实验一、三组分液-液体系相图的绘制

合集下载

实验2 三组分液—液相图的绘制

实验2 三组分液—液相图的绘制

实验2 三组分液—液相图的绘制实验目的1熟悉相律,掌握由三角形坐标法表示的三组分系统相图。

2 用溶解度法作出具有一对共轭溶液的正戊醇—醋酸—水系统的相图。

基本原理三组分系统组分数K=3, 当系统处于恒温恒压条件时,根据相律, 系统的条件自由度为:φ-=*3f式中φ为系统的相数。

系统最大条件自由度为213max =-=*f , 因此,浓度变量最多只有两个, 可用平面图表示系统的状态和组成间的关系, 称三组分相图。

通常用等边三角形坐标表示,如图1所示。

等边三角形顶点分别表示纯物质A 、B 、C, AB 、BC 、CA 三条边分别表示A 和B 、B 和C 、C 和A 所组成的二系统组成, 三角形内任何一点都表示三族分系统的组成。

将三角形的每一边分为100等份, 通过三角形内任何一点O 引平行各边直线, 根据几何原理,a+b+c=AB=BC=CA=100%, 因此O 点组成可用a 、b 、c 来表示。

即O 点表示的三个组成的百分组成为B%=b, C%=c, A%=a 。

如果已知三组分中任两个百分组成,只须作两条平行线,其交点就是被测系统的组成点。

在正戊醇—醋酸—水三组分系统中, 正戊醇和水几乎完全不互溶的,而醋酸和正戊醇及醋酸和水都是互溶的, 在正戊醇和水系统中加入醋酸则可促使正戊醇和水的互溶。

由于醋酸在正戊醇层和水层中非等量分配,因此,代表两层浓度的a 、b 点的连线并不一定与底边平行(如图2) 。

设加入的醋酸后系统总组成为c, 平衡共存的两相叫共轭溶液,其组成由通过c 的连线上的a 、b 两点表示 。

图中曲线以下区为两相共存区,其余部分为单相区。

图1 图2 图3 现有一个正戊醇和水的二组分系统,其组成为k 。

于其中逐渐加入醋酸,则系统总组成沿kB 变化(正戊醇和水比例保持不变),在曲线以下区域内则存在互不混溶的两共轭相,将溶液振荡时则出现混浊状态。

继续滴加醋酸直到曲线上的d 点, 系统将由两相区进入单相区,液体将由混浊转为清澈, 继续加醋酸至e 点,液体仍为清澈的单相。

绘制正己烷-乙醇-水的三组分液系相图

绘制正己烷-乙醇-水的三组分液系相图

绘制正己烷-乙醇-水的三组分液系相图孟晓燕;胡小燕【摘要】The n-hexane-alcohol-water ternary liquid phase diagram was obtained through the solubility curves of the ternary determined by cloud-piont-titration method.It showed that at room temperature 10.0 ℃, in then-hexane-al-cohol-water ternary liquid phase diagram, at the isothermal consolute D point, the mass fraction of alcohol and n-hex-ane was 73.0% and 14.1%, respectively.Two conjugate ternary solutions were formed inthe binodal solubility curve BDC, and at the system point O, the mass ratio of the two conjugate solutions was mG: mH=|OH|:|OG|.%采用浊点滴定法测定各组分的溶解度曲线,绘制出了正己烷-乙醇-水的三组分液系相图.结果表明,在室温为10.0℃时,正己烷-乙醇-水的三组分液系相图中,等温会溶点D点处,乙醇、正己烷的质量分数分别为73.0%、14.1%;双结点溶解度曲线BDC内,形成了两个共轭的三组分溶液;物系点 O 时,两共轭溶液数量的比值为mG:mH=|OH|:|OG|.【期刊名称】《上饶师范学院学报》【年(卷),期】2016(036)006【总页数】4页(P74-77)【关键词】浊点滴定法;溶解度曲线;正己烷-乙醇-水;三组分液系相图【作者】孟晓燕;胡小燕【作者单位】上饶师范学院化学化工学院,江西上饶 334001;安远县塘村学校,江西赣州 342113【正文语种】中文【中图分类】O625.61在油脂工业中,溶剂浸提是最常用的有效提取油脂的过程。

三相图的绘制(氯化钾、盐酸、水)

三相图的绘制(氯化钾、盐酸、水)

Ⅰ、目的要求1.掌握用三角坐标表示三组分相图的方法;2.能正确利用溶解度方法绘制KCl-HCl-H2O三组分系统的相图;3.了解湿固相法的原理,学会确定溶液中纯固相组成点的方法。

Ⅱ、基本原理为了绘制相图就需要通过实验获得平衡时各相间的组成及二相的连接线,即先使体系达到平衡,然后把各相分离,再用化学分析法或物理方法测定达成平衡时各相的组成。

但体系达到平衡的时间,可以相差很大。

对于互溶的液体,一般平衡达到的时间很快;对于溶解度较大,但不生成化合物的水盐体系,也容易达到平衡。

对于一些难溶的盐,则需要相当长的时间,如几个昼夜。

由于结晶过程往往要比溶解过程快得多,所以通常把样品置于较高的温度下,使其较多溶解,然后将其移至温度较低的恒温槽中,使之结晶,加速达到平衡。

另外,摇动、搅拌、加大相界面也能加快各相间的扩散速度,加速达到平衡。

由于在不同温度时的溶解度不同,所以系统所处的温度应该保持不变。

湿固相法的基本原理:在等边三角形相图中凡带有饱和溶液的固相组成点,必定处于饱和溶液组成点和纯固相点的连结线上,测定一组饱和溶液和湿固相(饱和溶液所对应的固相)的组成,它们的连结延长线将交于一点,即纯固相组成点。

本实验是测定在一定温度和压力下,KCl-HCl-H2O三组分体系中各组分的质量百分组成,从而绘制出三组分相图(体系中KCl处于饱和状态,溶解的KCl与KCl固体处于平衡状态)。

由KCl、HCl、H2O组成的三组分体系,在HCl的含量不太高时,HCl完全溶于水而成盐酸溶液,与KCl有共同的负离子Cl-。

所以当饱和的KCl水溶液中加入盐酸时,由于同离子效应使KCl的溶解度降低。

本实验即是研究在不同浓度的盐酸溶液中KCl的溶解度,通过此实验熟悉盐水体系相图的构筑方法和一般性质。

为了分析平衡体系各相的成分,可以采取各相分离方法。

如对于液体可以用分液漏斗来分离。

但是对于固相,分离起来比较困难。

因为固体上总会带有一些母液,很难分离干净,而且有些固相极易风化潮解,不能离开母液而稳定存在。

2017级化学工程物理化学实验资料-三液系(三氯甲烷~醋酸~水)相图绘制---滴定法

2017级化学工程物理化学实验资料-三液系(三氯甲烷~醋酸~水)相图绘制---滴定法

实验项目一.实验名称三液系(三氯甲烷~醋酸~水)相图绘制二.实验目的(1)熟悉相律和三角形坐标表示三组分相图的方法。

(2)用溶解度法绘制具有一对共轭溶液的三组分相图。

三.实验原理在萃取时,具有一对共轭溶液的三组分相图对确定合理的萃取条件极为重要。

在定温定压下,三组分体系的状态和组分之间的关系通常可用等边三角形坐标表示,如图1所示:图1 图2等边三角形三顶点分别表示三个纯物质A,B,C。

AB,BC,CA,三边表示A和B,B和C,C和A所组成的二组分体系的组成。

三角形内任一点则表示三组分体系的组成。

如点P的组成为: A%=Cb B%=Ac C%=Ba 具有一对共轭溶液的三组分体系的相图如图2所示。

该三液系中,A和B,及A和C完全互溶,而B和C部分互溶。

曲线DEFHIJKL为溶解度曲线。

EI和DJ是连接线。

溶解度曲线外为单相区,曲线外为两相区。

物系点落在两相区内,即分为两相。

图3绘制溶解度曲线的方法有许多种,本实验采用的方法是:将将完全互溶的两组分(如氯仿和醋酸)按照一定的比例配制成均相溶液(图中N 点),再向清亮溶液中滴加另一组分(如水),则系统点沿BN线移动,到K点时系统由清变浑。

再往体系里加入醋酸,系统点则沿AK上升至N’点而变清亮。

再加入水,系统点又沿BN’由N’点移至J点而再次变浑,再滴加醋酸使之变清……如此往复,最后连接K、J、I……即可得到互溶度曲线,如图3所示。

四.仪器与药品滴定管(50ml,酸式)1支;移液管(2ml,胖度)4支;滴定管(50ml,碱式)1支;(5ml,刻度)2支;有塞锥形瓶(100ml)2只;(10ml ,刻度)1支;有塞锥形瓶(25ml)4只;分液漏斗(60ml)2只。

氯仿(AR),冰醋酸(AR),0.5mol/L标准NaOH溶液。

五.实验步骤(1)在洁净的酸式滴定管内装水,移取6ml氯仿及1ml醋酸于干燥洁净的100ml磨口锥形瓶中,然后慢慢滴入水,且不停地振摇,至溶液由。

[新版]三相图的绘制(氯化钾、盐酸、水)

[新版]三相图的绘制(氯化钾、盐酸、水)

基础化学实验实验 三相图的绘制——O H HCl KCl 2--体系Ⅰ、目的要求1.掌握用三角坐标表示三组分相图的方法;2.能正确利用溶解度方法绘制KCl-HCl-H2O三组分系统的相图;3.了解湿固相法的原理,学会确定溶液中纯固相组成点的方法。

Ⅱ、基本原理为了绘制相图就需要通过实验获得平衡时各相间的组成及二相的连接线,即先使体系达到平衡,然后把各相分离,再用化学分析法或物理方法测定达成平衡时各相的组成。

但体系达到平衡的时间,可以相差很大。

对于互溶的液体,一般平衡达到的时间很快;对于溶解度较大,但不生成化合物的水盐体系,也容易达到平衡。

对于一些难溶的盐,则需要相当长的时间,如几个昼夜。

由于结晶过程往往要比溶解过程快得多,所以通常把样品置于较高的温度下,使其较多溶解,然后将其移至温度较低的恒温槽中,使之结晶,加速达到平衡。

另外,摇动、搅拌、加大相界面也能加快各相间的扩散速度,加速达到平衡。

由于在不同温度时的溶解度不同,所以系统所处的温度应该保持不变。

湿固相法的基本原理:在等边三角形相图中凡带有饱和溶液的固相组成点,必定处于饱和溶液组成点和纯固相点的连结线上,测定一组饱和溶液和湿固相(饱和溶液所对应的固相)的组成,它们的连结延长线将交于一点,即纯固相组成点。

本实验是测定在一定温度和压力下,KCl-HCl-H2O三组分体系中各组分的质量百分组成,从而绘制出三组分相图(体系中KCl处于饱和状态,溶解的KCl与KCl固体处于平衡状态)。

由KCl、HCl、H2O组成的三组分体系,在HCl的含量不太高时,HCl完全溶于水而成盐酸溶液,与KCl有共同的负离子Cl-。

所以当饱和的KCl水溶液中加入盐酸时,由于同离子效应使KCl的溶解度降低。

本实验即是研究在不同浓度的盐酸溶液中KCl的溶解度,通过此实验熟悉盐水体系相图的构筑方法和一般性质。

为了分析平衡体系各相的成分,可以采取各相分离方法。

如对于液体可以用分液漏斗来分离。

三液系相图绘制

三液系相图绘制

三液系(三氯甲烷~醋酸~水)相图的绘制薛念华一.实验目的:1.熟悉相律和用三角形坐标表示三组分相图的方法。

2.用溶解度法绘制具有一对共轭溶液的三组分相图。

二.实验原理:在定温定压下,三组分体系的状态和组成之间的关系通常可用等边三角形坐标,如下图所示。

等边三角形三顶点分别表示三个纯物A、B、C。

AB、BC、CA三边分别表示A和B、B和C、C和A所组成的二组分体系的组成。

三角形内任一点则表示三组分体系的组成。

如O点的组成为A%=Cc’,B%=Aa’,C%=Bb’。

具有一对共轭溶液的三组分体系相图,在该三液系中,A和B、A和C完全互溶,而B和C只能有限度的互溶,B和C的浓度在Ba和Cd之间可以完全互溶,介于ad 之间体系分为两层,一层是B在C中的饱和溶液(d点),另一层是C在B中的饱和溶液(a点),这对溶液称为共轭溶液。

曲线abd为溶解度曲线。

曲线外是单相区,曲线内是二相区。

物系点落在两相区内即分成二相,如O点分成组成为E和F的二相,EF 线称为连结线。

绘制溶解度曲线的方法较多。

本实验是先在完全互溶的两个组分(如A和C)以一定的比例混合所成的均相溶液(如图II上的N点)中滴加入组分B,物系点则沿NB 线移动,直至溶液变浑,即为L点,然后加入A,物系点沿LA上升至N’点而变清。

如再滴加B,则物系点又沿N’B移动,当移至L’点时溶液再次变浑。

再滴加A使之变清……。

如此重复,最后连接L,L’,L’’……,即可绘出溶解度曲线。

三.仪器与药品:滴定管(50mL,酸式)×1,滴定管(50mL,碱式)×1,有塞锥形瓶(100mL)×2,有塞锥形瓶(25mL)×4,锥形瓶(100mL)×2,移液管(2mL,胖肚)×4,移液管(5mL,刻度)×2,移液管(10mL,刻度)×1,分液漏斗(60mL)×2,漏斗架×1,氯仿(分析纯),冰醋酸(分析纯),0.5mol/L标准NaOH溶液。

三元体系相图的绘制

三元体系相图的绘制

实验五三元体系(H2O-HAC-CHCl3)相图的绘制一.实验目的:1.熟悉相律和利用等边三角形坐标表示三组分相图的方法。

2.用溶解度法绘制具有一对共轭溶液的三组分相图,并绘制连接线。

二、基本原理:根据相律,f=c-φ+2=3+2-φ=5-φ,若指定温度和压力,则f**=3-φ,f**最多为2,可用平面图来表示。

图1 (a)图1(b)图2(1)物系点组成的确定:在定温定压下,三组分体系的状态和组成之间的关系通常可用等边三角形坐标来表示,如图1(a),等边三角形三顶点A、B和C分别表示三个纯物质,AB,BC及CA三边分别表示A和B,B和C以及C和A所组成的二组分组成。

三角形内任一点,则表示三组分的组成。

如O点的组成:A%=Cc’,B%=Aa’,C%=Bb’。

即各物种的组成为过物系点O做各顶点对边的平行线。

又因为各物种总的百分组成为100%,三角形为等边三角形,所以又可以由其中的一条边表示各组分的百分组成,如图1中(b)所示。

当然,给出一定组成的溶液百分比,按照上述表示方法,也应该能找出对应的物系点。

(2)溶解度曲线的绘制对于具有一对共轭溶液的三液系相图,如图2,该三液系相图中A和B,A和C为完全互溶而B和C为部分互溶,曲线abc为溶解度曲线。

曲线上方为单相区,曲线下方为二相区,物系点落在二相区内,即分为二相,如X 点则分成组成为E和F的二相,而EF线称为连接线。

对于溶解度曲线的绘制,本实验是先以完全互溶的两个组分(如A和C),以一定的比例混合所组成的均相溶液,如图2上的N点,滴加入组分B,根据平衡相图的直线规则,物系点则沿着NB移动,直至溶液变混,即为L点。

再加入A,物系点由LA上升至N’点而变清。

再加入B,此时物系点又沿着N’B由N’移动至L’而再次变混,再滴加A使变清……,如此反复,最后连接L,L’,L’’……即可画出溶解度曲线。

(3)连接线的绘制由于连接线是表示在两相区内呈平衡两相的组成(或A在两相中的分配),所以可以在两相区内配制溶液,待平衡后分析每相中的任何一种组成的含量,连接在溶解度曲线上该两含量的组成点而得出。

三液系相图的绘制.

三液系相图的绘制.

实验三氯甲烷—醋酸—水三液系相图的绘制一.实验目的1.掌握用三角坐标表示三组分相图的方法;2.用溶解度法绘制具有一对共轭溶液的三组分相图。

二.实验原理为了绘制相图就需要通过实验获得平衡时各相间的组成及二相的连接线,即先使体系达到平衡,然后把各相分离,再用化学分析法或者物理方法确定达成平衡时各相的组成。

但体系达到平衡的时间,可以相差很大。

对于互溶的液体,一般平衡达到的时间很快;对于溶解度较大但不生成化合物的水盐体系,也容易达到平衡。

对于一些难溶的盐,则需要相当长的时间,如几个昼夜。

由于结晶过程往往要比溶解过程快得多,所以通常把样品置于较高的温度下,使其溶解较多,然后将其移至温度较低的恒温槽中,使之结晶,加速达到平衡,另外,摇动、搅拌、加大相界面也能加快各相间的扩散速度,加速达到平衡。

水和氯仿的相互溶解度很小,而醋酸却与水、氯仿互溶。

在水和氯仿组成的两相混合物中加入醋酸,能增大水和氯仿间的互溶度,醋酸增多,互溶度越大,当加入醋酸到某一数量时,水和氯仿能完全互溶,原来由两相组成的混合体系由混变清。

在温度恒定的情况下,使两相体系变成均匀的混合物所需要的醋酸量,取决于原来混合物中水和氯仿的比例。

同样,把水加到醋酸和氯仿的均相混合物中时,当水达到一定数量,原来的均相体系变成水相和氯仿相的两相混合体系,体系由清变混。

使体系变成两相所需要的水量,取决于醋酸和氯仿的起始成分。

因此利用体系在相变化时的浑浊和清亮现象的出现。

可以判断体系中各组分间互溶度的大小。

一般由清到浊,肉眼比较容易分辨。

所以实验由均相样品中加入第三物质使变成二相的方法,测定两相间的相互溶解度。

当二相共存并达到平衡时,将二相分离,测得二相的成分,然后用直线连接这二点,即得连接线。

用等边三角形的方法表示三元相图。

等边三角形的三个定点各代表纯组分,三角形三条边AB、BC和CA分别代表A和B,B和C,C和A所组成的二组分的组成,而三角形内任意一点表示三组分的组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.由上述直线外推至t = 0,求得1g( t - ),再代入式(11)中计算K值。
3.求出反应的半衰期。
21
实验四、最大气泡压力法测定溶 液表面张力
22
【实验目的】
➢测定不同浓度正丁醇溶液的表面张力,考察吸 附量与浓度的关系。
➢了解表面张力、表面自由能的意义以及与溶液 界面吸附的关系。
➢掌握最大气泡压力法测定表面张力的原理和技 术,由Gibbs公式用图解法求算不同浓度溶液 的界面吸附量。
11
【数据记录与处理】 • 记录室温及大气压。
• 设计数据记录表格,并用lgCA对lgCB作图, 由直线的斜率和截距计算出分配系数K,缔 合度n。
12
【注意事项】 • 实验中所用苯对环境有较大污染,废液应
倒入回收瓶中,统一处理。 【思考题】 • 分配系数的影响因素有哪些?
13
实验三、 旋光法测定蔗糖转化反应 的速率常数
10.00
0.80 10.00
20.00
25.00
6
【注意】
– 使用的三角瓶必须事先干燥。 – 当 Nhomakorabea体由浊变清时,须小心,勿使乙醇过量加入。 – 相变点的判断。
【思考题】
– 当体系总组成在曲线内与曲线外时,相数有何不同? 总组成点通过曲线时发生什么变化?
– 用相律说明当温度、压力恒定时,单相区的自由度是 多少?
三组分体系中浓度独立变量最多只有2个。这样就可用 平面图形来表示体系的状态和组成的关系。
– 通常用等边三角形来表示三组分体系中各组分的组成。 三角形的3个顶点分别代表纯组分A、B和C,三条边AB、 BC、CA分别代表A和B、B和C、C和A所组成的二组分 体系的组成,而三角形内任何一点表示三组分体系的 组成。
10
【实验步骤】 • 取5个洗净的150ml碘量瓶,标明号码,分别加入
约0.6g,0.8g,1.0g,1.2g,1.4g苯甲酸,用量筒 分别加入25ml苯和25ml蒸馏水,盖好塞子,振摇 半小时,使两相充分混合接触。 • 将1号试样转移至分液漏斗中,静置分层。 • 用移液管移取下层(水层)5.00ml,放入100ml三 角瓶中,加入25ml蒸馏水和1滴酚酞指示液,用标 准碱液滴定,记录所用碱液体积。重复测定二次。 • 用移液管移取上层(苯层)2.00ml,放入100ml三 角瓶中,加入25ml蒸馏水和1滴酚酞指示液,用标 准碱液滴定,记录所用碱液体积。重复测定二次。 • 用上述方法依次测定2、3、4、5号试样。
(5)作
c
~c,确定饱和吸附量
,由(7-69)计算
正丁醇分子截面积。
32
【思考题】
➢ 用最大气泡压力法测定溶液的表面张力时,为 什么要读取最大压差?
➢ 那些因素影响表面张力的测定?应当如何减小 或消除这项因素的影响?
100
1, C A
(5)
16
式中
20 D
右上角的“20”表示实验时温度20℃,D是指用钠灯光源D线的波长
(即589nm),
为测得的旋光度[°],1为管长度(dm),CA为浓度
(g/100ml)。
作为反应物的蔗糖是右旋性物质,其比旋光度
20 D
=66.63°;生成物中葡萄也是右旋性物
质,其比旋光度
– 在苯-水-乙醇三组分体系中,苯和水时互不相溶的, 而乙醇和苯及乙醇和水是互溶的,在苯-水体系中加 入乙醇则可促使苯和水互溶。
2
【仪器、试剂】
– 仪器 25ml酸式滴定管1个,1ml移液管2个, 5ml刻度移液管1个,2ml、10ml、20ml、 25ml移液管各1个,250ml三角瓶2个。
– 试剂 纯苯,无水乙醇,蒸馏水。

c
~c图,由直线斜率求
(7-68)
求正丁醇分子截面积
= 1 (7-69)
L
29
【实验步骤】
(1) 测定毛细管常数K.
将蒸馏水装于带支管的毛细管,使毛细管 的端面与液面相切,打开滴液漏斗的活塞, 使水缓慢滴下而降低系统的压力,气泡均匀 逸出,读取U形压力计两臂最大高度差。
(2)测定不同浓度正丁醇溶液的表面张力
3
【实验步骤】
– ⒈互溶度曲线的测定
• ⑴用移液管移取4.00ml苯,放入干燥洁净的250ml三 角烧瓶中,加入0.10ml水,然后用滴定管滴加乙醇, 并不断振荡,当液体由浊变清时,记录加入乙醇的量。 再在上述三角烧瓶中依次分别加入0.25ml、0.50ml、 1.00ml、2.00ml、3.00ml、4.00m水,重复上述操作。
26
将待测液体装于表面张力仪,使毛细管的端面与 液面相切。
打开滴液漏斗的活塞,使水缓慢滴下而降低系统 的压力,毛细管内的液面上受到一个比样品管内的 液面上稍大的压力。
当压力差在毛细管端面上产生的作用稍大于毛细 管口液体的表面张力时,气泡就从毛细管口被压出, 这个最大的压力差可由U型管压力计上读出。
23
【实验原理】
(1)溶液的界面吸附
纯液体和其蒸气组成的体系
体相分子:自由移动不消耗功 g
表面分子:
液体有自动收缩表面
l
而呈球形的趋势。
γ
G A
(J m2 )
T ,P ,nB
比表面自由能(表面张力)
24
溶液: 体系可调节溶质在表面相的浓度来降低 表面自由能。
表面吸附:表面层与体相浓度不相同的现象。
一级反应的速率方程可由下式表示
dc kc dt
积分可得: 1nc=-kt+1nc0
(1)
(2)
当C=
1 2
C时0 ,时间t可用t1/2表示,即为半衰期:
t1/ 2
1n2 K
0.693 K
(3)
15
但蔗糖及其转化产物具有旋光性,而且它们的旋光能力不同, 故可以利用系统在反应进程中旋光度的变化来度量反应的进程。
在一些体系中由于分子的离解或缔合,溶质在不同
溶剂中质点的平均大小不同,如在溶剂A中的质点 比在溶剂B中小一半,则分配定律表述为:
K
CA C1/ 2
B
9
– 为了判断苯甲酸在水中有无缔合现象,假定其
缔合度为n,则分配定律为:
K CA n CB
则 lgK=lgCA-lgCB 如测得一系列的CA、CB,后用lgCA对lgCB作图, 由直线的斜率和截距即可分别计算出分配系数K, 缔合度n。
20 D
=52.5°,但果糖是左旋性物质,基比旋光度
20 D
=-91.9°。由于生成
物中果糖的左旋性比葡萄右旋性大,所以生成物呈现在左旋性质。因此随着反应的 进行,系统的右旋角不断减小,反应至某一瞬间,系统的旋光度可恰好等于零,而
后就变成左旋,直至蔗糖完全转化,这时左旋角达到最大值
设系统最初的旋光度为:
0 反C0 (t=0,蔗糖尚未转化)
(6)
系统最终的旋光度为:
生C0 蔗糖已转化完全)
当时间为t时,蔗糖浓度为C,此时旋光度为α,即
(7)
t 反C 生 (C0 C)
由(6)、(7)和(8)联立可解得:
C0
0 反 生
0
(8) (9)
17
C0
0 反 生
t
(10)
将(9)、(10)代入(2)式即得
至终点均匀一相时,各组分的体积百分比。 • ⑶把计算结果在三角坐标中标出,并作出一平滑曲
线,用虚线外延到三角坐标中的2个顶点。
5
表1 三组分液-液体系的相图测绘
苯 加水量 滴加乙醇
百分数(%)
(ml) (ml) (ml) 总体积


0.1
0.25
0.5
4.00 1.00
2.00
3.00
4.00
10.00
测量物质旋光度所用的仪器称为旋光仪。溶液的旋光度与溶液 中可含旋光物质的旋光能力、溶剂性质,样品管长度及温度等 均有关系。当其它条件均固定时,旋光度
与反应物浓度c呈线性关系,即
C
(4)
式中比例常数β与物质旋光能力、样品管长度、温度等有关。
物质的旋光能力用比旋光度来度量、比旋光度用下式表示:
20 D
2.反应中旋光系统t 的测定
移取25ml蔗糖溶液于干净的锥形瓶中,再移取25ml、3mol·dm-3HC1往蔗糖溶液中注 入,当HC1液流出一半时立即记时(作为起始时间),全加入后将其混合均匀,迅速 用反应液荡洗旋光管两次,然后将反应液注满旋光管,盖上玻璃片,注意匆使管存有 气泡,旋紧帽后放置在旋光计中测定旋光系统t。此后每隔5分钟测一次t,测出两个 负值为止。
27
毛细管端口形成的半球形气泡承受的最大压力差
p gh 2
r
U形示压计两端汞柱
毛细管曲率半径
的高度差
若用同一支毛细管和压力计,在相同温度下 测定两种液体的表面张力,有
1 h1 0 h0
1
h1 h0
0
K h1
毛细管常数
28
(3)求正丁醇的分子截面积
饱和吸附量
1
kc kc
1 c 1
k
– 使用三角瓶不事先干燥行吗?为什么? – 可否用95%乙醇代替无水乙醇?
7
实验二、 分配系数的测定
【目的要求】
– 掌握分配定律及其应用。 – 测定苯甲酸在苯和水中的分配系数,并判断其
在水中有无缔合现象。 – 了解分配系数的测定方法。
8
• 【原理】
– 在一定温度和压力下,将一溶质溶解在两种不互溶的 溶剂中,则溶质往往同时分配地溶入这两种溶剂中。 如果溶质在两种溶剂中分子大小相同,且浓度不大, 那么达到平衡时,溶质在两种溶剂中的浓度比值等于 常数,这就是分配定律: K CA CB 式中CA、CB为溶质在A、B溶剂中的浓度,K为分 配系数。
相关文档
最新文档