导数导学案1

合集下载

导数导学案

导数导学案

导数的综合应用学习目标:1、利用导数研究单调性、最值、零点等问题。

2、掌握导数与不等式结合的问题。

3、体会分类讨论思想,数形结合思想,转化与化归思想在解决问题中的应用。

一、课前热身1、已知函数)(3)(3R a ax x x f ∈-=,若直线0=++m y x 对任意的R m ∈都不是曲线)(x f y =的切线,则a 的取值范围为2、设函数x x x f +=3)(,若02πθ<≤时,(cos )(1)0f m f m θ+->恒成立,则实数的取值范围是_ .3、已知关于x 的方程3||3x kx x =+有三个不同的实数解,则实数k 的取值范围是 4、在平面直角坐标系xOy 中,设A 是曲线1C :31(0)y ax a =+>与曲线2C :2252x y +=的一个公共点,若1C 在A 处的切线与2C 在A 处的切线互相垂直,则实数a 的值是二、课堂互动1、数(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)若函数在区间内单调递增,求的取值范围.()(0)kxf x xe k =≠()y f x =(0,(0))f ()f x ()f x (1,1)-k2、(1)()ln (0,)a x f x x x a R x-=->∈. (1)试求f (x )的单调区间;(2)当a >0时,求证:函数f (x )的图像存在唯一零点的充要条件是a =1;(3)求证:不等式111ln 12x x -<-对于(1,2)x ∈恒成立.3、已知函数.32)(2x x e x f x -+=(I )求曲线))1(,1()(f x f y 在点=处的切线方程;(Ⅱ)求证函数)(x f 在区间[0,1]上存在唯一的极值点,并用二分法求函数取得极值时相 应x 的近似值(误差不超过0.2);(参考数据e ≈2.7,e ≈1.6,e 0.3≈1.3) (III )当,1)3(25)(,212恒成立的不等式若关于时+-+≥≥x a x x f x x 试求实数a 的取 值范围。

苏教版高中数学选修(1-1)-3.1《导数》导学案1

苏教版高中数学选修(1-1)-3.1《导数》导学案1

3.1.2瞬时变化率—导数:导数一、学习目标:1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的广阔背景,体会导数的思想及内涵.2.掌握导数的概念二、课前预习1.函数()y f x =在点 经x 0处的导数0'()f x 的几何意义就是曲线()y f x =在点P(x 0,,0'()f x )处的 .2.导数的物理意义是指如果物体运动的规律是s=s(t),那么物体在时刻t 的瞬时速度即为v (t )= .3.设函数()f x 可导,则△x 无限趋近于0时,(1)(1)3f x f x+-无限趋近于 三、课堂探究例1. 已知 ()f x =2x +2.(1)求()f x 在x=1处的导数.(2)求()f x 在x=a 处的导数.例2.过曲线3y x =上一点P 作切线,使该切线与直线153y x =--垂直,求此切线的方程.例3.一动点沿Ox 轴运动,运动规律由2105x t t =+给出,式中t 表示时间(单位:s ),x 表示距离(单位:m ),求在20≤t≤20+△t 的时间段内动点的平均速度,其中①△t=1,②△t=0.1,③△t=0.01.当t=20时,这时的瞬时速度是多少?四、巩固训练1.设()4,f x ax =+若'(1)f =2,则a= .2.函数223y x x =+的导数为3. 若函数()y f x =在点(1,1)x ∈-内的导函数为'()f x ,则正确的是(1).在x=x 0处的导数为0'()f x (2).在x=1处的导数为'(1)f(3).在x=—1处的导数为'(1)f - (4).在x=0处的导数为'(0)f4.若()()f x f x -=对任意实数x 都成立,且00'()(0),'()f x k k f x -=-≠则等于5.已知成本 C 与产量q 的函数关系式为2()34C q q q =+,则当产量q=6时,边际成本 '(6)C 为6.过点P (—1,2),且与曲线2342y x x =-+在点M (1,1)处的切线平行的直线方程是 .7.若300(),'()3,f x x f x x ==则= .8.曲线3y x =在点(a ,a 3)(a ≠0)处的切线与x 轴、直线x=a 所围成的三角形的面积为16,则a= .9.当常数k 为何值时,直线y=x 才能与22y x k =+相切?试求出该切点.10.已知抛物线2y ax bx c =++过点(1,1),且在点(2,—1)处与直线3y x =-相切,求a 、b 、c 的值.五、课堂总结1.导数的几何意义:2.导数的物理意义:3.由定义求导数的步骤六、反思总结。

导数的计算导学案

导数的计算导学案

导数的计算导学案导数是微积分中的一个重要概念,它描述了函数在其中一点的变化速率。

导数的计算方法非常重要,下面将介绍导数的计算导学案。

一、导数的定义根据导数的定义,函数f在点x处的导数可以通过极限的方法得到:f'(x) = lim(h->0) (f(x+h) - f(x))/h二、导数的基本计算方法根据导数的定义,我们可以利用一些基本的规则计算导数:1.常数的导数为0若c为常数,则d(c)/dx = 02.幂函数的导数对于幂函数y = x^n(n为正整数),导数为dy/dx = nx^(n-1)例如,y = x^2,则dy/dx = 2x3.指数函数的导数对于指数函数y = a^x(a>0且a≠1),导数为dy/dx = a^x * ln(a)例如,y = e^x,则dy/dx = e^x * ln(e) = e^x4.对数函数的导数对于对数函数y = log_a(x)(a>0且a≠1),导数为dy/dx =(1/ln(a)) * (1/x)特别地,自然对数函数y = ln(x)的导数为dy/dx = 1/x5.三角函数的导数对于三角函数,有以下导数公式:sin(x)的导数为cos(x)cos(x)的导数为-sin(x)tan(x)的导数为sec^2(x)cot(x)的导数为-csc^2(x)sec(x)的导数为sec(x)tan(x)csc(x)的导数为-csc(x)cot(x)6.反三角函数的导数对于反三角函数,有以下导数公式:arcsin(x)的导数为1/√(1-x^2)arccos(x)的导数为-1/√(1-x^2)arctan(x)的导数为1/(1+x^2)7.速度与加速度若y表示物体的位移,t表示时间,则速度v的导数为dy/dt,加速度a的导数为d^2y/dt^2三、导数的基本运算法则导数具有一些基本的运算法则,例如和差法则、积法则和商法则等,它们可以辅助我们计算复合函数的导数。

导数(1)导学案

导数(1)导学案

课题:导数的概念及几何意义复习【学习目标】 (1)理解导数的几何意义;熟记常见基本初等函数的导数公式和掌握两个函数和、差、积、商的求导法则;(2)会求简单函数的导数.会求函数的切线方程【重点难点】会求简单函数的导数.会求函数的切线方程【使用说明及学法指导】结合课本使用导学案,复习本节课的知识点,重要的公式法则和题型所对应的解题方法规律;先独立做并记录好疑难点,在课堂上针对性的学习。

【知识链接】1、 定义:设函数)(y x f =在区间()b a ,上有定义,),,(0b a x ∈当x ∆无限趋近于0时比值 xx f x x f x y ∆-∆+=∆∆)()(00无限趋近于一个常数A ,则称)(x f 在点0x x =处可导,并称该常数A 为函数)(x f 在点0x x =处的导数,记作)(0x f '。

2、 若)(x f 对于区间()b a ,内的任一点都可导,则)(x f 在各点的导数也随着自变量x 的函数,该函数称为)(x f 的导函数,记作)(x f '。

注意)(x f '与)(0x f '是不同的概念:)(0x f '是一个常数,)(x f '是一个函数;)(0x f '是)(x f '在0x x =处的函数值复习1:导数的几何意义是:曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 问题:导数的物理意义是:复习2:常见函数的导数公式: 幂函数:=')(αx (α为常数) 指数函数:=')(x a (a >0,且1≠a ) 特例:=')(x e 对数函数:=')(log x a (a >0,且1≠a ) 特例:=')(x ln 正弦函数:=')(sin x 余弦函数:=')(cos x 复习3[()()]f x g x '±= [()()]f x g x '=()[]()f xg x '=【预习案】1:根据常见函数的导数公式计算下列导数(1)6y x = (2)y =(3)21y x = (4)y = 2求函数323y x x =-+的导数.3(1)32log y x x =+; (2)n xy x e =; (3)31sin x y x-=4 求下列函数的导数:(1)2log y x =; (2)2x y e =;(3)522354y x x x =-+-; (4)3cos 4sin y x x =-. 5.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )A .(1,0)B .(2,8)C .(1,0)和(1,4)--D .(2,8)和(1,4)--6.函数y =ax 2+1的图象与直线y =x 相切,则a =( )A. 18B. 41C. 21 D. 1 7.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足( )A .()f x =()g xB .()f x -()g x 为常数函数C .()f x =()0g x =D .()f x +()g x 为常数函数8、函数()sin ln f x x x =+的导函数()f x '=9、一物体的运动方程是21s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在3t =时的瞬时速度为_____10、曲线y =x 3-23 x 2-3x +1在x =1处的切线的倾斜角为 11、 如图,函数f (x )的图像是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (f (0))= ;函数f (x )在x =3处的导数f ′(3)= .12、已知曲线x x y ln 3212-=的一条切线的斜率为2,则切点的横坐标为 . 13、曲线x x x f ln )(=在点1=x 处的切线方程为 14、设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a15、曲线x x y +=331在点)34,1(处的切线与坐标轴围成的三角形面积为 16、已知函数)(x f y =的图像在点))1(,1(f 处的切线方程是012=+-y x ,则)1(2)1(f f '+的值是 17、在曲线106323-++=x x x y 的切线中,斜率最小的切线方程为【探究案】例1.下列函数的导数:①2(1)(231)y x x x =++- ②y ③()(cos sin )x f x e x x =⋅+例2. 如果曲线103-+=x x y 的某一切线与直线34+=x y 平行,求切点坐标与切线方程.变题:已知函数f (x )=a ln x x +1+b x,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0. 求a ,b 的值;拓展1已知两曲线ax x y +=3和c bx x y ++=2都经过点P (1,2),且在点P 处有公切线,试求a,b,c 值。

导数全套导学案

导数全套导学案

3.1.1函数的平均变化率命题人 林晓明 审批人 李志远 时间:2015/12/19 期数 51【预习目标】 1.通过实例,领悟由平均变化率到瞬时变化率刻画现实的过程.2.了解导数概念的实际背景,知道瞬时变化率就是导数.3.体会导数的思想及其内涵,并能运用.【预习内容】1.平均变化率的概念是什么?2.Δx ,Δy 的值一定是正值吗?平均变化率一定为正值吗?3.函数在某点处附近的平均变化率是什么?4.观察函数f (x )的图象,平均变化率y x ∆=∆1212)()(x x x f x f --表示什么?5.求函数在某点处附近的平均变化率的步骤什么?6.“Δx →0”的意义是什么?函数f (x )在x 0处的附近的平均变化率与Δx 有关吗?1.函数y =f (x )的自变量x 由x 0改变到x 0+Δx 时,函数值的改变量Δy 为( )A .f (x 0+Δx )B .f (x 0)+ΔxC .f (x 0)·ΔxD .f (x 0+Δx )-f (x 0)2.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy .【疑难解析】 例1 已知函数f (x )=2x 2+3x -5.(1)求当x 1=4,且Δx =1时,函数增量Δy 和平均变化率Δy Δx; (2)求当x 1=4,且Δx =0.1时,函数增量Δy 和平均变化率Δy Δx ;例2.求函数f (x )=3x x -+图象上从点(1,2)A 到点(1,2)B x y +∆+∆的平均变化率.【练习与展示】1.质点运动规律为32+=t s ,则在时间)3,3(t ∆+中相应的平均速度为A.3B.6C.9D.122. 已知函数2()f x x =,分别计算()f x 在[1,3]区间上的平均变化 率 ;()f x 在[1,2]区间上的平均变化率 .3.物体按照s (t )=3t 2+t +4的规律作直线运动,求在4s 附近的平均变化 率 .4.已知函数f (x )=2x+1,g (x )= -2x ,分别计算在区间[-3,-1],[0, 5]上f (x )及g (x )的平均变化率.【总结提升】。

导数的计算导学案

导数的计算导学案

1.2导数的计算导学案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--导数的计算导学案第一课时:几个常用函数的导数一.学习目标:1.学会应用由定义求导数的三个步骤推导四种常见函数y c =、y x =、2y x =、1y x=、y = 2.掌握并能运用这四个公式正确求函数的导数. 二.学习重、难点:五种常见函数y c =、y x =、2y x =、1y x=、y =三.学习过程 (一)创设情景我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数()y f x =,如何求它的导数呢?根据导数的定义,求函数()y f x =的导数,就是求出当x ∆趋近于0的时候,yx∆∆所趋于的那个定值。

(二)获取新知1.函数()y f x c ==的导数 根据导数定义,因为()()0y f x x f x c c x x x∆+∆--===∆∆∆ 所以00limlim 00x x yy ∆→∆→∆'===0y '=表示函数y c =图像上每一点处的切线的斜率都为 .若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 2.函数()y f x x ==的导数 因为()()1y f x x f x x x xx x x∆+∆-+∆-===∆∆∆所以00lim lim 11x x yy x ∆→∆→∆'===∆1y '=表示函数y x =图像上每一点处的切线的斜率都为 .若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动.3.函数2()y f x x ==的导数因为22()()()y f x x f x x x x x x x∆+∆-+∆-==∆∆∆ 2222()2x x x x x x x x+∆+∆-==+∆∆所以00limlim (2)2x x yy x x x x ∆→∆→∆'==+∆=∆2y x '=表示函数2y x =图像(图)上点(,)x y 处的切线的斜率都为 ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .4.函数1()y f x x==的导数 因为11()()y f x x f x x x x x x x-∆+∆-+∆==∆∆∆2()1()x x x x x x x x x x -+∆==-+∆∆+⋅∆所以220011lim lim ()x x y y x x x x x∆→∆→∆'==-=-∆+⋅∆5.函数y=()()y f x x f x xx∆+∆-==∆∆因为==0limlim x x y y x ∆→∆→∆'===∆所以推广:若*()()n y f x x n Q ==∈,则1()n f x nx -'=(三)课堂小结第二课时:基本初等函数的导数公式及导数的运算法则【学习目标】1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.。

高中数学《导数的概念》教案导学案

高中数学《导数的概念》教案导学案

导数的概念教学目标与要求:理解导数的概念并会运用概念求导数。

教学重点:导数的概念以及求导数 教学难点:导数的概念 教学过程: 一、导入新课:上节我们讨论了瞬时速度、切线的斜率和边际成本。

虽然它们的实际意义不同,但从函数角度来看,却是相同的,都是研究函数的增量与自变量的增量的比的极限。

由此我们引出下面导数的概念。

二、新授课:1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数)(x f Y =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy ∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/注:1.函数应在点0x 的附近有定义,否则导数不存在。

2.在定义导数的极限式中,x ∆趋近于0可正、可负、但不为0,而y ∆可能为0。

3.xy∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ∆+∆+)的割线斜率。

4.导数xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度,它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率。

因此,如果)(x f y =在点0x可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为))(()(00/0x x x f x f y -=-。

5.导数是一个局部概念,它只与函数)(x f y =在0x 及其附近的函数值有关,与x ∆无关。

导数及应用导学案

导数及应用导学案

导数及应用导学案【课前预习导读】 一、学习目标1.知识与技能1)了解导数概念的实际背景, 理解导数的几何意义.2)掌握函数y =c (c 为常数)、*()n y x n =∈N 的导数公式,会求多项式函数的导数。

3)会用导数求多项式函数的单调区间, 极值及闭区间上的最值,利用导数证明函数的的单调性,会利用导数求最值的方法解决一些实际问题. 2.过程与方法通过对几种题型的分析、讲解和进一步的练习,提高学生综合、灵活运用数形结合思想、分类讨论思想解决问题的能力。

3.情感态度价值观培养学生合情推理和独立思考等良好的思想品质,以及主动参与、勇于探索的精神。

二、重点难点函数单调性及极值、最值的讨论 三、学习方法:探究、讨论、归纳。

四、自主复习1、 已知0a >,函数312()f x ax x a=+,且'(1)12f ≤,则a = ( ) A .4 B .3 C .2 D .1 2.设点P 是曲线3233+-=x x y 上的任意一点,P 点处切线的倾斜角为α,则 角α的取值范围是 ( )A .),32[ππB .]65,2(ππC .),65[)2,0[πππ D .),32[)2,0[πππ 3.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是 .4.已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数的导函数),下面四个图象中()y f x =图象大致是( )【课堂自主导学】 一、问题探究例1 (1)曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线,求曲线的切线方程;变式:若把“A (0,16)”改为“B (2,2)”,其余不变,结果如何?例 2 函数32()f x x ax bx c =+++,在曲线()y f x =上的点))1(,1(f P 处的切线方程为y =3x +1.(1)若()2y f x x ==-在时有极值,求()f x 的表达式;(2)在(1)的条件下,若对于任意]1,3[-∈x 都有()f x m <成立, 求实数m 的取值范围; (3)若函数()y f x =在区间[-2,1]上单调递增,求b 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1.1函数的平均变化率
,匚* 学习目标
1 •感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程.体会数学的博大精深以及学习数学的意义;
2•理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景.
心学习过程
一、课前准备
(预习教材P3~ P 5,找出疑惑之处)
2 2
复习1:曲线乞乂
25 9
A .长、短轴长相等
C.离心率相等1与曲线
2
X
25 k
焦距相等
准线相同
-1(k 9)的( )
k
复习2:当从0。

到180°变化时,方程X2y2 cos 1表示的曲线的形状怎样变化?
二、新课导学探学习探究探究任务一:
问题1:气球膨胀率,求平均膨胀率吹气球
时,随着气球内空气容量的增加, 描述这种现
象?
气球的半径增加得越来越慢.从数学的角度如何
问题2:高台跳水, 求平均速度
f
x
试试:设y f(X), X1是数轴上的一个定点,

在数轴X上另取一点X2 , X1与X2的差记为X ,
或者X2 =
函数的变化量或增量记为y,即y = X就表示从X1到X2的变化量或增量,相应地,
____ ;如果它们的比值」,则上式就表示
X
,此比值就称为平均变化率
反思:所谓平均变化率也就是的增量与的增量的比值.
2
x ,分别计算f (x )在下列区间上的平均变化率:
小结:
%动手试试
练1.某婴儿从出生到第12个月的体重变化如图所示, 试分别计算从出生到第
个月到第12个月该婴儿体重的平均变化率 .
探典型例题 例
1过曲线y 割线的斜率.
f(x) 3
X 上两点P (1,1)和Q (1 x,1 y )作曲线的割线,求出当
x 0.1 时 变式:已知函数 f(x) x 2 x 的图象上一点(1, 2)及邻近一点(1 x, 2
y ),则一y = x 例2 已知函数f (1) [1,3];
(2) [1,2];
(3) [1,1.1];
(4[1,1.001]
3个月与第6
练2.已知函数f (x) 2x 1 , g(x) 2x ,分别计算在区间[-3 , -1], [0, 5]上f(x)及g(x)的平均变化率.
(发现:y kx b在区间[m , n]上的平均变化率有什么特点?
三、总结提升
探学习小结
1.函数f(x)的平均变化率是_____
2.求函数f (x)的平均变化率的步骤:
(1 )求函数值的增量____________
(2 )计算平均变化率___________ 探知识拓展
平均变化率是曲线陡峭程度的数量化”曲线陡峭程度是平均变化率视觉化”
上*^—学习评价―
探自我评价你完成本节导学案的情况为( ).
A.很好
B.较好
C. 一般
D.较差
探当堂检测(时量:5分钟满分:10分)计分:
1. y 2x 1在(1,2)内的平均变化率为(
A . 3 B. 2 C. 1
) D. 0
x
2.设函数y
A . f (x o C. f (x o) f(x)
x)
,当自变量
B.
x由X0改变到x0 x时,函数的改变量 y为( )
f(X0)
f (X。

x
x) f (X o)
3.质点运动动规律t2
4.已知
5. y
t
^gt2,从3s到3.1s的平均速度是
2 ■
2x 3在x 2附近的平均变化率是
则在时间(3,3 t)中,相应的平均速度为(
t A
t
t
1.国家环保局对长期超标排污,污染严重而未进行治理的单位,规定出一定期限,强令在此期限内完成排污治理.下图是国家环保局在规定的排污达标日期前,对甲、乙两家企业连
2.水经过虹吸管从容器甲中流向容器乙, 甲中水的体积V(t) 5 2 0.1t(单位: 计算第一个10s内V的平均变化
t s后容

cm ),
率.。

相关文档
最新文档