-x 2+x , 则F ′(x )=3x 2-2x +1.∴⎠⎛-13(3x 2-2x +1)d x =F (3)-F (-1)=24.(2)取F (x )=12x 2-ln x ,则F ′(x )=x -1x .∴⎠⎛12⎝⎛⎭⎫x -1x d x =F (2)-F (1)=32-ln 2. (3)取F (x )=-cos x -sin x , 则F ′(x )=sin x -cos x .∴⎠⎛0π(sin x -cos x )d x =F (π)-F (0)=2.(4)∵|1-x |=⎩⎪⎨⎪⎧1-x ,0<x <1,x -1,1<x <2,∴取F 1(x )=x -12x 2,0<x <1,F 2(x )=12x 2-x,1<x <2,则F 1′(x )=1-x ,F 2′(x )=x -1.∴⎠⎛02|1-x |d x =F 1(1)-F 1(0)+F 2(2)-F 2(1)=1.已知函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,求x 0的值.[自主解答] 因为f (x )=ax 2+c (a ≠0), 取F (x )=a3x 3+cx ,则F ′(x )=ax 2+c ,所以⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =F (1)-F (0)=a 3+c =ax 20+c . 解得x 0=33或x 0=-33(舍去). 即x 0=33.利用定积分求参数时,注意方程思想的应用.一般地,首先要弄清楚积分变量和被积函数.当被积函数中含有参数时,必须分清常数和变量,再进行计算;其次要注意积分下限不大于积分上限.2.已知f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求f (x )的解析式. 解:设f (x )=ax +b (a ≠0), 取F 1(x )=12ax 2+bx ,∴F 1′(x )=f (x ).则⎠⎛01(ax +b )d x =F 1(1)-F 1(0)=12a +b , ⎠⎛01x (ax +b )d x =⎠⎛01(ax 2+bx )d x , 取F 2(x )=13ax 3+12bx 2且F 2′(x )=ax 2+bx ,则⎠⎛01x (ax +b )d x =F 2(1)-F 2(0)=13a +12b ,由⎩⎨⎧12a +b =5,13a +12b =176.解得a =4,b =3,故f (x )=4x +3.求由抛物线y =x 2-4与直线y =-x +2所围成图形的面积.[自主解答] 由⎩⎪⎨⎪⎧y =x 2-4,y =-x +2,得⎩⎪⎨⎪⎧ x =-3,y =5或⎩⎪⎨⎪⎧x =2,y =0.所以直线y =-x +2与抛物线 y =x 2-4的交点为(-3,5)和(2,0), 设所求图形面积为S ,根据图形可得S =⎠⎛-32[(-x +2)-(x 2-4)]d x =⎠⎛-32(6-x -x 2)d x ,取F (x )=6x -12x 2-13x 3,则F ′(x )=6-x -x 2, ∴S =F (2)-F (-3)=1256.若将本例中“直线y =-x +2”换为“抛物线y =3-34x 2”,如何求解?解:如图所示,设所求图形面积为S ,S =⎠⎛-22⎣⎡⎦⎤⎝⎛⎭⎫3-34x 2-()x 2-4d x =⎠⎛-22⎝⎛⎭⎫7-74x 2d x , 取F (x )=7x -712x 3,则F ′(x )=7-74x 2,∴S =F (2)-F (-2)=563.利用定积分求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形.(2)确定图形范围,通过方程组求出交点的横坐标,确定积分上限和积分下限. (3)确定被积函数及积分变量,确定时可以综合考察下列因素:①被积函数的原函数易求;②较少的分割区域;③积分上限和积分下限比较简单. (4)写出平面图形的面积的定积分表达式.(5)运用微积分基本定理计算定积分,求出平面图形的面积.3.求曲线y =e x ,y =e-x及直线x =1所围成的图形的面积.解:由图可知,积分区间为[0,1],面积S =⎠⎛10()e x -e -x d x ,取F (x )=e x +e -x , 则F ′(x )=e x -e -x , ∴S =F (1)-F (0)=e +1e-2.变速直线运动的物体的速度为v (t )=1-t 2,初始位置为x 0=1,求它在前2秒内所走的路程及2秒末所在的位置.[自主解答] 当0≤t ≤1时,v (t )≥0, 当1≤t ≤2时,v (t )<0. 所以前2秒钟内所走的路程 S =⎠⎛01v (t )d t +⎠⎛12[-v (t )]d t=⎠⎛01(1-t 2)d t +⎠⎛12(t 2-1)d t取F 1(t )=t -13t 3,F 2(t )=13t 3-t ,S =F 1(1)-F 1(0)+F 2(2)-F 2(1)=2.2秒末所在的位置:x 1=x 0+⎠⎛02v (t )d t =1+⎠⎛02(1-t 2)d t =13. 即它在前2秒内所走的路程为2,2秒末所在位置为x 1=13.1.有关路程、位移计算公式路程是位移的绝对值之和,从时刻t =a 到时刻t =b 所经过的路程s 和位移s 1分别为 (1)若v (t )≥0(a ≤t ≤b ),则s =⎠⎛a bv (t )d t ;s 1=⎠⎛a bv (t )d t . (2)若v (t )≤0(a ≤t ≤b ), 则s =-⎠⎛a bv (t )d t ;s 1=⎠⎛a bv (t )d t .(3)在区间[a ,c ]上,v (t )≥0,在区间[c ,b ]上,v (t )<0, 则s =⎠⎛a cv (t )d t -⎠⎛c bv (t )d t ;s 1=⎠⎛a bv (t )d t . 2.求变力做功的方法步骤(1)要明确变力的函数式F (x ),确定物体在力的方向上的位移. (2)利用变力做功的公式W =⎠⎛ab F (x )d x 计算.[注意] 将力与位移的单位换算为牛顿(N)与米(m),功的单位才为焦耳(J).4.一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°角的方向做直线运动,则由x =1运动到x =2时F (x )做的功为( )A. 3 JB.233 JC.433JD .2 3 J解析:W =⎠⎛12F (x )cos 30°d x =⎠⎛1232(5-x 2)d x =32⎝⎛⎭⎫5x -13x 3⎪⎪⎪21=433(J). 答案:C求抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积.[解] 由方程组⎩⎪⎨⎪⎧y 2=2x ,y =4-x ,解出抛物线和直线的交点为(2,2)及(8,-4).法一:选x 作为积分变量,由图可看出S =A 1+A 2.在A 1部分:由于抛物线的上半支方程为y =2x ,下半支方程为y =-2x ,所以S A 1=⎠⎛02[2x -(-2x )]d x =22⎠⎛02x 12d x .取F 1(x )=23x 32,∴S A 1=22[F 1(2)-F 1(0)]=163. S A 2=⎠⎛28[4-x -(-2x )]d x , 取F 2(x )=4x -12x 2+223x 32.∴S A 2=F 2(8)-F 2(2)=383. ∴S =163+383=18.法二:选y 作积分变量, 将曲线方程写为x =y 22及x =4-y .S =2-4⎰⎣⎡⎦⎤(4-y )-y 22d y . 取F (y )=4y -y 22-y 36,∴S =F (2)-F (-4)=30-12=18.1.定积分⎠⎛01(2x +e x)d x 的值为( )A .e +2B .e +1C .eD .e -1解析:取F (x )=x 2+e x,则F ′(x )=2x +e x,⎠⎛01(2x +e x )d x =F (1)-F (0)=(1+e)-(0+e 0)=e.答案:C2.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v =gt (g 为常数),则电视塔高为( )A.12g B .g C.32g D .2g解析:取F (x )=12gt 2,则F ′(x )=gt ,所以电视塔高为⎠⎛12gt d t =F (2)-F (1)=2g -12g =32g . 答案:C3.s 1=⎠⎛01x d x ,s 2=⎠⎛01x 2d x 的大小关系是( )A .s 1=s 2B .s 21=s 2C .s 1>s 2D .s 1<s 2解析:⎠⎛01x d x 表示由直线x =0,x =1,y =x 及x 轴所围成的图形的面积,而⎠⎛01x 2d x 表示的是由曲线y =x 2与直线x =0,x =1及x 轴所围成的图形的面积,因为在x ∈[0,1]内直线y =x 在曲线y =x 2的上方,所以s 1>s 2.答案:C4.⎠⎛-12x 4d x =________.解析:∵⎝⎛⎭⎫15x 5′=x 4,取F (x )=15x 5, ∴⎠⎛-12x 4d x =F (2)-F (-1)=15[25-(-1)5]=335. 答案:3355.若⎠⎛01(2x +k )d x =2,则k =________. 解析:取F (x )=x 2+kx ,则F ′(x )=2x +k , ∴⎠⎛01(2x +k )d x =F (1)-F (0)=1+k =2,∴k =1. 答案:16.求由曲线xy =1及直线x =y ,y =3所围成平面图形的面积.解:作出曲线xy =1,直线x =y ,y =3的草图,所求面积为图中阴影部分的面积.求交点坐标:由⎩⎪⎨⎪⎧xy =1,y =3,得⎩⎪⎨⎪⎧x =13,y =3,故A ⎝⎛⎭⎫13,3;由⎩⎪⎨⎪⎧ xy =1,y =x ,得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1(舍去), 故B (1,1);由⎩⎪⎨⎪⎧ y =x ,y =3得⎩⎪⎨⎪⎧x =3,y =3,故C (3,3),故所求面积S =S 1+S 2=⎠⎜⎛131⎝⎛⎭⎫3-1x d x +⎠⎛13(3-x )d x =4-ln 3.一、选择题1.⎠⎛241x d x 等于( ) A .-2ln 2 B .2ln 2 C .-ln 2D .ln 2解析:⎠⎛241x d x =ln 4-ln 2=ln 2. 答案:D2.一物体沿直线运动,其速度v (t )=t ,这个物体在t =0到t =1这段时间内所走的路程为( )A.13B.12C. 1D.32解析:曲线v (t )=t 与直线t =0,t =1,横轴围成的三角形面积S =12即为这段时间内物体所走的路程.答案:B3.如图所示,阴影部分的面积是( ) A .2 3 B .2- 3 C.323D.353解析:S =⎠⎛-31 (3-x 2-2x )d x ,即F (x )=3x -13x 3-x 2, 则F (1)=3-13-1=53,F (-3)=-9+9-9=-9. ∴S =F (1)-F (-3)=53+9=323.答案:C4.定积分⎠⎛-22|x 2-2x |d x =( )A .5B .6C .7D .8解析:|x 2-2x |=⎩⎪⎨⎪⎧x 2-2x ,-2≤x <0,-x 2+2x ,0≤x ≤2, 取F 1(x )=13x 3-x 2,F 2(x )=-13x 3+x 2, 则F 1′(x )=x 2-2x ,F 2′(x )=-x 2+2x .∴⎠⎛-22|x 2-2x |d x =⎠⎛-20 (x 2-2x )d x +⎠⎛02(-x 2+2x )d x =F 1(0)-F 1(-2)+F 2(2)-F 2(0)=8.答案:D二、填空题5.函数y =x -x 2的图象与x 轴所围成的封闭图形的面积等于________.解析:由x -x 2=0,得x =0或x =1.因此所围成的封闭图形的面积为⎠⎛01(x -x 2)d x . 取F (x )=12x 2-13x 3, 则F ′(x )=x -x 2,∴面积S =F (1)-F (0)=16. 答案:166.设函数f (x )=(x -1)x (x +1),则满足∫a 0f ′(x )d x =0的实数a =________.解析:⎠⎛0af ′(x )d x =f (a )=0,得a =0或1或-1,又由积分性质知a >0,故a =1.答案:17.计算⎠⎛02(2x -e x )d x =________. 解析:取F (x )=x 2-e x ,则F ′(x )=2x -e x ,所以⎠⎛02(2x -e x )d x =F (2)-F (0)=5-e 2. 答案:5-e 28.曲线y =1x +2x +2e 2x ,直线x =1,x =e 和x 轴所围成的区域的面积是________.解析:由题意得,所求面积为⎠⎛1e⎝⎛⎭⎫1x +2x +2e 2x d x . 取F (x )=ln x +x 2+e 2x ,则F ′(x )=1x +2x +2e 2x ,所以⎠⎛1e⎝⎛⎭⎫1x +2x +2e 2x d x =F (e)-F (1)=e 2e . 答案:e 2e三、解答题9.计算下列定积分.(1)⎠⎛14⎝⎛⎭⎫2x -1x d x ; (2)⎠⎛01x 1+x 2d x .解:(1)取F (x )=2xln 2-2x , 则F ′(x )=2x -1x . ∴原式=F (4)-F (1)=⎝⎛⎭⎫16ln 2-2ln 2-(24-2)=14ln 2-2. (2)取F (x )=12ln(1+x 2),则F ′(x )=x 1+x 2. ∴⎠⎛01x 1+x 2d x =F (1)-F (0)=12ln 2.10.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g (x )=x 2围成的图形的面积.解:f ′(x )=3x 2-2x +1,∵(1,2)为曲线f (x )=x 3-x 2+x +1上的点,设过点(1,2)处的切线的斜率为k ,则k =f ′(1)=2,∴过点(1,2)处的切线方程为y -2=2(x -1),即y =2x .y =2x 与函数g (x )=x 2围成的图形如图:由⎩⎪⎨⎪⎧y =x 2,y =2x 可得交点A (2,4). ∴y =2x 与函数g (x )=x 2围成的图形的面积S =⎠⎛02(2x -x 2). 取F (x )=x 2-13x 3,则F ′(x )=2x -x 2, ∴S =F (2)-F (0)=43.。
高中高考考点难点常见题型(带答案解析) 定积分与微积分的基本定理(解析版)

简单已测:424次正确率:91.8 %1.定积的值是( )A.B.C.D.考点:⽤定义求定积分、微积分基本定理求定积分知识点:定积分的概念、微积分基本定理答案:D 解析:,故选:.⼀般已测:3296次正确率:69.9 %2.计算( )A.B.C.D.考点:利⽤定积分的⼏何意义解题、微积分基本定理求定积分知识点:定积分的概念、定积分的⼏何意义答案:B解析:选⼀般已测:4642次正确率:87.5 %3.若,,则,,的⼤⼩关系为( )A.B.C.D.考点:⽤定义求定积分、微积分基本定理求定积分知识点:定积分的基本性质、定积分的常⽤结论答案:B解析:由于,,,且,所以,故选.⼀般已测:3883次正确率:75.3 %4.若,则( )2xdx ∫0212342xdx =x =4∫202∣∣∣∣20D (1−cos x )dx =∫− 2π2ππ+2π−2π−2(1−cos x )dx=(x −sin x )∫− 2π2π =π−2.∣∣∣∣ 2π− 2πB .S = x dx 1∫122S = dx 2∫12x 1S =e dx 3∫12x S 1S 2S 3S <S <S 123S <S <S 213S <S <S 231S <S <S321S = x dx = x ∣ = − = 1∫12231312383137S = dx =lnx ∣ =ln 22∫12x 112S = e dx =e ∣ =e −e 3∫12x x 122ln 2< <e −e 372S <S <S 213B f (x )=x +2 f (x )dx 2∫01 f (x )dx=∫01A.B.C.D.考点:微积分基本定理求定积分、运⽤定积分的相关性质解题知识点:被积函数的原函数、微积分基本定理答案:B解析:令(常数),则,所以,解得,故选:.中等已测:4750次正确率:71.2 %5.在如图所⽰平⾯直⻆坐标系中,正⽅形的边⻓为,曲线是函数图象位于正⽅形内的部分,直线恰好是函数在处的切线,现从正⽅形内任取⼀点,那么点取⾃阴影部分的概率等于( )A.B.C.D.考点:利⽤定积分的⼏何意义解题、微积分基本定理求定积分知识点:曲边梯形的⾯积、定积分的⼏何意义答案:D解析:正⽅形的边⻓为,由函数,得,则,得.⼜当时,,可得,曲线的解析式为,阴影部分⾯积.点取⾃阴影部分的概率等于.故选:.−1−31 311f (x )dx =m ∫01f (x )=x +2m 2m = f (x )dx =( x +2mx ) = +2m ∫01313∣∣0131m =− 31B OABC 1m y =a (x −1)+b 2AC y=a (x −1)+b 2x =0P P1213141 61∵OABC 1,∴S =1正方形OABC y =a (x −1)+b 2y =2a (x −1)′y ∣ =−2a =−1′x =0a =21x=0y =a +b =1b = 21∴m y = (x −1)+ 21221∴S = [ (x −1)+ −(−x +1)]dx = x dx = x ∣=∫0121221∫012126130161∴P 61D⼀般已测:4665次正确率:92.6 %6.已知,则⼆项式的展开式中的系数为( )A.B.C.D.考点:利⽤定积分的性质解题、微积分基本定理求定积分知识点:定积分的概念、微积分基本定理答案:C 解析:,的展开式的通项公式为,令得,,展开式中的系数为.⼀般已测:2948次正确率:92.5 %7.实数使得复数是纯虚数,则的⼤⼩关系是( )A.B.C.D.考点:⽤定义求定积分、⽤所求定积分的⼏何意义求定积分知识点:定积分的概念、复数的概念答案:C解析:,它为纯虚数,所以,表⽰单位圆的四分之⼀的⾯积为,所以,应选.中等已测:3726次正确率:56.3 %8.若,则=( )A.B.a = dx ∫ e 1e x1(1− )x a 5x −316080−80−160∵a= dx =lne −ln =2∫ e 1e x 1e 1∴(1−)=(1−)xa 5x25T=C (−2)x r +15r r −r −r=−3r =3∴x −3C (−2)=−80533a1−i a +i b = xdx ,c= dx ∫01∫011−x 2a ,b ,c a <b <c a <c <b b <c <a c <b <a= = 1−i a +i1−i 1+i ()()a +i 1+i ()()2a −1+a +1i ()a =1,b = xdx = ∣ = ,c = dx ∫012x 20121∫011−x 2 4πb <c <a C f x + f x dx =x ()∫01() f x dx ∫01()41 21C.D.考点:⽤定义求定积分、利⽤定积分的性质解题知识点:定积分的基本性质、基本积分公式答案:A 解析:由,则,则,,则,故选A .⼀般已测:2708次正确率:72.5 %9.⼀个⼈骑⻋以⽶/秒的速度匀速追赶停在交通信号灯前的汽⻋,当他离汽⻋⽶时,交通信号灯由红变绿,汽⻋开始做变速直线⾏驶(汽⻋与⼈的前进⽅向相同),若汽⻋在时刻的速度⽶/秒,那么此⼈( ).A.可在秒内追上汽⻋B.不能追上汽⻋,但其间最近距离为⽶C.不能追上汽⻋,但其间最近距离为⽶D.不能追上汽⻋,但其间最近距离为⽶考点:⼆次函数的单调性、利⽤定积分的⼏何意义解题知识点:微积分基本定理、基本积分公式答案:D解析:设该⼈骑⻋⾏驶距离和汽⻋⾏驶距离的差为,则,所以,所以该⼈不能追上汽⻋,但其间最近距离为⽶⼀般已测:391次正确率:82.7 %10.甲、⼄两⼈从同⼀起点出发按同⼀⽅向⾏⾛,已知甲、⼄⾏⾛的速度与⾏⾛的时间分别为,(如图),当甲⼄⾏⾛的速度相同(不为零)时刻( )A.甲⼄两⼈再次相遇B.甲⼄两⼈加速度相同12fx +f x dx =x ()∫01()f x =x − f x dx ()∫01() fx dx = x − f x dx dx∫01()∫01(∫01())= xdx − f x dx dx = − f x dx ∫01∫01[∫01()]21∫01()∴ f x dx = − f x dx ∫01()21∫01() f x dx =∫01()41625t v (t )=t 716147S (t )S (t )= 6−t dt =6t −t ∫0t()212S (t ) =S (6)=36−18=18max 7v =甲t v =t 乙2C.甲在⼄前⽅D.⼄在甲前⽅考点:微积分基本定理求定积分、运⽤定积分的相关性质解题知识点:定积分的物理意义、变速运动问题答案:C解析:由,得,解得(舍),或.由..所以当甲⼄⾏⾛的速度相同(不为零)时刻甲在⼄前⽅.故选:.中等已测:1818次正确率:73.8 %11.已知,若函数满⾜,则称为区间上的⼀组``等积分''函数,给出四组函数:①②;③;④函数分别是定义在上的奇函数且积分值存在.其中为区间上的“等积分”函数的组数是( )A.B.C.D.考点:利⽤定积分的⼏何意义解题、微积分基本定理求定积分知识点:定积分的基本性质、微积分基本定理答案:C解析:本题是新定义问题,主要考查对定义的理解和定积分的计算.对于①,⽽,所以①是⼀组“等积分”函数;对于②,,⽽,所以②不是⼀组``等积分''函数;对于③,函数的图像是以原点为圆⼼,为半径的半圆,故,⽽,所以③是⼀组``等积分''函数;对于④,由于函数分别是定义在上的奇函数且积分值存在,利⽤奇函数的图像关于原点对称和定积分的⼏何意义,可以求得函数的定积分,所以④是⼀组``等积分''函数.故选.简单已测:3293次正确率:86.3 %12..v =v 甲乙 =t t 2t =0t =1 dt = t ∣ = ∫01t 32 230132 t dt = t ∣= ∫0123130131C a <b f (x ),g (x ) f (x )dx = g (x )dx ∫a b∫a bf (x ),g (x )[a ,b ]f (x )=2∣x ∣,g (x )=x +1;f (x )=sinx ,g (x )=cosx f (x )=,g (x )= πx 1−x 2432f (x ),g (x )[−1,1][−1,1]1234f x dx = 2x dx = 2−x dx + 2xdx =2,∫−11()∫−11∣∣∫−10()∫01g x dx = x +x ∣ =2∫−11()(212)−11 f (x )dx = sinxdx =0∫−11∫−11 g x dx = cos xdx =2sin 1≠0∫−11()∫−11f (x )1 f x dx = dx = ∫−11()∫−111−x 22πg x dx = πx ∣ = ∫−11()413−112πf (x ),g (x )[−1,1] f (x )dx = g x dx =0∫−11∫−11()C (sinx +cosx )dx =∫− 2π2π考点:⽤定义求定积分、微积分基本定理求定积分知识点:定积分的概念、被积函数的原函数答案:解析:;故填.⼀般已测:4543次正确率:94.5 %13..考点:利⽤定积分的⼏何意义解题知识点:定积分的概念、定积分的⼏何意义答案:解析:函数即:,表⽰以为圆⼼,为半径的圆在轴上⽅横坐标从到的部分,即四分之⼀圆,结合定积分的⼏何意义可得.故答案为.⼀般已测:2478次正确率:65.4 %14.⼀辆汽⻋在⾏驶中由于遇到紧急情况⽽刹⻋,以速度⾏驶⾄停⽌,在此期间汽⻋继续⾏驶的距离是.考点:定积分在求⾯积中的应⽤、微积分基本定理求定积分知识点:定积分的物理意义、基本积分公式答案:解析:本题考查定积分的概念.令,化为,⼜,解得.汽⻋继续⾏驶的距离.⼀般已测:4698次正确率:91.6 %15.若正实数满⾜,则的最⼩值为.考点:利⽤基本不等式求最值、利⽤公式求定积分知识点:定积分的基本性质、基本积分公式答案:解析:由题意得;即,所以(当且仅当时等号成⽴).所以,即的最⼩值为.简单已测:1192次正确率:87.8 %16.有⼀⾮均匀分布的细棒,已知其线密度为,棒⻓为,则细棒的质量.考点:⽤定义求定积分、微积分基本定理求定积分2(sinx +cosx )dx =−cosx +sinx ∣ ∫− 2π 2π()−2π2π=1+1=22 ( )dx ∫121−(x −1)2=4πy=1−(x −1)2(x −1)+y =1(x ≥1,y ≥0)22(1,0)1x 12 ( )dx = ×π×1=∫121−(x −1)24124π 4πv (t )=7−3t +1+t 254+25ln 5v (t )=7−3t + =01+t253t −4t −32=02t >0t =4S = (7−3t + )dt =(7t − t +25ln (1+t ))∣ =4+25ln 5∫041+t 2523204m ,n + = (x +)dx m 2n 1∫−22π14−x 2log (m +2n )22(x + )dx = dx = × π×2=2∫−22π14−x 2π1∫−224−x 2π1212 + =2m 2n 1m +2n =(m +2n )( + )= + +2≥2 +2=4m 12n 1m 2n 2n m × m 2n 2n m m =2n log m +2n ≥log 4=22()2log (m +2n )22ρx =x ()32M =(1)(2)知识点:定积分的物理意义、定积分的常⽤结论答案:解析:依题意有:.⼀般已测:3051次正确率:65.2 %17.在区间上给定曲线.试在此区间内确定点的值,使图中的阴影部分的⾯积与之和最⼩,并求最⼩值.考点:导数在最⼤值、最⼩值问题中的应⽤、定积分在求⾯积中的应⽤知识点:利⽤导数求函数的最值、微积分基本定理答案:时,最⼩,且最⼩值为解析:⾯积等于边⻓分别为与的矩形⾯积去掉曲线与轴、直线所围成的⾯积,即.的⾯积等于曲线与轴,,围成的⾯积去掉矩形边⻓分别为,⾯积,即.所以阴影部分的⾯积.令,得或.时,;时,;时,.所以当时,最⼩,且最⼩值为.⼀般已测:401次正确率:92.8 %18.已知.求的单调区间;求函数在上的最值.考点:利⽤导数研究函数的单调性、利⽤导数求闭区间上函数的最值知识点:函数单调性和导数的关系、利⽤导数求函数的最值(1)答案:单调调增区间是,单调递减区间是.解析:依题意得,,定义域是.,令,得或; 令得,且函数定义域是,函数的单调增区间是,单调递减区间是.(2)答案:最⼤值是,最⼩值是.解析:由(1)知函数在区间上为减函数,区间上为增函数, 且,在上的最⼤值是,最⼩值是.4x dx= ∣ =4∫0234x 402[0,1]y =x 2t S 1S 2t=21S (t )41S 1t t 2y =x 2x x =t S =t ⋅t − x dx = t 12∫0t 2323S 2y =x 2x x =t x =1t 21−t S = x dx −t (1−t )= t −t + 2∫t 122323231S (t )=S +S = t −t + (0≤t ≤1)12343231S (t )=4t −2t =4t (t − )=0′221t =0t = 21t =0S (t )= 31t = 21S (t )= 41t =1S (t )= 32t = 21S (t )41F (x )= (t +2t −8)dt ,(x >0)∫0x2F (x )F (x )[1,3](2,+∞)(0,2)F (x )= (t +2t −8)dt =( t +t−8t )∣ = x +x −8x ∫0x 231320x 3132(0,+∞)(1)F (x )=x +2x −8′2F (x )>0′x >2x <−4F (x )<0,′−4<x <2(0,+∞)∴F (x )(2,+∞)(0,2)F (3)=−6F (2)=− 328F (x )(0,2)(2,3)F (1)=− ,F (2)=− ,F (3)=−6320328∴F (x )[1,3]F (3)=−6F (2)=− 328(1)(2)中等已测:3275次正确率:52.7 %19.已知⼆次函数,直线,直线(其中,为常数),若直线,与函数的图象以及,、轴与函数的图象所围成的封闭图形(阴影部分)如图所⽰.求,,的值;求阴影⾯积关于的函数的解析式.考点:求函数解析式的常⽤⽅法、利⽤定积分的⼏何意义解题知识点:⼆次函数的解析式、⼆次函数的图象(1)答案:, , 解析:由图形可知⼆次函数的图象过点,,并且的最⼤值为,则解得,函数的解析式为.(2)答案:解析:由得,,,,直线与的图象的交点坐标为由定积分的⼏何意义知:.f (x )=ax +bx +c 2l :x =21l :y =−t +8t 220≤t ≤2t l 1l 2f (x )l 1l 2y f (x )a b c S t S (t )a=−1b =8c =0(0,0)(8,0)f (x )16 ⎩⎨⎧c =0,a ⋅8+b ⋅8+c =02=164a 4ac −b 2 ⎩⎨⎧a =−1b =8c =0∴f (x )f (x )=−x +8x 2S (t )=− t +10t −16t + 3432340{ y =−t +8t 2y =−x +8x2x −8x −t (t −8)=02∴x =t 1x =8−t 2∵0≤t ≤2∴l 2f (x )(t ,−t +8t )2S (t )= −t +8t −−x +8x dx + [(−x +8x )−(−t +8t )]dx ∫0t [(2)(2)]∫t 222=[(−t +8t )x −(− +4x )]∣ +[(− +4x )−(−t +8t )x ]∣ 23x 320t 3x 322t 2=− t +10t −16t + 3432340。
高考数学 考点一遍过 考点13 定积分与微积分基本定理 理(含解析)-人教版高三全册数学试题

考点13 定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. (2)了解微积分基本定理的含义.一、定积分 1.曲边梯形的面积(1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x 所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤:①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②);③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和;④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积.2.求变速直线运动的路程如果物体做变速直线运动,速度函数为v =v (t ),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在a ≤t ≤b 内所作的位移s . 3.定积分的定义和相关概念(1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i −1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i −1,x i ]上任取一点ξi (i =1,2, …,n ),作和式11()()n ni i i i b af x f nξξ==-∆=∑∑;当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作()d baf x x ⎰,即()d baf x x ⎰=1lim ()ni n i b af nξ→∞=-∑. (2)在()d baf x x ⎰中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 4.定积分的性质 (1)()()d d bba akf x x k f x x =⎰⎰(k 为常数);(2)[()()]d ()d ()d bb ba aaf xg x x f x x g x x ±=±⎰⎰⎰;(3)()d =()d +()d bc baacf x x f x x f x x ⎰⎰⎰(其中a <c <b ).【注】定积分的性质(3)称为定积分对积分区间的可加性,其几何意义是曲边梯形ABCD 的面积等于曲边梯形AEFD 与曲边梯形EBCF 的面积的和.5.定积分的几何意义(1)当函数f (x )在区间[a ,b ]上恒为正时,定积分ba ⎰ f (x )d x 的几何意义是由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积(图①中阴影部分).(2)一般情况下,定积分ba ⎰ f (x )d x 的几何意义是介于x 轴、曲线f (x )以及直线x =a ,x =b 之间的曲边梯形面积的代数和(图②中阴影部分所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.6.定积分与曲边梯形的面积的关系(常用结论)定积分的概念是从曲边梯形面积引入的,但是定积分并不一定就是曲边梯形的面积.这要结合具体图形来确定:设阴影部分面积为S ,则 (1)()d baS f x x =⎰;(2)()d baS f x x =-⎰; (3)()()d d cb acS f x x f x x =-⎰⎰;(4)()()()()d d []d b b baaaS f x x g x x f x g x x =-=-⎰⎰⎰.7.定积分的物理意义 (1)变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即()d bas v t t =⎰.(2)变力做功一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s m ,则力F 所做的功为W =Fs .如果物体在变力F (x )的作用下沿着与F (x )相同的方向从x =a 移动到x =b ,则变力F (x )做的功()d baW F x x =⎰.二、微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么()d baf x x ⎰=F (b )−F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式,其中F (x )叫做f (x )的一个原函数.为了方便,我们常把F (b )−F (a )记作()|b a F x ,即()d baf x x ⎰=()|b a F x =F (b )−F (a ). 【注】常见的原函数与被积函数的关系 (1)d |(bb a a C x Cx C =⎰为常数);(2)11d |(1)1bn n ba ax x x n n +=≠-+⎰; (3)sin d cos |bb a a x x x =-⎰; (4)cos d sin |bb a a x x x =⎰;(5)1d ln |(0)bb a ax x b a x=>>⎰; (6)e d e |bx x b a a x =⎰;(7)d |(0,1)ln x bxba a a a x a a a=>≠⎰;(8)322|(0)3b a ax x b a =>≥⎰.考向一定积分的计算1.求定积分的三种方法(1)利用定义求定积分(定义法),可操作性不强;(2)利用微积分基本定理求定积分;(3)利用定积分的几何意义求定积分.当曲边梯形面积易求时,可通过求曲边梯形的面积求定积分.例如,定积分x ⎰的几何意义是求单位圆面积的14,所以π=4x ⎰.2.用牛顿—莱布尼茨公式求定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数; (4)利用牛顿—莱布尼茨公式求出各个定积分的值; (5)计算原始定积分的值. 3.分段函数的定积分分段函数求定积分,可先把每一段函数的定积分求出后再相加. 4.奇偶函数的定积分(1)若奇函数y =f (x )的图象在[−a ,a ]上连续,则()d 0aa f x x -=⎰; (2)若偶函数y =g (x )的图象在[−a ,a ]上连续,则0()d 2()d aaag x x g x x -=⎰⎰.典例A .12B .1C .2D .3【答案】A故选A .【解题技巧】求定积分的关键是找到被积函数的原函数,为避免出错,在求出原函数后可利用求导与积分互为逆运算的关系进行验证.1.已知()60cos d 1x t x π-=⎰,则常数t 的值为A .3-π B .1-π C .32-πD .52-π考向二利用定积分求平面图形的面积利用定积分求平面图形面积问题的常见类型及解题策略 (1)利用定积分求平面图形面积的步骤①根据题意画出图形;②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案. (2)知图形的面积求参数求解此类题的突破口:画图,一般是先画出它的草图;然后确定积分的上、下限,确定被积函数,由定积分求出其面积,再由已知条件可找到关于参数的方程,从而可求出参数的值. (3)与概率相交汇问题解决此类问题应先利用定积分求出相应平面图形的面积,再用相应概率公式进行计算.典例2 设抛物线C :y =x 2与直线l :y =1围成的封闭图形为P ,则图形P 的面积S 等于 A .1 B .13 C .23D .43【答案】D【解析】由21y x y ⎧=⎨=⎩,得1x =±.如图,由对称性可知,123114 2(11d)2(11)33S x x x=⨯-=⨯-=⎰.故选D.2.已知曲线2y x和曲线y=A.1 B.1 2C.2D.13考向三定积分的物理意义利用定积分解决变速直线运动与变力做功问题利用定积分解决变速直线运动问题和变力做功问题时,关键是求出物体做变速直线运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.典例3 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()731v t t+t=-+(t的单位:s,v的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是A.1+25ln 5 B.8+25ln 11 3C.4+25ln 5 D.4+50ln 2 【答案】C【解析】令v(t)=0得,3t2−4t−32=0,解得t=4(83t=-舍去).汽车的刹车距离是42400253(73)d [725ln(1)]|425ln 5.12t +t t t t t -=-++=++⎰故选C.3.一质点在直线上以速度214,[0,2]π2,(2,3]t t v t t ⎧⋅-∈⎪=⎨⎪-∈⎩(m/s)运动,从时刻()0s t =到()3s t =时质点运动的路程为 A .2m B .32m C .1mD .12m1.定积分()12d x x x -⎰的值为A .π4B .π2C .πD .2π2.已知0t >,若()021d 6tx x -=⎰,则t 的值等于A .2B .3C .6D .83.射线4(0)y x x =≥与曲线3y x =所围成的图形的面积为 A .2 B .4 C .5D .64.已知函数()f x 在R 上可导,且()()()34120f x x x f f '+'=-,则1()d f x x =⎰A .1B .1-C .394D .394-5.汽车以()32 m/s v t =+作变速运动时,在第1s 至2s 之间的1s 内经过的路程是A .5mBC .6mD 6.在如图算法框图中,若33(21sin )d a x x x -=++⎰,程序运行的结果S 为二项式5(2)x +的展开式中3x 的系数的3倍,那么判断框中应填入的关于k 的判断条件是A .3k <B .3k >C .4k <D .4k >7.如图,在矩形OABC 内随机撒一颗黄豆,则它落在空白部分的概率为A .e 3 B .4e3- C .3e 3-D .e 13-8.曲线2y x x =--与x 轴所围成图形的面积被直线y kx =分成面积相等的两部分,则k 的值为A .14-B .2-C .1-D 1-9.已知)111sin d πa x x -=⎰,则二项式()2019ax y -的二项式系数之和与各项系数之和的积为A .0B .1-C .1D .以上都不对10.已知定义在R 上的函数()f x 与()g x ,若函数()f x 为偶函数,函数()g x 为奇函数,且()0d 6af x x =⎰,则()()2d aaf xg x x -⎡⎤+=⎣⎦⎰__________.1.(2015年高考湖南卷理科)2(1)d x x -=⎰.2.(2015年高考天津卷理科)曲线2y x =与直线y x =所围成的封闭图形的面积为. 3.(2015年高考山东卷理科)执行如图所示的程序框图,输出的T 的值为.4.(2015年高考福建卷理科)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2.若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于.5.(2015年高考陕西卷理科)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为.1.【答案】A 【解析】因为()60cos d 1x t x π-=⎰,所以()60sin |1x tx π-=,所以3t =-π,故选A .【名师点睛】本题主要考查定积分的相关知识,相对简单.由()60cos 1d x t x π-=⎰可得()60sin |1x tx π-=,从而可得常数t 的值. 2.【答案】D【解析】由题得函数的图象如图所示,联立2y x y ⎧=⎪⎨=⎪⎩1,1),所以叶形图的面积为31231200211)d =()|333x x x x -=⎰. 故选D.【名师点睛】本题主要考查定积分的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.求解时,先作出两个函数的图象,再利用定积分求面积得解. 3.【答案】B【解析】该质点从时刻()0s t =到()3s t =时质点运动的路程:32320221(2)d 122S t t t t t ⎛⎫=--=-- ⎪⎝⎭⎰⎰13122=+=, 故选B .【名师点睛】本小题主要考查定积分的计算,考查定积分在物理上的应用,属于基础题.求解时,根据速度的积分为位移,对分段函数的两段解析式分别进行积分,再根据位移和路程的对应关系,求得质点运动的路程.1.【答案】A 【解析】(()2211y x x y =∴-+=表示以()1,0为圆心,1为半径的圆,∴定积分x ⎰等于该圆的面积的四分之一,∴ 故选A . 2.【答案】B 【解析】()()2200621d tt x x t t x x =-=--=⎰(0t >),∴3t =或2t =-(舍). 则t 的值等于3. 故选B .【名师点睛】本小题主要考查定积分的计算,考查运算求解能力,属于基础题.求解时,根据定积分的计算公式化简定积分,解方程求得t 的值.3.【答案】B【解析】将射线方程与曲线方程联立34y x y x =⎧⎨=⎩,解得:1100x y =⎧⎨=⎩,2228x y =⎧⎨=⎩, 即射线()40y x x =≥与曲线3y x =有两个公共点,所围成的图形的面积为()223240014d 244x x x x x ⎛⎫-=-= ⎪⎝⎭⎰.本题正确选项为B.【名师点睛】本题考查曲边梯形面积的求解问题,关键是能够求得交点坐标后,利用定积分的知识来求解.解题时,射线与曲线方程联立可求得交点坐标,利用积分的知识可求得结果. 4.【答案】C【解析】由题意得()()2431f x x f '='-,故()04f '=,()()1431f f =-'',得到()11f '=,所以()348f x x x =-+故选C. 5.【答案】D【解析】由题意可得在第1s 至2s 之间的1s132=,故选D . 6.【答案】C 【解析】()33233(21sin )d cos a x x x x x x--=++=+-⎰93cos393cos36=+--++=,二项式5(2)x +的展开式中3x 的系数为325C 240⋅=,即340120S =⨯=, 根据程序框图,可知5k =,6a =,6S =,S 不满足条件; 4k =,6530S =⨯=,S 不满足条件; 3k =,654120S =⨯⨯=,则3k =满足条件.输出120S =,【名师点睛】本题主要考查程序框图的识别和判断,求出a ,S 的值,利用模拟运行算法是解决本题的关键.求解时,根据积分和二项式定理的内容求出a ,S ,结合程序框图进行模拟运算即可. 7.【答案】B【解析】由题意,阴影部分的面积为0101=e d e e |1阴影x x S x ==-⎰,又矩形OABC 的面积为=3OABC S 矩形,所以在矩形OABC 内随机撒一颗黄豆,则它落在空白部分的概率为4e=3阴影矩形矩形OABC OABC S S P S --=.故选B.【名师点睛】本题主要考查与面积有关的几何概型,以及定积分的应用,熟记微积分基本定理以及几何概型的概率计算公式即可,属于常考题型.求解时,根据定积分的应用,得到阴影部分的面积为1=e d 阴影x S x ⎰,再由题意得到矩形OABC 的面积,最后由与面积有关的几何概型的概率公式,即可求出结果. 8.【答案】D【解析】如图所示,曲线2y x x =--与x 轴的交点为()1,0-和0,0(),曲线2y x x =--与直线y kx=的交点为()21,k k k ----和0,0().由题意和定积分的几何意义得:()2211()d 2d kx x x xx kx x -----=---⎰⎰,化简得:()()33111=2632k k ⎛⎫++ ⎪-+ ⎪⎝⎭,即31=1+2k (),解得:112k =-=-.【名师点睛】1.由函数图象或曲线围成的曲边图形面积的计算及应用,一般转化为定积分的计算及应用,但一定要找准积分上限、下限及被积函数,且当图形的边界不同时,要讨论解决.具体步骤如下: (1)画出图形,确定图形范围;(2)解方程组求出图形交点坐标,确定积分上、下限; (3)确定被积函数,注意分清函数图形的上、下位置; (4)计算定积分,求出平面图形的面积.2.由函数求其定积分,能用公式的利用公式计算,有些特殊函数可根据其几何意义,求出其围成的几何图形的面积,即其定积分. 9.【答案】B【解析】由定积分的运算性质,可得)1111111sin d [sin d ]ππa x x x x x ---==+⎰⎰⎰,又由1x -⎰表示圆221x y +=的上半圆的面积,即1π2x -=⎰,所以1π211x -=⎰,又由1111sin d (cos )|cos1cos(1)0x x x --=-=-+-=⎰,所以12a =, 所以二项式为201912x y ⎛⎫- ⎪⎝⎭的二项式系数之和为20192,令1,1x y ==,可得展开式的各项之和为2019201911()()22-=-, 所以二项式系数之和与各项系数之和的积为2019201912[()]12⋅-=-.故选B.【名师点睛】本题主要考查了定积分的性质及运算,以及二项式系数之和与项的系数之和的求解及应用,其中解答中熟练应用定积分的性质求得a 的值,以及合理求解二项式系数与项的系数之和是解答的关键,着重考查了推理与运算能力,属于中档试题.求解时,由定积分的运算性质和定积分的几何意义,求得12a =,进而得二项式系数之和20192,再令1,1x y ==,可得展开式的各项之和为20191()2-,即可求解,得到答案. 10.【答案】12【解析】∵函数()f x 为偶函数,函数()g x 为奇函数,∴函数()f x 的图象关于y 轴对称,函数()g x 的图象关于原点对称. ∴()()0d 2d 12aa a f x x f x x -==⎰⎰,()d 0aag x x -=⎰,∴()()()()2d d 2d 12aa aaa a f x g x x f x x g x x ---⎡⎤+=+=⎣⎦⎰⎰⎰.【名师点睛】根据定积分的几何意义和函数的奇偶性求解.定积分()()d (0)baf x x f x >⎰的几何意义是表示曲线()y f x =以下、x 轴以上和直线,x a x b ==之间的曲边梯形的面积,解题时要注意面积非负,而定积分的结果可以为负.1.【答案】0【解析】2220011(1)d ()|42022x x x x -=-=⨯-=⎰.2.【答案】16【解析】由题意可得封闭图形的面积为122310011111()d ()|23236x x x x x -=-=-=⎰. 3.【答案】116【解析】开始n =1,T =1,因为1<3,所以11212001131d 1|11222T x x x =+=+=+⨯=⎰,n =1+1=2; 因为2<3,所以13130023313111d |1223236T x x x =+=+=+⨯=⎰,n =2+1=3.因为3<3不成立,所以输出T ,即输出的T 的值为116.4.【答案】512【解析】依题意知点D 的坐标为(1,4),所以矩形ABCD 的面积S =1×4=4,阴影部分的面积S 阴影=3222111754d 44333| x x x =-=--=⎰, 根据几何概型的概率计算公式得,所求的概率P =553412S S ==阴影.5.【答案】1.2【解析】建立空间直角坐标系,如图所示:原始的最大流量是()11010222162⨯+-⨯⨯=,设抛物线的方程为22x py =(0p >),因为该抛物线过点()5,2,所以2225p ⨯=,解得254p =,所以2252x y =,即2225y x =,所以当前最大流量是()()53235355222240(2)d (2)(255)[255]257575753x x x x ---=-=⨯-⨯-⨯--⨯-=⎰,故原始的最大流量与当前最大流量的比值是161.2403=,所以答案为1.2.。
2023年高考数学微专题练习专练15定积分与微积分基本定理含解析理

专练15 定积分与微积分基本定理命题范围:积分的概念与运算、微积分基本定理.[基础强化]一、选择题1.⎠⎛12(x -2)d x 的值为( )A .-1B .0C .1D .-122.若f(x)=x 2+2⎠⎛01f(x)d x ,则⎠⎛01f(x)d x =( )A .-1B .-13C .13D .13.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A .22B .4 2C .2D .44.若a =⎠⎛02x 2d x ,b =⎠⎛02x 3d x ,c =⎠⎛02sin x d x ,则a ,b ,c 的大小关系是( )A .a<c<bB .a<b<cC .c<b<aD .c<a<b5.⎠⎛-11(1-x 2+sin x)d x =( )A .π4B .π2C .πD .π2+26.设k =⎠⎛0π(sin x -cos x)d x ,若(1-kx)8=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+…+a 8=( )A .-1B .0C .1D .2567.设f(x)=⎩⎨⎧1-x 2,x∈[-1,1),x 2-1,x∈[1,2],则⎠⎛-12f(x)d x 的值为( )A .π2+43B .π2+3C .π4+43D .π4+38.如图是函数y =cos (2x -5π6)在一个周期内的图像,则阴影部分的面积是( )A .34B .54C .32D .32-349.已知等差数列{a n }中,a 5+a 7=⎠⎛0πsin x d x ,则a 4+2a 6+a 8的值为( )A .8B .6C .4D .2二、填空题10.[2022·安徽滁州二模]设f(x)=e x,则⎠⎛01[f′(x)+2x]d x________.11.曲线y =x 2与直线y =x 所围成的封闭图形的面积为________.12.已知函数f(x)=x 3+ax 2+bx(a ,b∈R )的图像如图所示,它与直线y =0在原点处相切,此切线与函数图像所围区域(图中阴影部分)的面积为274,则a 的值为________.13.[2022·西藏拉萨中学月考]由曲线y =x ,直线y =x -2及y 轴所围成的平面图形的面积为________.14.[2022·甘肃张掖期末]如图,在矩形ABDC 中,AB =1,AC =2,O 为AC 中点,抛物线的一部分在矩形内,点O 为抛物线顶点,点B ,D 在抛物线上,在矩形内随机地放一点,则此点落在阴影部分的概率为________.15.[2022·宁夏石嘴山一模]⎠⎛-11(e x+|x|)d x =________.16.[2022·黑龙江一模]在棱长为2的正方体ABCDA 1B 1C 1D 1的侧面ABB 1A 1内有一动点P 到直线A 1B 1与直线BC 的距离相等,则在侧面ABB 1A 1上动点P 的轨迹与棱AB 、BB 1所围成的图形面积是________.专练15 定积分与微积分基本定理1.D ⎠⎛12(x -2)d x =⎝ ⎛⎭⎪⎫12x 2-2x |21 =12×22-2×2-⎝ ⎛⎭⎪⎫12-2=-12.2.B 令⎠⎛01f(x)d x =m ,则f(x)=x 2+2m ,∴⎠⎛01f(x)d x =⎠⎛01x 2d x +⎠⎛012m d x =(13x 2+2mx)|10=m ,得m =-13.3.D 由⎩⎪⎨⎪⎧y =4x ,y =x 3,得x =0或x =2或x =-2(舍), ∴S=⎠⎛02(4x -x 3)d x =⎝ ⎛⎭⎪⎫2x 2-14x 4|20 =4.4.D a =⎠⎛02x 2d x =13x 3|20 =83,b =⎠⎛02x 3d x =14x 4|20 =4,c =⎠⎛02sin x d x =(-cos x )|20 =1-cos2,∵1-cos2<83<4,∴c <a <b .5.B ⎠⎛-11(1-x 2+sin x )d x =⎠⎛-111-x 2d x +⎠⎛-11sin x d x ,∵y =sin x 为奇函数,∴⎠⎛-11sin x d x =0,又⎠⎛-111-x 2d x 表示以坐标原点为圆心,以1为半径的上半个圆的面积,∴⎠⎛-111-x 2d x=π2, ∴⎠⎛-11( 1-x 2+sin x )d x =π2.6.B 因为k =⎠⎛0π(sin x -cos x )d x =⎠⎛0πsin x d x -⎠⎛0πcos x d x =-cos x |π0 -sin x |π0 =2,所以(1-kx )8=(1-2x )8=a 0+a 1x +a 2x 2+…+a 8x 8.令x =1,得a 0+a 1+a 2+…+a 8=(1-2)8=1,令x =0,得a 0=1,所以a 1+a 2+…+a 8=(a 0+a 1+a 2+…+a 8)-a 0=1-1=0.故选B.7.A ⎠⎛-12f(x)d x =⎠⎛-111-x 2d x +⎠⎛12(x 2-1)d x =12π×12+(13x 3-x)|21 =π2+43.故选A .8.B S =-∫π60cos (2x -5π6)d x +∫2π3π6cos (2x -5π6)d x=-⎣⎢⎡⎦⎥⎤12sin (2x -5π6)|π60+[12sin (2x -5π6)]|2π3π6=-[12sin (-π2)-12sin (-5π6)]+[12sin π2-12sin (-π2)]=14+1=54.故选B .9.C ∵a 5+a 7=⎠⎛0πsin x d x =(-cos x)|π0 =-(cosπ-cos 0)=2,又{a n }为等差数列, ∴a 5+a 7=2a 6=2,∴a 6=1, ∴a 4+2a 6+a 8=4a 6=4. 10.e解析:因为f(x)=e x, 所以错误!错误!0=e +1-1=e . 11.16解析:如图,阴影部分的面积即为所求.解⎩⎪⎨⎪⎧y =x 2,y =x ,得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,则A(1,1). 故所求面积为S =⎠⎛01(x -x 2)d x =(12x 2-13x 3)|10 =16.12.-3解析:由已知得f′(0)=0,因为f′(x)=3x 2+2ax +b ,所以b =0,则f(x)=x 3+ax 2,令f(x)=0,得x 1=0,x 2=-a.由切线y =0与函数图像所围区域(题图中阴影部分)的面积为274,得 -⎠⎛0-a f(x)d x =274,即-⎠⎛0-a (x 3+ax 2)d x =274,即-(14x 4+a 3x 3)-a 0 =274,所以-⎣⎢⎡⎦⎥⎤a 44+a3×(-a )3=274,即a 412=274,解得a =±3,由题图可知a<0,∴a=-3. 13.163解析:由定积分知 S =⎠⎛4x -(x -2)d x =(23x 32-12x 2+2x)|1=(23×8-8+8)-0=163. 14.13解析:由题可知矩形面积为2,建立如图所示的平面直角坐标系,则抛物线方程为y 2=2x(0≤x≤1), 抛物线及BD 围成的面积为2(1-⎠⎛01x d x)=23,点落在阴影部分的概率为232=13.15.e -1e+1解析:⎠⎛-11(e x+|x|)d x =⎠⎛-1(e x-x)d x +⎠⎛01(e x+x)d x =(e x-x 22)|0-1 +(e x +x 22)|10 =(e-0)[e -1-(-1)22]+(e 1+122)-[e 0+0]=1-1e +12+e +12-1=e -1e +1.16.43解析:以点A 为坐标原点,AB 、AD 、AA 1所在直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系,设点P(x ,0,z),则0≤x≤2,0≤z≤2,则点P 到直线A 1B 1的距离为2-z , 因为BC⊥平面AA 1B 1B ,BP ⊂平面AA 1B 1B , 所以,BC⊥BP,所以,点P 到直线BC 的距离为|BP →|=(x -2)2+z 2, 由已知可得(z -2)2+z 2=2-z ,化简可得z =x -x24,当x =2时,z =1,即点P 的轨迹交棱BB 1于点(2,0,1),因此,在侧面ABB 1A 1上动点P 的轨迹与棱AB 、BB 1所围成的图形面积是⎠⎛02(x -x 24)d x =(12x 2-x 312)|20 =43.。
高考数新人教A一轮复习专题练习 3.3 定积分与微积分基本定理

1.设连续函数f(x)>0,则当a<b 时,定积分∫()b a f x dx 的符号( ) A.一定是正的 B.一定是负的C.当0<a<b 时是正的,当a<b<0时是负的D.以上结论都不对 【答案】 A【解析】 由∫()b a f x dx 的几何意义及f(x)>0,可知∫()ba f x 表示x=a,x=b,y=0与y=f(x)围成的曲边梯形的面积. ∴∫()b a f x dx>0.2. ∫22ππ- (1+cosx)dx 等于( )A.πB.2C.π-2D.π+2【答案】 D【解析】 ∫22ππ-(1+cosx)dx=(x+sinx)|22ππ-2(π=+sin 22)[ππ--+sin 2()]2π-=+π. 3.用S 表示图中阴影部分的面积,则S 的值是( )A. ∫()c a f x dxB.| ∫()c a f x dx|C. ∫()b a f x dx+∫()cb f x dxD. ∫()cb f x dx-∫()b a f x dx【答案】 D【解析】 由定积分的几何意义知选项D 正确.4.(2012山东荷泽模拟)设函数()mf x x ax =+的导函数则∫21()f x -dx 的值等于( ) A.56 B.12 C.23 D.16【答案】 A【解析】 由于()m f x x ax =+的导函数为f′(x)=2x+1,所以2()f x x x =+,于是∫21()f x -dx=∫221()x x -313(x -212)x |2516=.5.直线y=2x+3与抛物线2y x =所围成的图形面积为 . 【答案】323【解析】 由 223y x y x =+,⎧⎨=,⎩得1213x x =-,=. ∴面积S=∫31(23)x -+dx-∫321x -dx 2(3)x x =+|33113x --|33213-=. 1. ∫412x dx 等于( )A.-2ln2B.2ln2C.-ln2D.ln2【答案】 D【解析】 ∫412x dx=lnx |42=ln4-ln2=ln2.2.(2011福建高考,理5) ∫10(e 2)xx +dx 等于( ) A.1B.e-1 C.e D.e+1【答案】 C【解析】 ∵被积函数e 2x x +的一个原函数为e 2xx +,∴∫10(e 2)x x +dx=(e 2)x x +|10(=e 121)(+-e 0+3.已知f(x)= 210101x x x ⎧,-≤≤,⎨,<<,⎩则∫11()f x -dx 的值为 ( )A.32B.23-C.23D.43【答案】 D【解析】 ∫11()f x -dx=∫021x -dx+∫101dx 313x=|01x -+|10 14331=+=.4.函数f(x)= 2110cosx 0x x x π+,-≤<,⎧⎨,≤≤⎩ 的图象与x 轴所围成的封闭图形的面积为( ) A.32B.1C.2D.12【答案】 A【解析】 根据定积分的几何意义结合图形可得所求的封闭图形的面积为1211S =⨯⨯+∫20πcosxdx 12=+sinx |2π12=+sin 2π-sin032=.5.函数y=∫(x x -cos 22)t t ++dt( )A.是奇函数B.是偶函数C.是非奇非偶函数D.以上都不正确【答案】 A【解析】 y=(sin 332)t t t ++|2xx -=sin 3234x x x ++,为奇函数6.(2011湖南高考,理6)由直线330x x y ππ=-,=,=与曲线y=cos x 所围成的封闭图形的面积为( ) A.12 B.1【答案】 D【解析】 结合图形可得:S=∫33ππ-cosxdx=sin x |33ππ-3π-3()π-=7.由曲线32y x y x =,=围成的封闭图形的面积为( )A.112B.14C.13D.712【答案】 A【解析】 因为2y x =与3y x =的交点为(0,0),(1,1), 故所求封闭图形的面积为∫102x dx-∫103x d 313x x =|10414x -|101113412=-=,选A.8.曲线1x y =与直线y=x,x=2所围成的图形面积为 . 【答案】32-ln2【解析】 S=∫211()x x -d 212(x x =-lnx)|2312=-ln2. 9.如果∫10()f x dx=1, ∫20()f x dx=-1,则∫21()f x dx= .【答案】 -2【解析】 ∵∫20()f x dx=∫10()f x dx+∫21()f x dx, ∴∫21()f x dx=∫20()f x dx-∫10()f x dx=-1-1=-2.10.由曲线2y x =和直线2(01)t t ,∈,所围成的图形(阴影部分)的面积的最小值为 .【答案】14【解析】 围成图形的阴影部分的面积3S t =-∫20t x dx+∫12t x dx 2324133(1)t t t t --=-+.令S′2420t t =-=,解得12t =或t=0(舍去).可判断当12t =时S 最小1min 4S ,=.11.计算下列定积分.(1) ∫2211(2)x x -dx;(2) ∫322dx;(3) ∫30π(sinx-sin2x)dx.【解】 (1) ∫2211(2)x x -d 323(x x =-lnx)|21 163=-ln 214332-=-ln2.(2) ∫322dx=∫312(2)x x ++dx212(x =+lnx+2x)|32 92(=+ln3+6)-(2+ln2+4)=ln 3922+.(3) ∫30π(sinx-sin2x)dx=(-cos 12x +cos2x)|30π11112424()(1)=----+=-.12.已知f(x)为二次函数,且f(-∫10()f x -2.(1)求f(x)的解析式;(2)求f(x)在[-1,1]上的最大值与最小值.【解】 (1)设2()(0)f x ax bx c a =++≠,则f′(x)=2ax+b. 由f(-1)=2,f′(0)=0,得 20a b c b -+=,⎧⎨=⎩即20c a b =-,⎧⎨=.⎩∴2()(2)f x ax a =+-.又∫10()f x dx=∫120[(2)]ax a +-dx 313[(2)]ax a x =+-|120322a =-=-. ∴a=6,c=-4.从而2()64f x x =-. (2)∵2()64[11]f x x x =-,∈-,, ∴当x=0时min ()4f x ,=-; 当1x =±时max()2f x =.13.如图所示,直线y=kx 分抛物线2y x x =-与x 轴所围图形为面积相等的两部分,求k 的值.【解】 抛物线2y x x =-与x 轴两交点的横坐标为1201x x =,=, 所以,抛物线与x 轴所围图形的面积S=∫120()x x -d 23123()x x x =-|1106=.又由 2y x x y kx ⎧=-,⎨=,⎩ 可得抛物线2y x x =-与y=kx 两交点的横坐标为3401x x k =,=-,所以,2S =∫120()k x x kx ---d 231123()k x x x -=-|13106(1)k k -=-.又知16S =,所以312(1)k -=,于是11k ==14.一条水渠横断面为抛物线型,如图,渠宽AB=4米,渠深CO=2米,当水面距地面0.5米时,求水的横断面的面积.【解】 如图,建立直角坐标系,设抛物线方程为22x py =,代入(2,2)得2p=2,∴22x y =.将点(x,1.5)代入22x y =得x =∴水的横断面的面积为S=(1.2125)x -dx=(1.3165)x x -|.∴水的横断面的面积为平方米.。
最新高考数学总复习-定积分和微积分基本定理

第三节定积分和微积分基本定理考纲解读1.认识定积分的实质背景、基本思想及观点.2.认识微积分基本定理的含义.命题趋向研究定积分的考察以计算为主,其应用主假如求一个曲边梯形的面积,题型主要为选择题和填空题.知识点精讲一、基本观点1.定积分的极念一般地,设函效 f x 在区间[a,b]上连续.用分点a = x0< x1< x2< L< x i- 1 < x i< L< x n = b 将区间 [ a, b] 平分红 n 个小区间,每个小区间长度为b-a),D x(D x =n在每个小区间 [x i- 1 , x i]上任取一点i i 1,2, L ,nn,作和式: S n f ( i ) xi1n b af (i ) ,当D x无穷靠近于0(亦即 n)时,上述和式 S n无穷趋近于常数S ,i 1n那么称该常数 S 为函数 f ( x)在区间[ a, b]上的定积分.记为:S bf ( x )dx ,f (x)为a被积函数, x 为积分变量, [ a, b] 为积分区间,b为积分上限, a 为积分下限.需要注意以下几点:(1)定积分bf x dx是一个常数,即S n无穷趋近的常数S(n时),称为( )aba f ( x )dx ,而不是 S n.(2)用定义求定积分的一般方法 .n ①切割: n 平分区间a,b;②近似取代:取点;③乞降:[ ]i x i 1 , x ii 1b af ( i ) ;nb n b a④取极限:lim ff ( x)dx ia nni 1(3)曲边图形面积:S bx dx ;变速运动行程S t2bf v(t )dt ;变力做功S F (x) dx a t1a2.定积分的几何意义从几何上看,假如在区间 [a,b ]上函数f(x)连续且恒有 f ( x) 0,那么定积分b f x dx 表a示由直线 x a, x b(a b), y0 和曲线y = f (x ) 所围成的曲边梯形(如图 3-13 中的暗影b部分所示 )的面积,这就是定积分 f x dx的几何意义.ab( )x 轴、函数一般状况下,定积分f的值的几何意义是介于 f ( x)的图像以及直线dxax = a , x = b 之间各部分面积的代数和,在 x 轴上方的面积取正号,在 x 轴下方的面积取负号.二、基天性质b性质 11dx b a .abb 性质 2kf (x) dx kf ( x)dx (此中 k 是不为 0的常数 ) (定积分的线性性质) .aab [ f 1 ( x) f 2 (x)]dxb ( x)dxb性质 3f 1f 2 ( x) dx (定积分的线性性质) .aaab( )c( )b ( )(此中)性质 4(定积分对积分区间的可加性)f x dxf x dxf x dxa c baa cbbbb推行 1[ f 1 ( x) f 2 ( x) Lf m (x)]dxf 1 ( x)dxf 2 (x)dx Lf m (x)aaaa推行 2bf (x)dxc 1f ( x)dxc 2 f (x)dx bf ( x)dxc 1L.aac k 三、基本定理设函数 f ( x) 是在区间 [ a,b] 上连续,且 F x是 f (x) 是在 [a,b] 上的随意一个原函数,即 F ' (x)f (x) ,则ba f ( x)dxF (b)F (a),或记为ba f ( x)dxF bxaF (b) F ( a) ,称为牛顿 — 莱布尼兹公式,也称为微积分基本定理.该公式把计算定积分归纳为求原函数的问题,只需求出被积函数f x 的一个原函数F x .而后计算原函数 F x 在区间 a,b 上的增量 F (b) F (a) 即可,这必定理提示了定积分与不定积分之间的内在联系.题型概括及思路提示题型 51 定积分的计算思路提示关于定积分的计算问题,若该定积分拥有明显的几何意义,如圆的面积等(例 3.26 及其变式),则利用圆面积计算,不然考虑用牛顿-莱布尼茨公式计算.1 sin x dx =例 3.25( 2012 江西 11)计算x2.-11x 2 sin x dx= 1x 311cos11cos12 . 分析cos x-131 333A.B. C.D.变式 1 4 1dx2xA. -2ln 2B.2ln 2 C. -ln2D.ln 212x) dx变式 2(exA.1B e 1 .C. eD.e+11设函数 fx ax2c a0 ,若x dxf x 0 0x 0 1 ,则 x 0 的值变式 3 f为.变式 4 设函数 y f x 的定义域为 R, 若关于给定的正数k ,定义函数f k xk, f ( x) k,则当函数 fx1, k 1时,定积分2 f k x dx 的值为fx , f x1kx4()A. 2ln 2 2B. 2ln2 1C. 2ln2D. 2ln2 1例 3.26 依据定积分的几何意义计算以下定积分42 x dx ;1(1)( 2)1 x 2dx1剖析 依据定积分的几何意义,利用图形的面积求解.分析 依据定积分的几何意义,所求的定积分是直线所围成图形(如图3-14 所示)的面积的 代数和,很明显这是两个面积相等的等腰直角三角形,如图 3-14 所示,其面积代数和是 0,4x dx0 .故 2(2)依据定积分的几何意义, 所求的定积分是曲线 x 2y 21 y0 和 x 轴围成图形 (如图 3-15 所示)的面积,明显是半个单位圆,其面积是,故1 1 x2 dx= .122评注 定积分bx dx 的几何意义是函数和直线xa, xb 以及 x 轴所围成的图形面积的a代数和, 面积是正当 ,但积分值却有正当和负值之分, 当函数时 , fx0 面积是正当, 当函数 fx0 时,积分值是负值.变式 1 依据定积分的几何几何意义计算以下定积分.4x 2dx ;103x 2 dx ; 4 4sin xdx .(1)( 2)2 ( 3)sin xdx ;( 4)4题型 52 求曲边梯形的面积思路提示函数 y f x , yg x 与直线 xa, x b a b 围成曲边梯形的面积为Sb xg x | dx ,详细思路是:先作出所波及的函数图象,确立出它们所围成图形|fa的上、下曲线所对应函数,被积函数左、右界限分别是积分下、上限.例 3.27 由曲线 yx 2 , y x 3 围成的关闭图形的面积为( )1B.11D.7A.4C.12123分析 由 x 2x 3 得 x 0或x 1,则由 yx 2 和 y x 3 围成的关闭图形的面积为 1 2 31 3 1 4 1 1 1 1 x x dx x x 0 ,应选 A . 03 4 3 4 12所求,则它与 x 轴所围成变式( 2012 湖北理 )已知二次函数 y f x的图象如图3-1613图形的面积为( )2 4 3A.B.C.D.532 2y11O1x图 3-16变式 2 由曲线 yx 2 和直线 x 0, x 1, y t 2 , t 0,1 所围成的图形(如图3-17 中暗影部分所示)面积的最小值为()2 1 1 1A.B.C.D.3324变式 3 求抛物线 y 24x 与 y 2x 4 围成的平面图形的面积. 变式 4 求由两条曲线y 4x 2, y1x 2 和直线 y 4 所围成的面积.4最有效训练题 16(限时 45 分钟)1.已知函数A. -2B.f x x22x 3 ,则1f x dx ()116 16C.-4D.33 2.定积分 1 x 121x dx ()A,211 D.14B.2C.42f xx 2 , x0,12 ()设,则f x dx3.2 x, x (1,2]3 4 C.5A.B.D. 不存在4562 xdx, b 224. a e xdx, csin xdx ,则 a,b,c 的大小关系是()A, a c b B. a b c C. c b a D. c a b5.曲线 ysin x, y cos x 与直线 x 0, x2所围成的平面地区的面积为()A, 1 B. 2 C.2 1D. 2 2 16.由直线 x, x , y 0 与曲线 ycos所围成的平面图形的面积为()33A,1 B. 13 D.32C.27.抛物线 y 2 2x 与直线 y4 x 围成的平面图形的面积为.8.已知 fx5 x dx5 x dx是偶函数,且f6 ,则f.52 |1 x | dx9.2 .10.已知函数 yf x 的图象是折线段, 1 .函数ABC ,此中,5 , C 1,0 A0,0 B2y xf x0 x1 的图象与 x 轴所围成的图形的面积为.11.依据定积分的几何意义计算以下定积分.122 12(1)|x|dx ;(2)x(3)x 1 x dx ;x 4 dx ;111(4)2x (5)2cos 2xcosdx ;dx2cos x sin x12.有一条直线与抛物线 y x 2 订交于A,B两点,线段AB与抛物线所围成图形的面积恒等于 4,求线段AB的中点P的轨迹方程.3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年 级 高二 学科数学内容标题 定积分的计算 编稿老师马利军一、教学目标:1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题.2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题.二、知识要点分析1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:⎰badx x f )(2. 定积分的几何意义:(1)当函数f (x )在区间[a ,b]上恒为正时,定积分⎰badx x f )(的几何意义是:y=f (x )与x=a ,x=b 及x 轴围成的曲边梯形面积,在一般情形下.⎰badx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a ,x=b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号.在图(1)中:0s dx )x (f ba>=⎰,在图(2)中:0s dx )x (f ba<=⎰,在图(3)中:dx)x (f ba⎰表示函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和.注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于⎰badx x f )(,仅当在区间[a ,b]上f (x )恒正时,其面积才等于⎰badx x f )(.3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)⎰⎰⎰±=±bab aba dx )x (g dx )x (f dx )]x (g )x (f [(2)⎰⎰=baba dx x f k dx x kf )()(,(k 为常数)(3)⎰⎰⎰+=bcbac adx x f dx x f dx x f )()()((4)若在区间[a ,b ]上,⎰≥≥badx x f x f 0)(,0)(则推论:(1)若在区间[a ,b ]上,⎰⎰≤≤babadx x g dx x f x g x f )()(),()(则(2)⎰⎰≤babadx x f dx x f |)(||)(|(3)若f (x )是偶函数,则⎰⎰=-a aadx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=⎰-aadx x f4. 微积分基本定理:一般地,若)()()(],[)(),()('a Fb F dx x f b a x f x f x F ba-==⎰上可积,则在且注:(1)若)()('x f x F =则F (x )叫函数f (x )在区间[a ,b ]上的一个原函数,根据导数定义知:F (x )+C 也是f (x )的原函数,求定积分⎰badx x f )(的关键是求f (x )的原函数,可以利用基本初等函数的求导公式和导数的四则运算法则从反方向求F (x ).(2)求导运算与求原函数的运算互为逆运算.【典型例题】知识点一:定积分的几何意义例1.根据⎰=π200sin xdx 推断:求直线x=0,x=π2,y=0和正弦曲线y=sinx 所围成的曲边梯形面积下列结论正确的是( )A .面积为0B .曲边梯形在x 轴上方的面积大于在x 轴下方的面积C .曲边梯形在x 轴上方的面积小于在x 轴下方的面积D .曲边梯形在x 轴上方的面积等于在x 轴下方的面积题意分析:本题考查定积分的几何意义,注意dx x ⎰π20sin 与y=sinx 及直线x=a ,x=b 和x 轴围成的面积的区别.思路分析:作出函数y=sinx 在区间[0,π2]内的图象及积分的几何意义及函数的对称性可判断.解:对于(A ):由于直线x=0,x=π2,y=0和正弦曲线y=sinx 所围成的曲边梯形面积为正可判断A 错.对于(B ),(C )根据y=sinx 在[0,π2]内关于()0,π对称知两个答案都是错误的. 根据函数y=sinx 的图象及定积分的几何意义可知:答案(D )是正确的.解题后的思考:本题主要考查定积分的几何意义,体现了数与形结合的思想的应用,易错点是混淆函数y=sinx 与x 轴、直线x=0,x=π2围成的面积等于⎰π20)(dx x f .例2.利用定积分的几何意义,说明下列等式的合理性 (1)121=⎰xdx(2)⎰=-1241πdx x .题意分析:本题主要考查定积分的几何意义:在区间[0,1]上函数y=2x ,及y=21x -恒为正时,定积分⎰12xdx 表示函数y=2x 图象与x=0,x=1围成的图形的面积,dx x ⎰-121表示函数y=21x -图象与x=0,x=1围成的图形的面积.思路分析:分别作出函数y=2x 及y=21x -的图象,求此图象与直线x=0,x=1围成的面积.解:(1)在同一坐标系中画出函数y=2x 的图象及直线x=0,x=1(如图),它们围成的图形是直角三角形.其面积∆S =11221=⨯⨯.由于在区间[0,1]内f (x )恒为正,故1210=⎰xdx .(2)由]1,0[,11222∈=+⇒-=x y x x y ,故函数y 21x -=(]1,0[∈x 的图象如图所示,所以函数y 21x -=与直线x=0,x=1围成的图形面积是圆122=+y x 面积的四分之一,又y 21x -=在区间[0,1]上恒为正.⎰=-1241πdx x解题后的思考:本题主要考查利用定积分的几何意义来验证函数y=2x 及函数y=21x -在区间[0,1]上的定积分的值,体现了数与形结合的思想的应用,易错点是画函数图象的不准确造成错误的结果.例3.利用定积分的几何意义求⎰-+-4|)3||1(|dx x x 的值.题意分析:本题考查定积分的几何意义,⎰-+-4|)3||1(|dx x x 的值是函数|3||1|-+-=x x y 的图象与直线x=0,x=4所围成图形的面积.思路分析:首先把区间[0,4]分割为[0,1],[1,3],[3,4],在每个区间上讨论x -1,x -3的符号,把函数|3||1|-+-=x x y 化为分段函数,再根据定积分的几何意义求⎰-+-4|)3||1(|dx x x 的值.解:函数|3||1|-+-=x x y 化为⎪⎩⎪⎨⎧∈-∈∈+-=]4,3[(,42]3,1[(,2]1,0[(,42x x x x x y由于函数⎪⎩⎪⎨⎧∈-∈∈+-=]4,3[(,42]3,1[(,2]1,0[(,42x x x x x y 在区间[0,1],[1,3],[3,4]都恒为正.设函数y=-2x+4的图象与直线x=0,x=1围成的面积为S 1 函数y=2的图象与直线x=1,x=3围成的面积是S 2 函数y=2x -4的图象与直线x=3,x=4围成的面积是S 3 由图知:S 1=S 3=,31)24(21=⨯+S 2=422=⨯ 由定积分的几何意义知:⎰-+-4|)3||1(|dx x x =10231=++S S S解题后的思考:本题考查的知识点是定积分的几何意义,利用其几何意义求定积分⎰-+-4|)3||1(|dx x x 的值,体现了等价转化的数学思想(把区间[0,4]分割,把函数y=|x -1|+|x -3|化成分段函数)、数与形结合的思想的应用.易错点是:区间[0,4]分割不当及画函数图象不准确,造成错误的结果.当被积函数含有绝对值时,常采用分割区间把函数化为分段函数的方法求定积分的值.小结:本题主要考查定积分的几何意义,要分清在区间[a ,b ]上f (x )恒为正时,f (x )在区间[a ,b]上定积分值才等于函数图象与直线x=a ,x=b 围成的面积.在画函数图象时注意x 的取值区间.当被积函数含有绝对值时,恰当的分割区间把函数画为分段函数再求定积分的值.高中数学高考总复习定积分与微积分基本定理习题及详解一、选择题1.(2010·山东日照模考)a =⎠⎛02x d x ,b =⎠⎛02e x d x ,c =⎠⎛02sin x d x ,则a 、b 、c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b2.(2010·山东理,7)由曲线y =x 2,y =x 3围成的封闭图形面积为( )A.112 B.14C.13D.712(2010·湖南师大附中)设点P 在曲线y =x 2上从原点到A (2,4)移动,如果把由直线OP ,直线y =x 2及直线x =2所围成的面积分别记作S 1,S 2.如图所示,当S 1=S 2时,点P 的坐标是( )A.⎝⎛⎭⎫43,169B.⎝⎛⎭⎫45,169 C.⎝⎛⎭⎫43,157D.⎝⎛⎭⎫45,1373.由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形的面积为( ) A .4B.43C.185D .64.(2010·湖南省考试院调研)⎠⎛1-1(sin x +1)d x 的值为( )A .0B .2C .2+2cos1D .2-2cos15.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( ) A .2π B .3π C.3π2D .π6.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值7.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=⎠⎛1x 1td t ,若f (x )<a 3,则x 的取值范围是( )A.⎝⎛⎭⎫36,+∞ B .(0,e 21) C .(e -11,e )D .(0,e 11)8.(2010·福建厦门一中)如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π49.(2010·吉林质检)函数f (x )=⎩⎪⎨⎪⎧x +2(-2≤x <0)2cos x (0≤x ≤π2)的图象与x 轴所围成的图形面积S 为( )A.32B .1C .4D.1210.(2010·沈阳二十中)设函数f (x )=x -[x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.又函数g (x )=-x3,f (x )在区间(0,2)上零点的个数记为m ,f (x )与g (x )的图象交点的个数记为n ,则⎠⎛mn g (x )d x 的值是( )A .-52B .-43C .-54D .-7611.(2010·江苏盐城调研)甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c (b 、c 可以相等),若关于x 的方程x 2+2bx +c =0有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为( )A.13B.23C.12D.3412.(2010·吉林省调研)已知正方形四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),曲线y =x 2(x ≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是( )A.12B.14C.13D.25二、填空题13.(2010·芜湖十二中)已知函数f (x )=3x 2+2x +1,若⎠⎛1-1f (x )d x =2f (a )成立,则a =________.14.已知a =∫π20(sin x +cos x )d x ,则二项式(a x -1x )6的展开式中含x 2项的系数是________.15.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.16.(2010·安徽合肥质检)抛物线y 2=ax (a >0)与直线x =1围成的封闭图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,则l 的方程为______.17.(2010·福建福州市)已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为________.三、解答题18.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S 1+S 2最小.。