平方差公式
平方和与平方差公式

平方和与平方差公式
平方和公式是(a+b)² = a² + 2ab + b²,其中a和b是任意实数。
平方差公式是(a-b)² = a² 2ab + b²,其中a和b是任意实数。
这两个公式在代数中非常常见,可以用来展开和简化多项式,或者用来证明数学定理。
它们也有许多应用,例如在求解方程、因式分解和几何问题中。
从代数的角度来看,这两个公式是多项式展开的基本工具,可以帮助我们进行多项式的运算和简化。
从几何的角度来看,这两个公式可以帮助我们理解平方的几何意义,例如(a+b)²表示一个边长为a的正方形和一个边长为b的正方形组成的总面积,而(a-b)²表示一个边长为a的正方形减去一个边长为b的正方形后的剩余面积。
总之,平方和与平方差公式在数学中具有重要的地位,它们不
仅是代数运算的基础,也能够帮助我们更好地理解几何概念。
希望这个回答能够满足你的要求。
完全平方公式与平方差公式

完全平方公式与平方差公式
1. 完全平方公式:
完全平方公式是一个用于计算平方数的公式,它的形式为:
(a + b)²= a²+ 2ab + b²
其中,a和b是任意实数。
这个公式的意思是,如果你想求出一个由两个实数a和b相加的数的平方,那么你可以使用这个公式。
首先,将a²和b²分别计算出来,然后将它们相加。
接着,你需要计算2ab,这个2ab的意思是a和b的乘积的两倍。
最后,将这些结果相加就得到了(a + b)²的值。
2. 平方差公式:
平方差公式是一个用于计算两个实数之差的平方的公式,它的形式为:
(a - b)²= a²- 2ab + b²
其中,a和b是任意实数。
这个公式的意思是,如果你想求出两个实数a和b之间的差的平方,那么你可以使用这个公式。
首先,将a²和b²分别计算出来,然后将它们相减。
接着,你需要计算-2ab,这个-2ab的意思是a和b的乘积的两倍的相反数。
最后,将这些结果相加就得到了(a - b)²的值。
这两个公式在数学中非常有用,它们可以帮助我们在计算中快速求出平方数和差的平方。
了解它们的含义和用法可以帮助我们更好地理解数学的基本概念。
平方差公式

平方差公式(a+b)^2 = a^2 + b^2 + 2ab这个公式在代数中非常重要,不仅可以用于计算平方差,还可以推导出其他重要的数学公式。
现在我们来详细介绍一下这个公式。
首先,我们来看一下这个公式的由来。
首先,我们考虑两个数a和b的平方和,即a^2+b^2、我们可以将这个平方和展开,得到以下形式:a^2+b^2=a*a+b*b接下来,我们来考虑如何将这个平方和表示成平方差的形式。
我们可以利用二项式的展开来实现这个目标。
我们知道,任何一个二元一次多项式可以展开为(a+b)^2的形式,也可以展开为(a-b)^2的形式。
具体展开的方法是利用二项式定理,将(a+b)^2和(a-b)^2展开。
首先,我们来展开(a+b)^2这个二元一次多项式:(a+b)^2=(a+b)*(a+b)根据二项式定理,该式可以展开为:(a+b)^2 = a^2 + ab + ba + b^2再进行一次简化,得到:(a+b)^2 = a^2 + 2ab + b^2接下来,我们来展开(a-b)^2这个二元一次多项式:(a-b)^2=(a-b)*(a-b)根据二项式定理,该式可以展开为:(a-b)^2 = a^2 - ab - ba + b^2再进行一次简化,得到:(a-b)^2 = a^2 - 2ab + b^2通过比较展开后的式子,我们可以发现:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^2可以看出,这两个展开式的形式非常相似,只是正负号不同。
这就表明,两个数的平方差可以表示为一个平方和与一个平方差的形式。
根据上述的推导结果,我们可以得出这样一个结论:a^2-b^2=(a+b)*(a-b)这个等式就是平方差公式的具体形式。
利用这个公式,我们可以快速计算任意两个数的平方差。
例如,我们要计算9^2-5^2的结果。
根据平方差公式,可以得到:9^2-5^2=(9+5)*(9-5)=14*4=56因此,9^2-5^2的结果为56除了计算平方差,平方差公式还可以推导出其他一些重要的数学公式。
平方差公式和完全平方公式因式分解

平方差公式和完全平方公式因式分解平方差公式和完全平方公式是数学中常用的因式分解方法,它们在解题过程中起到了十分重要的作用。
本文将为大家详细介绍这两个公式,帮助大家理解其原理和应用。
首先,我们来了解一下平方差公式。
平方差公式的表达形式为a² - b² = (a + b)(a - b)。
简言之,它告诉我们两个平方数相减的结果可以因式分解为两个因数的乘积:一个因数是两个平方数的和,另一个因数是两个平方数的差。
这个公式可以极大地简化计算,特别是在解方程或因式分解的题目中,往往能起到事半功倍的效果。
那么,我们来看一个应用平方差公式的例子。
假设我们需要将x² - 4x + 4进行因式分解。
我们可以使用平方差公式进行分解,将x² - 4x + 4看作是(a - b)²的形式,其中a为x,b为2。
根据平方差公式,我们可以得到(x - 2)²,也就是x² - 4x + 4的因式分解形式。
通过应用平方差公式,我们可以将一个多项式快速分解为一对平方数的差的乘积。
接下来,我们将介绍完全平方公式。
完全平方公式的表达形式为a² + 2ab + b² = (a + b)²。
它告诉我们一个二次多项式可以因式分解为两个相同的因数的平方。
与平方差公式类似,完全平方公式也可以在解题过程中提供方便。
我们来看一个应用完全平方公式的例子。
假设我们需要将x² + 6x + 9进行因式分解。
根据完全平方公式,我们可以将x² + 6x + 9看作是(a + b)²的形式,其中a为x,b为3。
带入完全平方公式,我们可以得到(x + 3)²,也就是x² + 6x + 9的因式分解形式。
通过应用完全平方公式,我们可以迅速将二次多项式转化为平方的形式。
在实际应用中,平方差公式和完全平方公式可以帮助我们进行因式分解,并简化问题的求解过程。
初中数学公式:平方差公式

初中数学公式:平方差公式表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式公式运用可用于某些分母含有根号的分式:1/(3-4倍根号2)化简:1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23[解方程]x^2-y^2=1991[思路分析]利用平方差公式求解[解题过程]x^2-y^2=1991(x+y)(x-y)=1991因为1991可以分成1×1991,11×181所以如果x+y=1991,x-y=1,解得x=996,y=995如果x+y=181,x-y=11,x=96,y=85同时也可以是负数所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85有时应注意加减的过程。
常见错误平方差公式中常见错误有:①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)②混淆公式;③运算结果中符号错误;④变式应用难以掌握。
三角平方差公式三角函数公式中,有一组公式被称为三角平方差公式:(sinA)^2-(sinB)^2=(cosB)^2-(cosA)^2=sin(A+B)sin(A-B)(cosA)^2-(sinB)^2=(cosB)^2-(sinA)^2=cos(A+B)sin(A-B)这组公式是化积公式的一种,由于酷似平方差公式而得名,主要用于解三角形。
注意事项1、公式的左边是个两项式的积,有一项是完全相同的。
2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
3、公式中的a.b可以是具体的数,也可以是单项式或多项式。
例题一,利用公式计算(1)103×97解:(100+3)×(100-3)=(100)^2-(3)^2=100×100-3×3=10000-9=9991(2)(5+6x)(5-6x) 解:5^2-(6x)^2 =25-36x^2。
平方差公式与完全平方公式

平方差公式与完全平方公式平方差公式:22))((b a b a b a -=-+说明:相乘的两个二项式中,a 表示的是完全相同的项,+b 和-b 表示的是互为相反数的两项。
所以说,两个二项式相乘能不能用平方差公式,关键看是否存在两项完全相同的项,两项互为相反数的项。
熟悉公式:例:(3a+2b)(3a-2b)中 3a 是公式中的a , 2b 是公式中的b(a 2+b 2)(a 2-b 2)中 a 2 是公式中的a , b 2是公式中的b(2a+b-c)(2a+b+c)中 2a+b 是公式中的a , c 是公式中的b 把下列空补充完整:(5+6x)(5-6x)中 是公式中的a , 是公式中的b (5+6x)(-5+6x)中 是公式中的a , 是公式中的b (x-2y)(x+2y)中 是公式中的a , 是公式中的b (-m+n)(-m-n)中 是公式中的a , 是公式中的b(a+b+c )(a+b-c)中 是公式中的a , 是公式中的b (a-b+c )(a-b-c)中 是公式中的a , 是公式中的b 例1:计算下列各题(a+3)(a-3)=a 2-32=a 2-9 (2x+21)(2x-21)=(2x)2-(21)2=4x 2-161仿练:( 2a+3b)(2a-3b)= (1+2c)(1-2c)= (-x+2)(-x-2)= (a+2b)(a-2b)= 例2:计算下列各题:1998×2002 =(2000-2)(2000+2)=20002-22=4000000-4=3999996 仿练: 1.01×0.99 = (20-91)×(19-98)= 例3:计算下列各题(a+b)(a-b)(a 2+b 2)=(a 2-b 2)(a 2+b 2)=(a 2)2-(b 2)2=a 4-b 4仿练:(a+2)(a-2)(a 2+4)= (x-12)(x 2+ 14)(x+ 12)= 例4:计算下列各题(-2x-y )(2x-y)=(-y-2x)(-y+2x)=(-y)2-(2x)2=y 2-4x 2 (4a-1)(-4a-1)=(-1+4a)(-1-4a)=(-1)2-(4a)2=1-16a 2仿练:(y-x)(-x-y)= (-2x+y)(2x+y)= (b+2a)(2a-b)= (a+b)(-b+a)= 例5;计算下列各题(a+2b+c )(a+2b-c)=[(a+2b )+c][(a+2b)-c]=(a+2b)2-c 2=a 2+4ab+b 2-c 2仿练:(a+b-3)(a-b+3)= (m-n+p)(m-n-p)=练习:1、(1)(1)x x +-2、(21)(21)x x +-3、(5)(5)x y x y +-4、(32)(32)x x +-5、(2)(2)b a a b +-6、(2)(2)x y x y -+--7、()()a b b a +-+8、()()a b a b ---9、(32)(32)a b a b +-10、5252()()a b a b-+11、(25)(25)a a +-12、(1)(1)m m ---13、11()()22a b a b ---14、(2)(2)ab ab ---15、10298⨯16、97103⨯17、4753⨯18、22()()()a b a b a b +-+19、(32)(32)a b a b +-20、(711)(117)m n n m ---21、(2)(2)y x x y ---22、(4)(4)a a +-+23、(25)(25)a a -+24、(3)(3)a b a b +-25、(2)(2)x y x y +-完全平方公式完全平方公式:2222)(b ab a b a +±=± 注意不要漏掉2ab 项(a 为首,b 为尾)口诀:首平方,尾平方,首尾之积二倍加减放中央(4m+n )2中 4m 是公式中的a , n 是公式中的b(-a-b)2中 -a 是公式中的a , b 是公式中的b(a+b-c)2中 a 是公式中的a , b-c 是公式中的b 或者(a+b-c)2中 a+b 是公式中的a , c 是公式中的b 仿练: (y-21)2中 是公式中的a , 是公式中的b (b-a )2中 是公式中的a , 是公式中的b(2a-b+c)2中 是公式中的a , 是公式中的b 熟悉公式变形1、a 2+b 2=(a+b)2 -2ab =(a-b)2+2ab2、(a-b )2=(a+b)2 -4ab ; (a+b)2=(a-b)2+4ab3、(a+b)2 +(a-b )2= 2a 2+2b 24、(a+b)2 --(a-b )2= 4ab 例1:计算下列各题2)(y x +=x 2+2xy+y 2 2)23(y x - =(3x)2-2(3x)(2y)+(2y)2=9x 2-12xy+4y 2仿练:2)21(b a += 2)12(--t = 2)313(c ab +-=2)2332(y x += 2)121(-x = (0.02x+0.1y)2=例2:利用完全平方公式计算: 1022=(100+2)2=1002+2×100+221972=(200-3)2=2002-2×200×3+32仿练:982= 2032=练习:计算 1、2(1)p + 2、2(1)p - 3、2()a b - 4、2()a b + 5、2(2)m + 6、2(2)m -7、2(4)m n +8、21()2y -9、2(3)x y -10、2(2)a b --11、21()a a+12、2(52)x y --13、2(2)a b -14、21()2x y -15、2(23)a b +16、2(32)x y -17、2(2)m n --18、2(22)a c +19、2(23)a -+20、21(3)3x y +21、2(32)a b +22、222()a b -+23、22(23)x y --24、2(1)xy -25、222(1)x y -添括号法则如果括号前面是正号,括到括号里的各项都不变符号;•如果括号前面是负号,括到括号里的各项都改变符号. 也是:遇“加”不变,遇“减”都变.例:)(c b a c b a ++=++ )(c b a c b a +-=--练习运用法则:(1)a+b-c=a+( ) (2)a-b+c=a-( ) (3)a-b-c=a-( ) (4)a+b+c=a-( ) 2.判断下列运算是否正确. (1)2a-b-2c =2a-(b-2c) (2)m-3n+2a-b=m+(3n+2a-b ) (3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b )-(4c+5)在公式里运用法则例:计算:(1)(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)]=x 2-(2y-3)2=x 2-(4y 2-12y+9)=x 2-4y 2+12y-9 (2)(a +b +c )2=[(a+b)+c]2=(a+b)2+2(a+b)c+c 2=a 2+2ab+b 2+2ac+2bc+c 2(3)(x +5)2-(x-2)(x-3)=x 2+10x+25-(x 2-5x+6)=x 2+10x+25-x 2+5x-6=15x+19练习:计算:(x +3)2-x 2 2)2(c b a +- 22)()(c b a c b a ---++。
平方差公式与完全平方差公式

平方差公式与完整平方公式平方差公式: (ab)(a b)a 2b 2说明:相乘的两个二项式中, a 表示的是完整同样的项, +b 和-b 表示的是互为相反数的两项。
因此说,两个二项式相乘能不可以用平方差公式,重点看能否存在两项完整相同的项,两项互为相反数的项。
熟习公式:(5+6x)(5-6x)中 是公式中的 a , 是公式中的 b(5+6x)(-5+6x)中 是公式中的 a , 是公式中的 b(x-2y)(x+2y)中 是公式中的 a , 是公式中的 b(-m+n)(-m-n)中是公式中的 a ,是公式中的 b(a+b+c )(a+b-c)中 是公式中的 a , 是公式中的 b(a-b+c )(a-b-c)中是公式中的 a ,是公式中的 b将以下各式转变成平方差形式(1) 36-x2(2)a 2- 1b 2(3) x 2-16y 2(4) x 2y 29-z2(5) (x+2)2-9(6)(x+a)2-(y+b)2(7) 25(a+b)2-4(a -b)2例 1:计算以下各题1.( a+3)(a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)5. (a+2b)(a-2b)6. (2x+1 )(2x-1 )22例 2:计算以下各题:1、 1998 × 20022、×3.(20- 1)×(19- 8)99例 3::计算以下各题2 221211 3、(x-)(x+ )1、(a+b )(a-b)(a +b )2、(a+2)(a-2)(a +4)2 )(x +42例 4:计算以下各题1、(-2x-y )(2x-y)2、(y-x)(-x-y) 3.(-2x+y)(2x+y)4.(4a-1)(-4a-1)5.(b+2a)(2a-b)6.(a+b)(-b+a)例 5;计算以下各题1.( a+2b+c )(a+2b-c)2.(a+b-3)(a-b+3)3.(m-n+p)(m-n-p)完整平方公式完整平方公式:(a b) 2a22ab b2熟习公式注意不要遗漏2ab 项1、a2+b2=(a+b)2=(a-b)22、(a-b)2=(a+b)2; (a+b)2=(a-b)23、(a+b)2 +(a-b)2=4、(a+b)2 --( a-b)2=5.将以下各式转变成完整平方式形式(1)a2-4a+4(2)a2-12ab+ 36b2(3)25x2+10xy+y2 (4)16a4+8a2+1(5) (m+n)2-4(m+n)+4(6)16a4-8a2+1(7)14x 1 49x2例 1:计算以下各题1、(x y)22、(3x 2 y)23、(1a b)24、( 2t 1)2 25、( 3ab 1 c)26、(2x3y)27、(1x 1)28、+23322例 2:利用完整平方公式计算:(1)1022(2)1972(3)982(4)2032例 3:(1)若x24x k ( x 2) 2,求k值。
第14讲平方差公式

第14讲 平方差公式【新知讲解】1.基本公式:平方差公式:(a+b)(a-b)=a 2—b 2平方差公式的结构特征:左边两个二项式的乘积,这两个二项式的两项中,有一项完全相同(绝对值相同,符号相同),而另一项互为相反数(绝对值相同,符号相反) 右边是这两个单项式中这两项的平方差。
这里a,b 可表示一个数、一个单项式或一个多项式。
2.平方差公式的推广:(1)()()2233a b a ab b a b -++=-(2)()()322344a b a a b ab b a b -+++=-(3)()()123221n n n n n n n a b a a b a b ab b a b ------+++++=-3.思想方法:① a 、b 可以是数,可以是某个式子;② 要有整体观念,即把某一个式子看成a 或b ,再用公式;③ 注意倒着用公式;④ 2a ≥0;⑤ 用公式的变形形式。
【探索新知】问题导入:()()22b a b a b a -=-+成立吗? 1.运算推导:2.图形理解:3.平方差公式:()()=-+b a b a A 组 基础知识【例题精讲】例1.利用平方差公式计算:(1)()()x x 6565-+ (2)()()y x y x 22+- (3)()()n m n m --+-例2.计算下列各题:(1)()()20012001-+ (2)()()3232x y x y -+(3)22112222x x ⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭ (4)()()x y z x y z +-++(5)59.860.2⨯ (6)2200620052007-⨯例3.用平方差公式进行计算:(1)204×197 (2)108×112例4.化简求值: ()()1212-++-b a b a 其中598,987a b ==。
例5.计算下列各题:(顺用公式)(1)()()()()()224488a b a b a b a b a b -++++(2)3(22+1)(24+1)(28+1)(162+1)+1 (3)2999例6. 计算下列各题:(逆用公式)①1.2345²+0.7655²+2.469×0.7655 (希望杯)②已知 19221 可以被60至70之间的两个整数整除,这两个整数是多少?B 组 能力提升1.计算:(1)(-65x-0.7y)( 65x-0.7y) (2)(a+2)(a 4+16)(a 2+4)(a-2)(3)(3x m +2y n +4)(3x m +2y n -4) (4)(a+b-c)(a-b+c)-(a-b-c)(a+b+c)(5)(a+b-c-d)(a-b+c+d)2.用平方差公式进行计算:(1)804×796 (2)10007×99933.计算(顺用公式):6(7+1)(72+1)(74+1)(78+1)+1变式训练1:(2211-)(2311-)(2411-)…(2911-)(21011-):4.计算(逆用公式):(x 3+x 2+x+1)(x 3-x 2+x-1)-(x 3+x 2+x+2)(x 3-x 2+x-2)C 组 拓展训练1.1949²-1950²+1951²-1952²+……+1999²-2000²2.求证:1999×2000×2001×2002+1是一个整数的平方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方差公式
例1、利用平方差公式计算
位置变化:(1)()()x x 2525+-+
(2)()()ab x x ab -+
符号变化:(3)()()11--+-x x
(4)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-m n n m 321.01.032
系数变化:(5)()()n m n m 3232-+
(6)⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--b a b a 213213
指数变化:(7)()()222233x y y x ++- (8)()()22225252b a b a --+-
增项变化:(9)()()z y x z y x ++-+-
(10)()()z y x z y x -+++-
增因式变化:(11)()()()
1112+-+x x x (12)⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-2141212x x x
例2. 用简便方法计算
(1)397403⨯ (2)2008200620072⨯-
例3. (1)22222222100999897969521-+-+-++-
(2)()()()()()
131313131316842+++++
例4.(1)如图(1),可以求出阴影部分的面积是_________.(写成两数平方差的形式)
(2).如图(2),若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是___________.(写成多项式乘法的形式)
(3).比较两个图阴影部分的面积,可以得到乘法公式__________.(用式子表达)
例5.已知02,622=-+=-y x y x ,求5--y x 的值.
例6.判断(2+1)(22+1)(24+1)……(22048+1)+1的个位数字是几?
例7.观察下列各式:
根据前面的规律,你能求出
的值吗?
课后练习:
1.用平方差公式计算:
(1)()()
434322---x x (2)()()11-++-y x y x (3)123(2)()33a b a b -+ 2. 用简便方法计算(1)504496⨯ (2)2500049995001-⨯
3.已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。