二轮复习导数的应用导学案
高考数学二轮复习教案(16)导数及其应用 新人教A版 教案

导数及其应用【专题要点】1. 导数的定义:利用导数的定义解题;2. 求导数(包括求导函数和某一点的导数);3. 导数的简单应用,包括求函数的极值,求函数的单调区间,证明函数的单调性等,复现率较高;4. 导数在实际问题中的应用(利润最大,用料最省,效率最高等优化问题);5. 综合考查,将导数内容和传统内容中有关不等式和函数的单调性、方程根的分布、解析几何中的切线问题等有机地结合在一起,设计综合问题。
包括:(1) 函数、导数、方程、不等式综合在一起,解决单调性、参数的X 围等问题,这类问题涉及含参数的不等式、不等式的恒成立的求解;(2) 函数、导数、方程、不等式综合在一起,解决极值、最值等问题,这类问题涉及求极值和极值点、求最值,有时需要借助方程的知识求解;(3) 利用导数的几何意义求切线方程,解决与切线方程有关的问题; (4) 通过构造函数,以导数为工具证明不等式;(5) 导数与解析几何或函数图像的混合问题,这是一个重要问题,也是高考中考察综合能力的一个方向【考纲要求】⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.⑵熟记基本导数公式(,nC x (n 为有理数),sin .cos ,log ,,,ln x x a x x x a e x 的导数).掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数.⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值.【知识纵横】()()()()()()()()()()()000000001lim 12213,2,.14x f x x f x f x x u au u v uv v ∆→+∆-=∆⎧⎪'⎨⎛⎫'''±⎪ ⎪⎝⎭⎩⎧⎪⎧⎪⎪⎪⎧⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎩定义:公式:①常函数,②指,③对,④幂,⑤复合函数。
2019-2020年高三数学二轮复习 专题15导数的综合应用教案 苏教版

2019-2020年高三数学二轮复习专题15导数的综合应用教案苏教版【高考趋势】利用导数研究函数性质,主要是利用导数求函数的单调区间,求函数的极值和最值,这些内容都是近年来高考的重点和难点,大多数试题以解答题的形式出现,通常是整个试卷的压轴题。
试题主要先判断或证明函数单调区间,其次求函数的极值和最值,有时涉及函数的单调性对不等式进行证明。
【考点展示】1、函数y=x3-3x+1在闭区间[-3,0]上的最大值、最小值分别为2、函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有个极小值点。
3、已知f(x)=ax4+2x+1,若f(-1)=6,则a=4、函数f(x)=xlnx(x0)的单调递增区间是5、当x[-1,2]时,若x3-恒成立,则实数m的取值范围是【样题剖析】例1、设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值。
(1)求a,b的值;(2)若对于任意的x[0,3],都有f(x)c2成立,求c的取值范围。
例2、已知函数f(x)=在x=x1处取得极大值,在x=x2处取得极小值,且0x11x22。
(1)证明a0;(2)若z=a+2b,求z的取值范围。
例3、已知aR,讨论关于x的方程|x2-6x+8|=a的实数解的个数。
例4、已知函数f(x)=,x[0,1]。
(1)求f(x)的单调区间和值域。
(2)设a≥1,函数g(x)=x3-3a2x-2a,x[0,1],若对于任意的x1[0,1],总存在x0[0,1],使得g(x0)=f(x1)成立,求a的取值范围。
【总结提炼】要掌握求函数f(x)的极值的基本步骤:先求导数,求出f(x)=0的根,再检查f(x)=0的根左右的符号,如果左正右负,那么f(x)在这个根处取极大值;如果左负右正,那么f(x)在这个根处取极小值。
求函数在一个区间上的最值,要将极值与端点函数值加以比较,进而确定最值。
浅谈导学案在高三英语二轮复习中应用

中 学课 哥 辅导 2 0 I 3 第 6 期
浅 谈 导 学 案 在 高 三 英 语 二 轮 复 习中 应 用
@ 杨 慧 娟
摘 要: 学案 导 学 是 一 种 新 型 的英 语 教 学模 式 , 而高三二轮 复 习在 整 个 复 习 阶 段起 着 至 关 重 要 的 作 用 。 本 文就 高 三 英 语 二 轮
知识 线 、 学法线 和能力 线 , 其 中知 识 线 是 明 线 、 学 法 线 和 能 力 线 是 暗线 , 应以知识 为 主线编写 学案 , 把知识 线 、 学 法 线 和 能 力 线 有 机 结 合 。学 案 的 设 计 既 要 体 现 教 师 的 指 导 活 动 , 又 要 体 现 学
基础知识 的落实 、 基 本 技 能 的培 养 , 使 学 生 较 为 详 尽 完 整 地 把 握
学 习 内容 。
( 8 ) 高 考 题 例 析 。主 要 让 学 生 了解 所 学 内 容 在 高 考 中 是 怎 样考查 、 如 何 设 计 问题 的 , 难度如何 , 从而启发 学生思维 , 规 范 学
2 . 二 轮 复 习学 案 的编 写 思 路
二轮复习学案 括三条线 :
高考数学第二轮复习 导数教学案

高考第二轮专题复习(教学案):导数考纲指要:导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。
考点扫描:导数在研究函数中的应用① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。
考题先知:例1.设函数B A Cx Bx Ax x f ++++=6)(23,其中实数A 、B 、C 满足: ①9841218+≤+≤+-B C A B ; ②A B A 63≤-<。
(1)求证:49)1(,41)1(''≤-≥f f ; (2)设π≤≤x 0,求证:0)sin 2(≥x f 。
证明:(1)由9841218+≤+≤+-B C A B 得:,4123≥++C B A 4923≤+-C B A ,又C Bx Ax x f ++=23)(2',所以4123)1('≥++=C B A f ,4923)1('≤+-=-C B A f(2)当π≤≤x 0时,0)sin 2(≥x f 等价于当20≤≤u 时,0)(≥u f ,所以只须证明当20≤≤x 时,0)(≥x f ,由②知:,0>A 且(]2,13∈-AB,所以C Bx Ax x f ++=23)(2'为开口向上的抛物线,其对称轴方程(]2,13∈-=ABx ,又由A B A 63≤-<得:0)6)(3(≤++B A B A ,即AB A B 91822+≥-,所以,当20≤≤x 时,有 B A C AABA AC AB AC A B f x f 363918312412)3()(22''++=++≥-=-≥B BC B A B A C B A +-+++≥++++=)21(23323=)]1()1([4121)1('''--⨯+f f f=049814189)1(81)1(89''=⨯-⨯≥--f f ,所以)(x f 为[0,2]上的增函数。
(整理)高三数学第二轮复习教案

高三数学第二轮复习教案第8讲导数应用的题型与方法(4课时)一、考试内容导数的概念,导数的几何意义,几种常见函数的导数两个函数的和、差、积、商的导数,复合函数的导数,基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值二、考试要求⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。
⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, logx的导数)。
掌a握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。
⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。
三、复习目标1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念.2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, logx的导数)。
a掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用. 3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。
能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。
4.了解复合函数的概念。
会将一个函数的复合过程进行分解或将几个函数进行复合。
掌握复合函数的求导法则,并会用法则解决一些简单问题。
四、双基透视导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n 次多项式的导数问题属于较难类型。
高三文科数学第二轮复习专题导数教案

高三文科数学第二轮复习专题导数教案文科数学第二轮专题导数及其应用(一)教学目标1、知识与技能:1、利用导数求函数的单调区间、极值和最值2、解决基本的含参问题2、过程与方法:利用导数研究函数,作出图形,再通过图形反馈函数的性质,进一步体会数形结合及分类讨论的思3、情感态度与价值观:这是一堂复习课,教学难度有所增加。
培养学生思考问题的习惯,以及克服困难的信心。
强化讨论意识,不断提高解题的灵活性和变通性(二)重点、难点教学重点:利用导数求多项式函数的单调性极值和最值教学难点:含参的讨论教具准备:与教材内容相关的资料教学设想:通过学习,培养学生思考问题的习惯,以及克服困难的信心。
强化讨论意识,不断提高解题的灵活性和变通性(三)教学过程一、学生自学自探1、某物体的运动方程为s(t) 5t2(位移单位:m,时间单位:s)则它在t=2s时的速度是2、曲线y 4x x3在点(-1,-3)处的切线方程是3、求f(x) lnx 4x的单调增区间4、121f(x) x4 x3 x2 1的极值点是4325、函数y x4 4x 3在区间[-2,3]上的最小值为二、合作交流分小组讨论:回顾以前做过的题目思考、讨论以下问题1、利用导数求瞬时变化率常见的问题及解决方法?2、利用导数研究函数的切线方程的方法和步骤?高三文科数学第二轮复习专题导数教案3、利用导数研究函数的单调性的方法和步骤?4、利用导数研究函数极值的方法和步骤?5、利用导数研究函数的最值的方法和步骤?三、展示评价以小组为单位:展示讨论的结论,其他小组可以补充。
四、规律总结1、利用导数求瞬时速度、加速度问题:规律如下:路程对时间求导得到的是瞬时速度;瞬时速度对时间求导得到的是加速度。
s (t) v(t),v (t) a(t)步骤如下:先求导,再把对应的时刻,带进导数式子,就是所求的某时刻的瞬时速度,加速度。
2、利用导数求切线问题:步骤如下:先求导,把切点(x0,y0)的横坐标x0带入导数,得到切线的斜率k f (x0),然后用点斜式y y0 k(x x0)得出切线方程3、利用导数求函数的单调区间的方法和步骤:(1) 确定函数的定义域(2) 求函数的导数f (x)(3) ①若求单调区间(或证明单调性)只需要在函数f(x)的定义域内解(或证明)不等式f (x) 0(或f (x) 0)②若已知f(x)的单调性,则转化成不等式f (x) 0或f (x) 0在单调区间上恒成立问题求解4、利用导数求函数的极值的步骤(1)求函数的导数f (x)(2)求方程f (x)=0的根x0(3)检验f (x)在方程f (x)=0的根x0的左右的符号,高三文科数学第二轮复习专题导数教案若当x x0,若当x x0,f (x) 0,当x x0,f (x) 0,则x0是极小值点,f(x0)是函数的极小值 f (x) 0,当x x0,f (x) 0,则x0是极大值点,f(x0)是函数的极大值5、利用导数研究函数的最值的方法和步骤?(1)求函数的导数f (x)(2)求方程f (x)=0的根x0(3)①定义域是[a,b],若x0 [a,b],比较f(x0),f(a),f(b)之间的大小,最大的是最大值,最小的是最小值,若x0 [a,b],比较f(a),f(b)的大小,最大的是最大值,最小的是最小值。
【2019年整理】高三数学复习课导学案《导数及导数的应用》

高三数学复习课导学案《导数及导数的应用》学科:数学 课题:导数及导数的应用 (一) 编号:1.会用导数求函数的单调区间以及已知单调区间求参数范围2记住极值、极值点的定义并会用导数求函数的极值、最值3.提高规范意识和注重细节意识,从而提高“稳做会,求全对”的得分意识4.不断提高运用数形结合、分类讨论以及转化等思想的能力1记住导数的几何意义,求导公式(8个基本函数求导公式,导数的四则运算,复合函数如何求导)2回顾用导数求函数单调区间以及已知单调区间求参数范围的方法步骤3 回顾极值、极值点的定义及用导数求极值、最值的方法步骤4结合一轮复习回顾导数部分常见题型及解题方法.)x (f .a x x )x ln(a )x (f x .的极值)求函数(的值)求(的一个极值点是函数已知21101362-++== 处取得极小值,则实数在函数 的单调递增区间为函数 )轴交点的纵坐标是( 处的切线与在点山东文)曲线==-=-=--+=m x )m x (x )x (f .x ln x y .y ),(P x y .(152215(D) 9(C) 3 (B)9(A)1211120111223 的单调递增区间是函数x x x )x (f .32132323++-=)内单调递减,则,在(若函数204423+-=ax x )x (f . 的取值范围是 a考点一 函数的单调性与导数例1 (2011年天津高考19(2))【求单调区间】已知函数 R x t x t tx x x f ∈-+-+=,1634)(223 其中t R ∈当0t ≠时,求()f x 的单调区间.变式训练:求f(x)的单调区间.例2 2011年青岛模拟考试(理21(2))【已知单调区间求参数范围】 ),0)(2)((6)(1'≠-+=t t x t x t x f 若[].)x (f 上的单调性,在讨论21),0)(2)((6)(2'>-+=t t x t x t x f 若 已知函数),x ('f )x ln()x (g ,x ax x )x (f -++=++-=31323223问: 是否存在实数 使得 在 上单调递增,若存在求实数 的取值范围;若不存在请说明理由.考点二 函数的极值、最值与导数例3的取值范围? 个交点,求的图像有与函数若直线的极值求函数的值求的一个极值点是函数已知b )x (f b y )x (f a x x )x ln(a )x (f x 3(3)(2)(1)10132=-++==思考:若方程0101162=--++b x x )x ln(有三个不同实根,该如何求b 的取值范围?a )x (g ⎪⎭⎫ ⎝⎛+∞-,21a )x (g )x (f )x (F .m x x )x (g ,x ln a x )x (f -=+-=-=令22(1)当 时,试求实数 的取值范围使得 的图像恒在 轴上方;(2)当 时,若函数 在 上恰有两个不同零点,求实数 的取值范围;(3)是否存在实数 的值,使函数 和函数 在定义域上具有相同的单调性?若存在求出 的值,若不存在请说明理由 .)(1,0+∞∈=x ,m a )x (F x 2=a )x (F [1,3]m a )x (f )x (g a的( )条件是则 )内单调递增,,在( 设q p m q mx x x x f p ,5:012ln )(:.12-≥∞++++= (A) 充分不必要 (B)必要不充分 (C)充分必要 (D)既不充分也不必要2. (2011年湖南高考)设直线x=t 与函数f(x)= x 2,g(x)=lnx 的图像分别交于M,N 点,则当MN 达到最小时t 的值为( ) (A )1 (B )21 (C )25(D )22 3. 已知4)2(2)(24-++-=x p px x f 在]3,-∞-(上为增函数,在)0,3[-上为减函数,则p=4 已知函数 ,常数 为实数(1)是否存在实数 使得 在区间 上单调递增恒成立,若存在求出 的取值范围,若不存在请说明理由; (2)求函数 的单调递增区间B 组(选): 5)x (a )x ln(x )x (f 11+-+=a a )x (f [)+∞,1a x ax )x ('f )x (g +-=1121(2)(1)010212-+>=>+-=)a ln()a (g ),a (g )x (f )x (f b a )('f )a (bx ax x ln )x (f 试证明不等式的最大值为设函数的单调区间,并求的代数式表示试用含有且已知函数。
导数及其应用复习完整版

《导数及其应用》复习导学案一、知识梳理二、典例剖析题型一、导数的概念及运算1.在求平均变化率时,自变量的增量为( )A .0x ∆>B .0x ∆<C .0x ∆=D . 0x ∆≠ 【答案】D2.函数f (x )=2x 2-1在区间[1,1+Δx ]上的平均变化率ΔyΔx等于( )A .4B .4+2ΔxC .4+2(Δx )2D .4x 变式.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是__________.3. 下列求导正确的是 ( ) 【答案】BA.(x+x 1)′=1+21x B. (log2x)′=ln21x C. (3x)′=3xlog3xD. (x2cosx)′=-2xsinx4.下列说法正确的是( )A .若)(0x f '不存在,则曲线)(x f y =在点()00,()x f x 处就没有切线;B .若曲线)(x f y =在点()00,()x f x 有切线,则)(0x f '必存在;C .若)(0x f '不存在,则曲线)(x f y =在点()00,()x f x 处的切线斜率不存在;D .若曲线)(x f y =在点()00,()x f x 处的切线斜率不存在,则曲线在该点处没有切线。
【答案】C5.设,M m 分别是()f x 在区间[],a b 上的最大值和最小值,则()()()bam b a f x dx M b a -≤≤-⎰,由上述估值定理,估计定积分2212x dx --⎰的取值范围是 .【解析】:因为当12x -≤≤ 时,204x ≤≤ ,所以,212116x -≤≤所以由估值定理得:()()221121212116x dx --⨯--≤≤⨯--⎡⎤⎡⎤⎣⎦⎣⎦⎰, 即22132316x dx --≤≤⎰,所以答案应填:3,316⎡⎤⎢⎥⎣⎦. 6.211dx x +=⎰⎰.【答案】ln 24π+ 题型二、导数的几何意义7.已知曲线y =2x 2上一点A (2,8),则曲线在点A 处的切线斜率为( )A .4B .16C .8D .2 8.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.变式1.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.变式2.已知函数f (x )=-13x 3+2x 2+2x ,若存在满足0≤x 0≤3的实数x 0,使得曲线y =f (x )在点(x 0,f (x 0))处的切线与直线x +my -10=0垂直,则实数m 的取值范围是( )A .[6,+∞)B .(-∞,2]C .[2,6]D .[5,6] 变式 3.已知曲线2()xf x x e m =+-在0x =处的切线与坐标轴围成的三角形的面积为16,则实数m 的值为 .9.已知抛物线y =x 2,直线l :x -y -2=0,则抛物线上的点到直线l 的最短距离是 . 变式.点P 是曲线2ln y x x =-,则点P 到直线40x y --=的距离的最小值是 .题型三、导数的综合应用 类型1:导数的运算性质10.设()f x ,()g x 分别是定义在R 上的奇函数和偶函数,当0x <时,'()()()'()0f x g x f x g x +>,且(3)0f -=,则不等式()()0f x g x <的解集是( )A .(3,0)(3,)-+∞ B .(3,0)(0,3)- C .(,3)(3,)-∞-+∞ D .(,3)(0,3)-∞-变式1.函数f (x )在定义域R 内可导,若f (x )=f (2-x )且当x ∈(-∞,1)时,(x -1)f ′(x )<0.设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则a ,b ,c 的大小关系是______ .变式2.设函数F (x )=f (x )e x 是定义在R 上的函数,其中f (x )的导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 016)>e 2 016f (0)B .f (2)<e 2f (0),f (2 016)>e 2 016f (0)C .f (2)<e 2f (0),f (2 016)<e 2 016f (0)D .f (2)>e 2f (0),f (2 016)<e 2 016f (0)变式3.已知函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为____________. 变式4.定义在R 上的偶函数f x 的导函数为()f x ',若对任意的实数x ,都有()()22f x xf x '+<恒成立,则使()()2211x f x f x -<-成立的实数x 的集合为( )A .{}1x x ≠±B .()(),11,-∞-+∞C .()1,1-D .()()1,00,1-【解析】:当0x >时,由()()220f x xf x +'-<可知:两边同乘以x 得: ()()2220xf x x f x x -'-< 设:()()22g x x f x x =-,则()()()2220g x xf x x f x x '=+'-<,恒成立:∴()g x 在(0)+∞,单调递减,由()()2211x f x f x -<-∴()()2211x f x x f -<-,即()()1g x g <,即1x >;当0x <时,函数是偶函数,同理得:1x <-;综上可知:实数x 的取值范围为()()11-∞-⋃+∞,,,故选:B变式5.函数()f x 的定义域是R ,(0)3f =,对任意,()()1x R f x f x ∈+>/,则不等式()2x xe f x e ⋅>+的解集为( )A .{|0}x x <B .{|0}x x >C .{|1,}x x x <->或1D .{|1,1}x x x <-<<或0 【解析】∵()()1f x f x +>/,∴()()0xxxe f x e f x e +>>/,∴[()1]()0xxe f x e f x -+>/,即{[()1]}0x e f x '->,∴函数()[()1]x F x e f x =-在R 上单调递增,且0(0)[(0)1]2F e f =-=∴ ()2[()1]2x x x e f x e e f x ⋅>+⇔->,∴x>0,故选B类型2:单调性问题11.函数()()3x f x x e =-的单调递增区间是( )DA .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞) 变式1.已知()21ln 2f x x a x =-在区间()0,2上不单调,实数a 的取值范围是( ) A .()()2,00,2- B .()()4,00,4- C .()0,2 D .()0,4【答案】D变式2.已知函数()f x 的导函数图象如图所示,若ABC ∆为锐角三角形,则下列结论一定成立的是( )A .()()sin cos f A fB > B .()()sin cos f A f B <C .()()sin sin f A f B >D .()()cos cos f A f B < 12.(全国Ⅱ卷)若函数f (x )=kx -ln x 在区间(1,+∞)内单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)变式1.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是_____________.变式2.已知a ≥0,函数f (x )=(x 2-2ax )e x .设f (x )在区间[-1,1]上是单调函数,求a 的取值范围.变式3.函数32y x ax bx =++在(,1)-∞-上单调递增,在()1,2-上单调递减,在()2,+∞上递增,则,a b 的值为( ) AA 、3,62a b =-=-B 、36,2a b =-=- C 、3,2a b == D 、3,6a b =-=-变式4.若函数y =a (x 3-x )的单调减区间为⎝⎛⎭⎫-33, 33,则a 的取值范围是( )A .(0,+∞)B .(-1,0)C .(1,+∞)D .(0,1)13.已知f(x)=e x -ax-1.(1)求f(x)的单调增区间; (2)若f(x )在定义域R 内单调递增,求a 的取值范围;(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由.【答案】解 : f ′(x)= e x -a.(1)若a ≤0,f ′(x)= e x -a ≥0恒成立,即f(x)在R 上递增. 若a >0, e x -a ≥0,∴e x ≥a,x ≥lna. ∴f(x)的递增区间为(lna ,+∞).(2)∵f (x )在R 内单调递增,∴f ′(x)≥0在R 上恒成立. ∴e x -a ≥0,即a ≤e x 在R 上恒成立.∴a ≤(e x )min ,又∵e x >0,∴a ≤0.[来源:Z §xx §] (3)由题意知e x -a ≤0在(-∞,0]上恒成立. ∴a ≥e x 在(-∞,0]上恒成立. ∵e x 在(-∞,0]上为增函数. ∴x=0时,e x 最大为1.∴a ≥1.同理可知e x -a ≥0在[0,+∞)上恒成立. ∴a ≤e x 在[0,+∞)上恒成立. ∴a≤1,∴a=1.14.设函数2e (),1axf x a x R =∈+. (Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数)(x f 单调区间. 【答案】解:因为2e (),1ax f x x =+所以222e (2)()(1)ax ax x a f x x -+'=+.(Ⅰ)当1a =时, 2e ()1xf x x =+,222e (21)()(1)x x x f x x -+'=+,所以(0)1,f = (0)1f '=.所以曲线()y f x =在点(0,(0))f 处的切线方程为10x y -+=. ……………4分(Ⅱ)因为222222e (2)e ()(2)(1)(1)ax axax x a f x ax x a x x -+'==-+++, ……………5分 (1)当0a =时,由()0f x '>得0x <;由()0f x '<得0x >.[所以函数()f x 在区间(,0)-∞单调递增, 在区间(0,)+∞单调递减. ……………6分 (2)当0a ≠时, 设2()2g x ax x a =-+,方程2()20g x ax x a =-+=的判别式2444(1)(1),a a a ∆=-=-+ ……………7分①当01a <<时,此时0∆>.由()0f x '>得211a x a --<,或211a x a +->;由()0f x '<得221111a a x a a--+-<<. 所以函数()f x 单调递增区间是211(,)a a ---∞和211(,)a a +-+∞, 单调递减区间221111(,)a a a a--+-. ……………9分 ②当1a ≥时,此时0∆≤.所以()0f x '≥,所以函数()f x 单调递增区间是(,)-∞+∞. ……………10分 ③当10a -<<时,此时0∆>.由()0f x '>得221111a a x a a +---<<; 由()0f x '<得211a x a +-<,或211a x a-->.所以当10a -<<时,函数()f x 单调递减区间是211(,)a a +--∞和211(,)a a --+∞, 单调递增区间221111(,)a a a a+---. ……………12分 ④当1a ≤-时, 此时0∆≤,()0f x '≤,所以函数()f x 单调递减区间是(,)-∞+∞.类型3:图像问题15.如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )A .B .C . D.【解析】:由三视图可知该几何体是圆锥,顶点朝下,底面圆的上面,随之时间的推移,注水量的增加高度在增加,所以函数是增函数,刚开始时截面面积较小,高度变化较快,随着注水量的增加,高度变化量减慢,综上可知B 正确16.函数()f x 的导函数()'f x 在区间(,)a b 内的图象如图所示, 则 ()f x 在(,)a b 内的极大值点有( )BA. 1个B. 2个C. 3个D. 4个变式1.如果函数()y f x =的图象如图,那么导函数()y f x '=的图象可能( )O thh t O h t O O t h变式2.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象最有可能的是( )类型4:极值(最值)问题17.已知函数()313f x x ax b =-+在y 轴上的截距为1,且曲线上一点02, 2p y ⎛⎫⎪ ⎪⎝⎭处的切线斜率为13. (1)曲线在P 点处的切线方程; (2)求函数()f x 的极大值和极小值【答案】解:(1)因为函数()313f x x ax b=-+在y 轴上的截距为1,所以1b = 又'2y x a =-,所以2211 236a a ⎛⎫-=∴= ⎪ ⎪⎝⎭()311 136f x x x ∴=-+ 所以0212y f ⎛⎫== ⎪ ⎪⎝⎭,故点2,12P ⎛⎫ ⎪ ⎪⎝⎭,所以切线方程为12132y x ⎛⎫-=- ⎪ ⎪⎝⎭ 即26620x y -+-=(2)由题意可得,令()'2106f x x =-=得66x =±列表如下:x6,6⎛⎫-∞- ⎪ ⎪⎝⎭66- 66,66⎛⎫- ⎪ ⎪⎝⎭666,6⎛⎫+∞ ⎪ ⎪⎝⎭()'f x+- 0 + ()f x增区间极大 减区间极小增区间所以函数的极大值为661f ⎛=+ ⎝⎭, 极小值为661f =⎝⎭18.已知函数c bx x ax x f -+=44ln )()0(>x 在1=x 处取得极值c --3,其中c b a ,,为常数.(1)求b a ,的值; (2)求函数)(x f 的单调区间;(3)若对任意0>x ,不等式02)(2≥+c x f 恒成立,求c 的取值范围.解:(1))4ln 4()(3/b a x a x x f ++=,0)1(='f ,∴04=+b a ,又c f --=3)1(,∴3,12-==b a ; 经检验合题意;………4分(2)x x x f ln 48)(3/=()0>x ∴由0)(/=x f 得1=x ,当0)(/<x f 时,10<<x ,)(x f 单调递减;当0)(/>x f 时,1>x ,)(x f 单调递增;∴)(x f 单调递减区间为)1,0(,单调递增区间为),1(+∞ ……8分 (3)由(2)可知,1=x 时,)(x f 取极小值也是最小值c f --=3)1(,列表略 依题意,只需0232≥+--c c ,解得23≥c 或1-≤c ………………12分 19.已知函数()()xf x x k e =-. (1)求()f x 的单调区间; (2)求()f x 在区间]2,1[上的最小值;(3)设)(')()(x f x f x g +=,当2523≤≤k 时,对任意]1,0[∈x ,都有λ≥)(x g 成立,求实数λ的范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《导数的应用》导学案
●命题视角:
●真题感悟:
1.(2014.全国)若函数()ln =-f x kx x 在区间()1,+∞单调递增,则k 的取值范围是( )
A. (],2-∞-
B. (],1-∞-
C. [)2,+∞
D. [)1,+∞
2.(201
3.课标)已知定义在实数集R 上的函数()f x 满足(1)3f =,且()f x 的导数()f x '在R 上恒有()2f x '<()x R ∈,则不等式()21f x x <+的解集为( )
A .(1,)+∞
B .(,1)-∞-
C .(1,1)-
D .(,1)-∞-∪(1,)+∞
3.(201
4.辽宁)当[]2,1∈-x 时,不等式32430-++≥ax x x 恒成立,则实数a 的取值范围是( )
A. []5,3--
B. 96,8⎡⎤--⎢⎥⎣⎦
C. []6,2--
D. []4,3-- ●透析高考 热点突破
热点一 不等式的恒成立问题
例1 已知函数()ln a f x x x
=-,其中a ∈R . (1)当2a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程;
(2)如果对于任意(1,)x ∈+∞,都有()2f x x >-+,求a 的取值范围.
变式训练1:
已知函数()()()()ln 11f x x x x ax a a R =---+∈.
(1)若0a =,判断函数()f x 的单调性;
(2)若1x >时,()0f x <恒成立,求a 的取值范围.
热点二 利用导数证明不等式
例2 设函数()(1)ln(1),(1,0)f x x a x x x a =-++>-≥.
(1)求()f x 的单调区间;
(2)证明:当0m n >>时,(1)(1)n m m n +<+.
变式训练2:
已知函数()1ln ()f x ax x a R =--∈
(1)讨论函数()f x 的单调性;
(2)当1x y e >>-时,证明不等式ln(1)ln(1)x y e y e x +>+
热点三 利用导数解决与方程的解有关的问题
例3 已知函数x x x f ln )(=,2)(2
-+-=ax x x g ( 2.71e ≈,a R ∈).
(1)判断曲线)(x f y =在点(1,)1(f )处的切线与曲线)(x g y =的公共点个数; (2)当1,x e e
⎡⎤∈⎢⎥⎣⎦
时,若函数)()(x g x f y -=有两个零点,求a 的取值范围.
变式训练3:
已知关于x 的函数()(0)e
x ax a f x a -=≠ (1)当1a =-时,求函数()f x 的极值;
(2)若函数()()1F x f x =+没有零点,求实数a 取值范围.
●课后练习 及时巩固
1.设函数3()3(,0,0),f x ax bx a b a b =+<>为实数,当[0,1]x ∈时,有()[0,1]f x ∈,则b 的最大值是( )
A .12
B . 4
C . 2
D . 14 2. 已知函数()32123
f x x ax bx c =+++有两个极值点1212,112x x x x -<<<<,且,则直线()130bx a y --+=的斜率的取值范围是( ) A. 22,53⎛⎫- ⎪⎝⎭ B. 23,52⎛⎫- ⎪⎝⎭ C. 21,52⎛⎫- ⎪⎝⎭ D. 22,,53⎛
⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭
3. 已知函数()2ln 1f x x =+的图象与直线2y x a =-恰好有一个交点.设2()x g x e x a =-+,当
[1,2]x ∈时,不等式2()4m g x m -≤≤-恒成立,则实数m 的取值范围是( )
A .(,-∞
B .]e
C .[,
e - D .)+∞ 4. 对任意x R ∈,函数32()7
f x ax ax x =++不存在...
极值点的充要条件是( ) A.021a ≤≤ B.021a <≤ C.0a <或21a > D.0a =或21a =
5.函数()ln x f x x =
,当01x <<时下列式子大小关系正确的是( ) A .22()()()f x f x f x << B .22()()()f x f x f x <<
C .22()()()f x f x f x <<
D .22
()()()f x f x f x <<
6.已知函数()ln f x x x =(其中,a R e ∈为自然对数的底数)
(1)若直线l 过点(1,0),并且与曲线()y f x =相切,求直线l 的方程;
(2)设函数()()(1)g x f x a x =--在[]1,e 上有且只有一个零点,求a 的取值范围.
7.设函数()1n n f x ax bx c +=++(0)x >,其中0a b +=,n 为正整数,a ,b ,c 均为常数,曲线()y f x =在()()1,1f 处的切线方程为10x y +-=.
(1)求a ,b ,c 的值;
(2)求函数()f x 的最大值;
(3)证明:对任意的()0,x ∈+∞都有()1nf x e <
.(e 为自然对数的底)
8.已知函数2()8ln f x x x =-,2()14g x x x =-+.
(1)求函数x
x x g x f x H 814)()()(--+=的单调递增区间; (2)若函数()y f x =和函数()y g x =在区间(),1a a +上均为增函数,求实数a 的取值范围;
(3)若方程()()f x g x m =+有两个解,求实数m 的取值范围.。