(完整版)新浙教版数学八年级下册平行四边形复习
八年级数学下:第五章平行四边形复习课件浙教版

3.平行四边形的性质有: 平行四边形的对边相等 平行四边形的对边平行 平行四边形的对角相等 平行四边形的对角线互相平分
4.平行四边形的判定:
定义: 两组对边分别平行的四边形是
平行四边形
定理1: 一组对边平行且相等的四边形
平行四边形
定理2:两组对边分别相等的四边形是平行
四边形 定理3:对角线互相平分的四边形是 平行四边形.
2、平行四边形一边长为12cm,那么它的两
条对角线的长度可能是( C ).
(A)8cm和14cm (B)10cm和14cm (C)18cm和20cm (D)10cm和34cm
3、如图,已知矩形ABCD,R,P分别是DC, BC上的点,E,F分别是AP,RP的中点.当点 P在BC上从点B向点C移动而点R不动时,那么下
定理4:两组对角分别相等的四边形是平行
四边形.(补充)
5.三角形的中位线 三角形的中位线平行于第三边,并
且等于第三边的一半.
6.逆命题与逆定理.
三.巩固练习:
1、某人到瓷砖商店去购买一种多边形 形状的瓷砖,用来铺设无缝地板.他 购买的瓷砖形状不可以是( C). (A)正三角形 (B)正四边形 (C)正八边形 (D)正六边形
求证:OD+OE+OF=BC. A
F
D
O
B
EC
说能出你这节课的收获和体验让大家 与你分享吗?
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月1日星期二2022/3/12022/3/12022/3/1 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/12022/3/12022/3/13/1/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/12022/3/1March 1, 2022 •4、享受阅读快乐,提高生活质量。2022/3/12022/3/12022/3/12022/3/1
浙教版八下数学平行四边形期末总复习练习和能力提升测试(附详细的解答过程)

浙教版八下期未总复习练习--一平行四边形1.□ABCD 的对角线交于O ,AC =12cm,BD =5cm,△OAB 的周长为15.5cm,则CD 的长度等于( ).A.7cm B.8cm C.9cm D.9.5cm2.一个多边形的内角和是540°,则这个多边形是( ) A 、三角形 B 、四边形 C 、五边形 D 、六边形 3.下列说法中,错误的是( )A 、平行四边形的对角线互相平分B 、对角线互相平分的四边形是平行四边形C 、 平行四边形的对角相等D 、对角线互相垂直的四边形是平行四边形 4.如图,在ABC 中,AB=AC=5,D 是BC 上的点,DE ∥AB 交AC 于E,DF ∥AC 交AB 于点F,那么四边形AFDE 的周长是( )A 、5B 、10C 、15D 、20 5.在四边形ABCD 中,AD ∥BC ,若ABCD 是平行四边形,则还应满足( ). A.∠A+∠C=180° B.∠B+∠D=180° C.∠A+∠B=180° D.∠A+∠D=180°6.如图,已知矩形ABCD 的对角线AC 的长为10cm ,连结各边中点E 、 F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为( ) A.20cm B.202cm C. 203cm D.25cm 7.下列图形中,面积最大的是( )A .边长为3cm 的正方形B .一组邻边的长分别是1cm 、3cm 的平行四边形C .对角线长分别为4cm 和1cm 的菱形D .中位线长为2cm ,高为2cm 的梯形 8.如图,四边形ABCD 是正方形,延长BC 至点E ,使CE=CA ,连结AE 交CD•于点F ,•则∠AFC 的度数是( ).A.150°B.125°C.135°D.112.5°9、如图所示,四边形ABCD 中,DC ∥AB ,BC=1, AB=AC=AD=2.则BD 的长为 ( ) A. 14 B. 15 C. 23 D. 3210.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB=CD ,AD=BC ;③AO=CO ,BO=DO ;④AB ∥CD ,AD=BC 。
(完整word版)新浙教版数学八年级下册平行四边形复习

课题 平行四边形复习知识点一:平行四边形的定义 知识点二:平行四边形的性质1.从边看:平行四边形两组对边平行且相等; 2.从角看:平行四边形邻角互补,对角相等; 3.从对角线看:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心;5.若一条直线过平行四边形的两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中心,且这条直线二等分平行四边形的面积。
如下图:有OE=OF ,且四边形AFED 的面积等于四边形FBCE 的面积;6. 平行四边形的对角线分平行四边形为四个等积的三角形。
例题讲解:1.如图,的对角线和交于,,,,则△的周长是( ).A .56B .45C .51D .59 2.中的对角线,相交于点,,,则取值范围 ( ).A .B .C .D . 3.的周长为,,,与的距离,的面积=__________.4. 平行四边形相邻的两个角的平分线所成的角是( ).A .锐角B .直角C .钝角D .不确定 5. 如果的的平分线交于,且,则的度数为( ).A .B .C .D .或6.在中,为的中点,若,则和的夹角的度数是( ).A .100B .95C .90D .857. 从平行四边形的一个锐角顶点作它所对两边的高线,如果这两条高线夹角为,则这个平行四边形的内角为______________.ABCD AC BD O 24=AC 38=BD 28=AD BOC ABCD AC BD O 10=AC 8=BD AD 1>AD 9<AD 91<<AD 0>AD ABCD 6cm 3ο60=∠B 6cm =AB AD BC ______=AE ABCD ABCD BAD ∠BC E BE AE =BAE ∠ο30ο60ο120ο60ο120ABCD M CD AD DC 2=AM BM ο135知识点三:1、从边上看(1)两组对边分别平行的四边形是平行四边形。
浙教版八下第五章 特殊的平行四边形的复习(一)

D
O
C
边
(1) AB=CD (2) AD=BC (3) AB=BC (4) AB∥CD (5) AD ∥BC
角
对角 线
(9) OA=OC (10) OB=OD (11) AC⊥BD (12) AC=BD
(6) ∠BAD=∠BCD (7) ∠ABC=∠ADC (8) ∠BAD=90。
A 你能在四边形的基础上,从下列条件 中选四个,得到正方形吗?
互相垂直 的平行四边形是菱形 两条对角线__________
互相垂直平分 的四边形是菱形 两条对角线______________ 互相垂直 的矩形是正方形 两条对角线__________ 相等 两条对角线__________ 的菱形是正方形 互相垂直且相等 的平行四边形是正方形 两条对角线_______________
A. 矩形 C. 正方形 B.菱形 D.平行四边形
3. 下列图形中不是轴对称图形的是( B),不是中心对称图形的 是( A )
A. 等腰三角形 B. 平行四边形
C. 菱形
D.正方形
如果你仅有一根绳子, 怎样检验桌面是不是矩形? 小组交流,解释其中的道 理.
A 1. 已知菱形ABCD中,AE⊥BC于 E,AF⊥CD于F,你能判断AE与AF的关 系吗?说明理由。 B F D O B A 3.四边形ABCD和BEFG都是 正方形,则AG=CE吗?说明理 由。 F G B E C C D
互相垂直平分且相等 的四边形是正方形 两条对角线___________________
1. 正方形具有而菱形不具有的性质是( C)
A. 对角线互相平分
C. 对角线相等
B. 每条对角线平分一组对角
D.对角线互相垂直
新浙教版平行四边形期末复习小片叔叔

3、如图, ABCD的对角线AC、BD长度之和为 7 20cm,若△OAD的周长为17cm,则AD=____cm
D
C
O B
平行四边形的对角线互相平分
A
请你挑一挑
在四边形ABCD中,若分别给出六个 条件:①AB∥CD ②AD=BC ③OA=OC ④AD∥ BC ⑤AB=CD ⑥OB=OD. 现在,以其中的两个为一组,能直接确 定四边形ABCD为平行四边形的条件是 _________ (只填序号)
E
3x
E 2x D
x 3x
2x
3x
B C
B
C
拓展提高
如图,已知AB=AC,B是AD的中点, E是AB的中点. 求证:CD=2CE.
C
A
E
B
DFΒιβλιοθήκη 初露锋芒 如图,Rt△OAB的两条直角边在坐标轴上,已知 点A(0,2),点B(3,0),则以点O,A,B为其 中三个顶点的平行四边形的第四个顶点 C 的坐标 y 为_________________。
浙教版初中数学八年级(下)
平行四边形 期末复习
小片叔叔 精品课件
请你填一填
1、已知 ABCD,若AB=15㎝, BC=10cm 则AD= 10 ㎝.周长= 50 cm. D 平行四边形的两组对边分别相等
C B
2、已知 ABCD, ∠A=50度, A 则∠C= 50 度. ∠B= 130 度.
平行四边形的对角相等、邻角互补
F E
3
B D C
小试牛刀
如图,AD、BC垂直相交于点O,AB∥CD, BC=8,AD=6,求AB+CD的长?
D O B A C
链接中考
□ABCD的周长为32cm, ∠ABC的角平分
八年级数学下册《第五章 特殊平行四边形》复习课件 (新版)浙教版

抢 答:
要使 ABCD成为矩形,需增加的条件是______ 要使 ABCD成为菱形,需增加的条件是______ 要使矩形ABCD成为正方形,需增加的条件是____ 要使菱形ABCD成为正方形,需增加的条件是____ 要使四边形ABCD成为正方形,需增加的条件是 ______
1、如图,将矩形ABCD沿AE折叠,使点D落 在BC边上的F点处。
中心对称图形
互相平分且相等
中心对称图形 轴对称图形
互相垂直平分,且每一 中心对称图形 条对角线平分一组对角 轴对称图形
互相垂直平分且相等,每 中心对称图形 一条对角线平分一组对角 轴对称图形
三、几种特殊四边形的常用判定方法:
四边形
条件
平行 1、定义:两组对边分别平行 四边形 3、一组对边平行且相等
(1)若∠BAF=60°,求∠EAF的度数; (2)若AB=6cm,
AD=10cm, 求线段CE的 长及△AEF的 面积.
4、 如图,矩形纸片ABCD中,AB=3厘米,BC=4厘 米,现将A、C重合,使纸片折叠压平,设折痕为EF。 试确定重叠部分△AEF的面积。
G
A
FD
3
4-X
1 2
B X E 4-X C
6
E
2X
C、3 3cm D、8cm
B
FC
X
3、平行四边形四个内角的平分线,如果能围成 一个四边形,那么这个四边形一定是(
)
A、矩形
B、菱形
4、如C、图正,方矩形形ABCDD中、,等O腰是梯对形角线的交点,
若AE⊥BD于E,且
A
D
OE∶OD=1∶2,
AE= 3 cm,
则∠AOD =
,
DE=
浙教版数学八年级下册第四章《平行四边形》复习总结:知识点与练习

教师:学生:时间:_ 2016 _年_ _月日段第__ 次课
ABCD中,延长
随堂练习三:
.若平行四边形的两邻边的长分别为
17在ABCD中,AB比AD大2,∠DAB的角平分线AE交CD于E,∠ABC的角平分线BF交CD于F,若平行四边形ABCD的周长为24,求CE、FD、EF的长
19已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF 是平行四边形.
20、如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形吗?说明理由.
21.如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?
22.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD•为边作等边△ADE.(1)求证:△ACD≌△CBF;
(2)当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?•证明你的结论.
23已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.。
浙教版八年级数学下册平行四边形全章复习讲义

浙教版八年级数学下册平行四边形全章复习讲义(总29页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--平行四边形全章复习巩固讲义1.平行四边形的概念定义:两组对边分别__________的四边形叫做平行四边形.平行四边形的定义既是性质,又是判定.(1)由定义知平行四边形的两组对边分别平行;(2)由定义可以得出只要四边形中的两组对边分别平行,那么这个四边形就是平行四边形.平行四边形的基本元素:边、角、对角线.典型例题(2019秋﹒新泰市期末)如图,在平行四边形ABCD中,AB⊥AC,若AB=8,AC=12,则BD的长是()A.22 B.16 C.18 D.20【考点】平行四边形的性质.平行四边形【专题】计算题;运算能力;推理能力.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA的长,然后由AB⊥AC,AB=8,OA=6,根据勾股定理可求得OB的长,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,AC=12,∴OA=12AC=6,BD=2OB,∵AB⊥AC,AB=8,∴OB=8+6=10,∴BD=2OB=20.故选:D.【点评】此题考查了平行四边形的性质以及勾股定理的运用.熟记握平行四边形的对角线互相平分这一性质是解题的关键.2.平行四边形的性质(1)平行四边形的对边相等;(2)平行四边形的对角__________;(3)平行四边形的对角线互相__________.【归纳】(1)平行四边形的性质为证明线段平行或相等、角相等提供了新的理论依据;(2)平行四边形的两条对角线将平行四边形分成的四个三角形中,相对的两个三角形全等,且四个三角形的面积相等,相邻两个三角形的周长差等于平行四边形相应的邻边之差;(3)利用对角线互相平分可以解决对角线或边的取值范围问题,在解答时应联系“三角形的两边之和大于第三边,两边之差小于第三边”来解决.典型例题(2019秋﹒新泰市期末)如图,在平行四边形ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.下列结论,其中正确的有()个①DE=DF;②AG=GF:③AF=DF:④BG=GC;⑤BF=EF,【考点】全等三角形的判定与性质;平行四边形的性质.平行四边形【专题】多边形与平行四边形;推理能力.【分析】由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,即AB∥CE,∴∠ABF=∠E,∵DE=CD,∴AB =DE ,在△ABF 和△DEF 中, ∵⎩⎪⎨⎪⎧∠ABF =∠E∠AFB =∠DFE AB =DE, ∴△ABF ≌△DEF (AAS ), ∴AF =DF ,BF =EF ; 可得③⑤正确, 故选:B .【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.3.两条平行线之间的距离定义:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.性质:(1)两条平行线之间的距离处处__________; (2)夹在两条平行线间的平行线段相等. 4.平行四边形的判定(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且__________的四边形是平行四边形; (4)两组对角分别相等的四边形是平行四边形; (5)对角线互相平分的四边形是平行四边形.【注意】(1)判定方法可作为“画平行四边形”的依据.(2)一组对边平行,另一组对边相等的四边形不一定是平行四边形,有可能是等腰梯形.(3)一组对边相等,一组对角相等的四边形也不一定是平行四边形.(4)两组邻边分别相等或两组邻角分别相等都不能判定四边形是平行四边形.5.三角形的中位线及其定理定义:连接三角形两边中点的线段(任意一个三角形都有三条中位线).定理:三角形的中位线平行于三角形的第三边,并且等于第三边的__________.【注意】(1)三角形有三条中位线,每一条中位线与第三边都有相应的位置关系与数量关系.三角形的中位线定义为证明两条直线平行、两条线段之间的数量关系提供了一个重要依据.(2)三角形的中位线与中线的区别:三角形的中位线是连接三角形两边中点的线段,三角形的中线是连接三角形顶点与其对边中点的线段.(3)当遇到中点时,可考虑构造三角形的中位线来解决问题,这种思路方法就是我们常说的“遇到中点想中位线”;相应地,知道三角形的中位线也就等于知道了三角形两边的中点.知识参考答案:1.平行 2.相等;平分 3.相等 4.相等 5.一半一、平行四边形的定义两组对边分别平行的四边形叫做平行四边形.【例1】将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为__________.【答案】3【解析】如图所示:可以拼成3个平行四边形.分别是:DBCA,BACF,AECB.故答案为:3.二、平行四边形的性质平行四边形的对边平行且相等,对角相等,邻角互补,对角线互相平分.【例2】如图,在平行四边形ABCD中,AE垂直于CD,E是垂足.如果∠B=55°,那么∠DAE的角度为A.25°B.35°C.45°D.55°【答案】B【解析】∵平行四边形ABCD,∴∠D=∠B=55°,∵AE⊥CD,∴∠AED=90°,∴∠DAE=90°–55°=35°.故选B.【名师点睛】本题主要利用平行四边形对角相等解题.【例3】在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是A.2cm<OA<5cm B.2cm<OA<8cmC.1cm<OA<4cm D.3cm<OA<8cm【答案】C【解析】∵AB=3,BC=5,∴2<AC<8.∵四边形ABCD是平行四边形,∴OA=12AC,∴1<OA<4.故选C.【例4】如图,在ABCD中,AB=4,BC=5,对角线相交于点O,过点O的直线分别交AD,BC于点E,F,且OE=,则四边形EFCD的周长为A.10 B.12 C.14D.16【答案】B【解析】∵四边形ABCD是平行四边形,∴CD=AB=4,AD=BC=5,OA=OC,AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∴△AOE≌△COF(AAS),∴OF=OE=,CF=AE.故四边形EFCD的周长为CD+EF+AD=12.故选B.三、两条平行线之间的距离两条平行间的距离处处相等.【例5】如图,已知l1∥l2,AB∥CD,CE⊥l2,FG⊥l2,下列说法错误的是A.l1与l2之间的距离是线段FG的长度B.CE=FGC.线段CD的长度就是l1与l2两条平行线间的距离D.AC=BD【答案】C【解析】A、∵FG⊥l2于点G,∴l1与l2两平行线间的距离就是线段FG的长度,故本选项正确;B、∵l1∥l2,CE⊥l2于点E,FG⊥l2于点G,∴CE∥FG,∴四边形CEGF是平行四边形,∴CE=FG,故本选项正确;C、∵CE⊥l2于点E,∴l1与l2两平行线间的距离就是线段CE的长度,故本选项错误;D、∵l1∥l2,AB∥CD,∴四边形ABDC是平行四边形,∴AC=BD,故本选项正确;故选C.四、平行四边形的判定平行四边形的判定有:①两组对边分别相等的四边形是平行四边形;②两组对边分别平行的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤有一组对边平行且相等的四边形是平行四边形.【例6】如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BC C.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO 【答案】D五、平行四边形性质与判定的综合平行四边形的性质的条件和结论正好与判定的条件和结论相反,它们构成互逆的关系.由平行四边形这一条件,得到边、角或对角线的关系,这是平行四边形的性质;反之,由边、角或对角线的关系,得到平行四边形的结论,这是平行四边形的判定.【例7】如图,在ABCD中,过点A作AM⊥BC于点M,交BD于点E,过点C作CN⊥AD于点N,交BD于点F,连接AF,CE.求证:四边形AECF为平行四边形.【解析】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠ABC=∠ADC,∴∠ABD=∠CDB,又∵AM⊥BC,CN⊥AD,∴∠BAM=∠DCN,∴△ABE≌△CDF(ASA),∴AE=CF,∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∴四边形AECF为平行四边形.六、三角形的中位线及其定理利用三角形的中位线不仅可以证明直线平行,也可以证明线段的倍分关系.【例8】如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N 是AB的中点.请判断△PMN的形状,并说明理由.【解析】△PMN是等腰三角形.理由如下:∵点P是BD的中点,点M是CD的中点,∴PM=12 BC,同理:PN=12 AD,∵AD=BC,∴PM=PN,∴△PMN是等腰三角形.基础1.在ABCD中,对角线AC,BD相交于点O,若△AOB的面积为3,则ABCD的面积为A.6 B.9 C.12 D.182.若平行四边形中两个内角的度数比为1∶2,则其中较小的内角是A.90°B.60°C.120°D.45°3.如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD周长的316,那么BC的长是A.6 B.8 C.10 D.164.如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是A.AD=BC B.OA=OCC.AB=CD D.∠ABC+∠BCD=180°5.如图,AB∥CD,AD不平行于BC,AC与BD相交于点O,写出三对面积相等的三角形是__________.6.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=22 m,则AB=__________m.7.如图,在△ABC中,AD⊥BC于点D,E,F,G分别是BC,AC,AB的中点.若AB=23BC=3DE=12,DG=12AB,求四边形DEFG的周长.8.如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1个单位长度的速度运动,同时点Q从点C 出发沿射线CB方向以每秒2个单位长度的速度运动,在线段QC上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长;(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.能力9.已知ABCD的对角线AC,BD的长分别为10,6,则AB长的范围是A.AB>2 B.AB<8 C.2<AB<8 D.2≤AB≤810.平行四边形ABCD与等边三角形AEF按如图所示的方式摆放,如果∠B=45°,则∠BAE的大小是A.75°B.80°C.100°D.120°11.如图,已知四边形ABCD中,AD∥BC,∠A=∠BCD=∠ABD,DE平分∠ADB,下列说法:①AB∥CD;②ED⊥CD;③∠DFC=∠ADC–∠DCE;④S△EDF=S△BCF,其中正确的结论是A.①②③B.①②④C.①③④D.①②③④12.如图,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点.点M ,N 分别为PA ,PB 的中点,对于下列各值:①线段MN 的长;②△PMN 的面积;③△PAB 的周长;④∠APB 的大小;⑤直线MN ,AB 之间的距离.其中会随点P 的移动而不改变的是A .①②③B .①②⑤C .②③④D .②④⑤13.如图,在△ABC 中,∠ACB =90°,AC =3,BC =4,点D 是边AB 的中点,将△ABC 沿着AB 平移到△DEF 处,那么四边形ACFB 的面积等于__________.14.如图,DE 是ABC △的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,:DMN CEM S S △△等于_________.15.如图,在ABCD 中,对角线AC ,BD 相交于点O ,OA =5cm ,E ,F 为直线BD 上的两个动点(点E ,F 始终在ABCD 的外面),且DE =12OD ,BF =12OB ,连接AE ,CE ,CF ,AF . (1)求证:四边形AFCE 为平行四边形.(2)若DE =13OD ,BF =13OB ,上述结论还成立吗由此你能得出什么结论(3)若CA 平分∠BCD ,∠AEC =60°,求四边形AECF 的周长.真题16.(2019·贵州黔东南、黔南、黔西南)如图在ABCD 中,已知AC =4 cm ,若△ACD 的周长为13 cm ,则ABCD 的周长为A .26 cmB .24 cmC .20 cmD .18 cm17.(2019·甘肃兰州)如图,将ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若48ABD ∠=︒,40CFD ∠=︒,则E ∠为A .102︒B .112︒C .122︒D .92︒18.(2019·黑龙江绥化)下列选项中,不能判定四边形ABCD 是平行四边形的是A .AD BC ∥,AB CD ∥ B .AB CD ∥,AB CD =C .AD BC ∥,AB DC = D .AB DC =,AD BC =19.(2019·内蒙古呼和浩特)顺次连接平面上A 、B 、C 、D 四点得到一个四边形,从①AB ∥CD ②BC =AD ③∠A =∠C ④∠B =∠D 四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有 A .5种B .4种C .3种D .1种20.(2019·广西玉林)在四边形ABCD 中:①AB ∥CD ;②AD ∥BC ;③AB =CD ;④AD =BC ,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有 A .3种B .4种C .5种D .6种21.(2019·四川德阳)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使3FO OC =,连接AB 、AC 、BC ,则在ABC ∆中::ABO AOC BOC S S S △△△A .621∶∶B .321∶∶C .632∶∶ D .432∶∶ 22.(2019·安徽)ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是 A .BE =DF B .AE =CF C .AF ∥CED .∠BAE =∠DCF23.(2019·广西梧州)如图,已知在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =6 cm ,则DE 的长度是__________cm .24.(2019·湖北十堰)如图,已知ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为__________.25.(2019·江苏泰州)如图,ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为__________.26.(2019·辽宁抚顺)如图,ABCD中,AB=7,BC=3,连接AC,分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于点M,N,作直线MN,交CD于点E,连接AE,则△AED的周长是__________.学科=网27.(2019·山东淄博)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于__________.28.(2019·福建)如图,ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.29.(2019·广西梧州)如图,在ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.30.(2019·辽宁大连)如图,ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.∥,31.(2019·湖北孝感)如图,B,E,C,F在一条直线上,已知AB DE∥,AC DF ,连接AD.求证:四边形ABED是平行四边形.BE CF32.(2019·江苏无锡)如图,平行四边形ABCD中,E、F分别是边BC、AD的中点,求证:∠ABF=∠CDE.33.(2019·湖北恩施州)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.34.(2019·浙江衢州)如图,在ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.35.(2019·江苏宿迁)如图,在ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.36.(2019·青海)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.(1)求证:AD BF;(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.37.(2019·云南曲靖)如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.38.(2019·黑龙江大庆)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.参考答案1.【答案】C【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△AOD=S△COD=S△BOC=S△AOB.∵△AOB的面积为3,∴ABCD的面积为4×3=12.故选C.2.【答案】B【解析】如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B∶∠C=1∶2,∴∠B=13×180°=60°,故选B.3.【答案】C【解析】∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵AB=6,且AB的长是四边形ABCD周长的316,∴四边形ABCD周长为:6÷316=32,∴AB+BC=12×32=16,∴BC=10.故选C.5.【答案】△ADC和△BDC;△ADO和△BCO;△DAB和△CAB【解析】根据AB∥CD可得:△ABC和△ABD的面积相等,△ACD和△BCD的面积相等,则△ACD的面积减去△OCD的面积等于△BCD的面积减去△OCD的面积,即△AOD和△BOC的面积相等.6.【答案】44【解析】∵E、F是AC,CB的中点,∴EF是△ABC的中位线,∴EF=12AB,∵EF=22m,∴AB=44m,故答案为44.7.【解析】∵AB=23BC=3DE=12,∴BC=18,DE=4,∴DG=12AB=6,∵E,F,G分别是BC,AC,AB的中点,∴FG=12BC=9,EF=12AB=6,∴四边形DEFG的周长为4+6+9+6=25.8.【解析】(1)作AM⊥BC于M,如图所示:∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=12BC=5,∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,∴PN=AP=t,CE=NE=5–t,∵CE=CQ–QE=2t–2,∴5–t=2t–2,解得:t=73,BQ=BC–CQ=10–2×71633;(2)存在,t=4;理由如下:若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,∴t=10–2t+2,解得:t=4,∴存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=4.9.【答案】C【解析】如图,在平行四边形ABCD中,AO=CO=5,BO=DO=3,∴2<AB<8.故选C.10.【答案】A【解析】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD=180°–∠B=180°–45°=135°,∵△AEF是等边三角形,∴∠EAF=60°,∴∠BAE=∠BAD–∠EAF=75°.故选A.11.【答案】D【解析】∵AD∥BC,∴∠A+∠ABC=180°,∠ADC+∠BCD=180°,∵∠A=∠BCD,∴∠ABC=∠ADC,∵∠A=∠BCD,∴四边形ABCD是平行四边形,∴AB∥CD.∴①正确;∵∠A=∠ABD,DE平分∠ADB,∴DE⊥AB,∴DE⊥CD,∴②正确;∵∠A=∠ABD,四边形ABCD是平行四边形,∴AD=BD=BC,∴∠BDC=∠BCD,∵AD∥BC,∴∠ADB=∠DBC,∵∠ADC=∠ADB+∠BDC,∴∠ADC=∠DBC+∠BCD,∴∠ADC–∠DCE=∠DBC+∠BCD–∠DCE=∠DBC+∠BCF,∵∠DFC=∠DBC+BCF,∴∠DFC=∠ADC–∠DCE;∴③正确;∵AB∥CD,∴△BED的边BE上的高和△EBC的边BE上的高相等,∴由三角形面积公式得:S△BED=S△EBC,都减去△EFB的面积得:S△EDF=S△BCF,∴④正确;综上得①②③④都正确,故选D.12.【答案】B【解析】∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=12AB,即线段MN的长度不变,故①正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故②正确;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故③错误;∠APB的大小点P的移动而变化,故④错误.直线MN,AB之间的距离不随点P的移动而变化,故⑤正确;综上所述,随点P的移动而不变化的是①②⑤.故选B.13.【答案】9【解析】∵将△ABC沿AB方向向右平移到△DEF,∴四边形ADFC是平行四边形,四边形ACFB是是梯形.∵∠ACB=90°,AC=3,BC=4,∴5AB=.∵点D是边AB的中点,∴AD=BD=15522⨯=,∴CF=AD=12AB52=,设AB边上的高为x.∵AB=5,AC=3,BC=4,AB边上的高为x,∴12AC·BC=12AB·x,∴125x =.∴S梯形ACFB=1512(5)9225⨯+⨯=.14.【答案】1∶3【解析】如图,作EF AD ∥,M 是DE 的中点,则△DMN ≌△EMF ,得MN =MF ,E 是AC 的中点,则FC =NF ,所以13MF MC =,得13FEM CEM S S =△△,得:DMN CEM S S △△=1∶3.16.【答案】D【解析】∵AC =4 cm ,若△ADC 的周长为13 cm ,∴AD +DC =13-4=9(cm ).又∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∴平行四边形的周长为2(AB +BC )=18 cm .故选D . 17.【答案】B【解析】∵AD BC ∥,∴ADB DBC ∠=∠,由折叠可得ADB BDF ∠=∠,∴DBC BDF ∠=∠,又∵40DFC ∠=︒,∴20DBC BDF ADB ∠=∠=∠=︒,又∵48ABD ∠=︒,∴ABD △中,1802048112A ︒︒-︒∠=-=︒,∴112E A ∠∠==︒,故选B .18.【答案】C【解析】A 、由AD BC ∥,AB CD ∥可以判断四边形ABCD 是平行四边形,故本选项不符合题意;B 、由AB CD ∥,AB CD =可以判断四边形ABCD 是平行四边形,故本选项不符合题意;C 、由AD BC ∥,AB DC =不能判断四边形ABCD 是平行四边形,故本选项符合题意; D 、由AB DC =,AD BC =可以判断四边形ABCD 是平行四边形,故本选项不符合题意,故选C . 19.【答案】C【解析】当①③时,四边形ABCD 为平行四边形;当①④时,四边形ABCD 为平行四边形;当③④时,四边形ABCD 为平行四边形,故选C . 20.【答案】B【解析】(1)①②,利用两组对边平行的四边形是平行四边形判定; (2)③④,利用两组对边相等的四边形是平行四边形判定;(3)①③或②④,利用一组对边平行且相等的四边形是平行四边形判定,共4种组合方法,故选B . 21.【答案】B【解析】如图,连接BF .设平行四边形AFEO 的面积为4m .∵FO :OC =3:1,BE =OB ,AF ∥OE ,∴S △OBF =S △AOB =m ,S △OBC =13m ,S △AOC =23m ,∴S △AOB ∶S △AOC ∶S △BOC =m ∶23m ∶13m =3∶2∶1,故选B . 22.【答案】B【解析】A 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵BE =DF ,∴OE =OF ,∴四边形AECF 是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF∥CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE∥CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.23.【答案】3【解析】∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=12BC=162=3cm,故答案为:3.24.【答案】14【解析】∵四边形ABCD是平行四边形,∴AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD的周长=5+4+5=14,故答案为:14.25.【答案】14【解析】∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14,故答案为14.26.【答案】10【解析】∵四边形ABCD是平行四边形,AB=7,BC=3,∴AD=BC=3,CD=AB=7,∵由作图可知,MN是线段AC的垂直平分线,∴AE=CE,∴△ADE的周长=AD+(DE+AE)=AD+CD=3+7=10,故答案为:10.27.【答案】10【解析】∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=2,由折叠,∠DAC=∠EAC,∵∠DAC=∠ACB,∴∠ACB=∠EAC,∴OA=OC,∵AE过BC的中点O,∴AO=12BC,∴∠BAC=90°,∴∠ACE=90°,由折叠,∠ACD=90°,∴E、C、D共线,则DE=4,∴△ADE的周长为:3+3+2+2=10,故答案为:10.28.【解析】∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,OAE OCF OA OCAOE COF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴OE=OF.29.【解析】∵ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,EAO FCO AO OCAOE COF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴AE=CF.31.【解析】∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F.∵BE=CF,∴BE+CE=CF+CE,∴BC=EF.在△ABC和△DEF中,B DEF BC EFACB F∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE.又∵AB∥DE,∴四边形ABED是平行四边形.32.【解析】在ABCD中,AD=BC,∠A=∠C,∵E、F分别是边BC、AD的中点,∴AF=CE,在△ABF与△CDE中,AB CDA C AF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△CDE(SAS),∴∠ABF=∠CDE.33.【解析】如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,ABC DEF BC EFACB DFE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.34.【解析】∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.在△ABE与△CDF中,AEB CFDBAE DCF AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴得△ABE≌△CDF(AAS),∴AE=CF.35.【解析】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∠A =∠C , ∴∠E =∠F , 又∵BE =DF , ∴AD +DF =CB +BE , 即AF =CE ,在△CEH 和△AFG 中,E F EC FA C A ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CEH ≌△AFG , ∴CH =AG .36.【解析】(1)∵E 是AB 边上的中点,∴AE BE =, ∵AD BC ∥, ∴ADE F ∠=∠,在ADE △和BFE △中,ADE F ∠=∠,DEA FEB ∠=∠,AE BE =, ∴ADE △≌BFE △, ∴AD BF =.(2)如图,过点D 作DM AB ⊥于点M ,∵AB ∥DC ,∴DM 同时也是平行四边形ABCD 的高,∴11113282244AED S AB DM AB DM =⋅⋅=⋅=⨯=△,∴32824EBCD S =-=四边形.37.【解析】(1)∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AFN=∠CEM,∵FN=EM,AF=CE,∴△AFN≌△CEM(SAS).(2)∵△AFN≌△CEM,∴∠NAF=∠ECM,∵∠CMF=∠CEM+∠ECM,∴107°=72°+∠ECM,∴∠ECM=35°,∴∠NAF=35°.38.【解析】(1)∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥F C.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形.(2)∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25 cm,AC的长5 cm,∴BC=25-AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得AB=13 cm.30。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题 平行四边形复习
知识点一:平行四边形的定义 知识点二:平行四边形的性质
1.从边看:平行四边形两组对边平行且相等; 2.从角看:平行四边形邻角互补,对角相等; 3.从对角线看:平行四边形的对角线互相平分;
4.平行四边形是中心对称图形,对角线的交点为对称中心;
5.若一条直线过平行四边形的两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中心,且这条直线二等分平行四边形的面积。
如下图:有OE=OF ,且四边形AFED 的面积等于四边形FBCE 的面积;
6. 平行四边形的对角线分平行四边形为四个等积的三角形。
例题讲解:1.如图,
的对角线和交于,,,,
则△的周长是( ).
A .56
B .45
C .51
D .59 2.
中的对角线,相交于点,,
,则取值范围 ( ).
A .
B .
C .
D . 3.
的周长为,,,与的距离,
的面积
=__________.
4. 平行四边形相邻的两个角的平分线所成的角是( ).
A .锐角
B .直角
C .钝角
D .不确定 5. 如果
的的平分线交于,且,则的度数为( ).
A .
B .
C .
D .或
6.在
中,为的中点,若,则和的夹角的度数是( ).
A .100
B .95
C .90
D .85
7. 从平行四边形的一个锐角顶点作它所对两边的高线,如果这两条高线夹角为,则这个平行四边形的内角为______________.
ABCD AC BD O 24=AC 38=BD 28=AD BOC ABCD AC BD O 10=AC 8=BD AD 1>AD 9<AD 91<<AD 0>AD ABCD 6cm 3ο60=∠B 6cm =AB AD BC ______=AE ABCD ABCD BAD ∠BC E BE AE =BAE ∠ο30ο60ο120ο60ο120ABCD M CD AD DC 2=AM BM ο
135
知识点三:1、从边上看
(1)两组对边分别平行的四边形是平行四边形。
(2)两组对边分别相等的四边形是平行四边形。
(3)一组对边平行且相等的四边形是平行四边形。
2、从角上看
两组对角分别相等的四边形是平行四边形。
3、从对角线上看
对角线互相平分的四边形是平行四边形。
典型例题:
1.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H 是OC的中点,四边形EGFH是平行四边形吗?说明理由.
2.如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?
知识点四:三角形中位线定理
1.连接三角形两边中点的线段叫做三角形的中位线。
2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。
知识点五:平行线间的距离
1.两条平行线间的距离:
(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。
注:距离是指垂线段的长度,是正值。
(2)平行线间的距离处处相等。
任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度。
两条平行线间的任何两条平行线段都是相等的。
2.平行四边形的面积:
平行四边形的面积=底×高
等底等高的平行四边形面积相等
二、中心对称
中心对称概念:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点. 中心对称的性质:
①关于中心对称的两个图形是全等形.
②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等. 典型例题:1.已知:如图,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形.
2. 如图,点P 是□ABCD 的对角线BD 上任意一点,过P 作EF ∥BC ,分别交AB 、CD 于E 、F ,过P 作HG ∥AB ,分别交AD 、BC 于G 、H ,请问四边形AEPG 和PHCF 的面积相等吗?并说明理由.
3. 已知:图7△ABC 中,AD 是中线,E 在AC 上,BE 交AD 于F ,且∠AFE=∠FAE ,试说明AC=BF.
4.
的对角线,交于点,若
的面积是,则△的面积是
_________. 5.如图,
中,,分别为,的中点,分别连结,,,,
,,则图中与△ 面积相等的三角形(不包括△)共有的
个数( ).
A .3个
B .4个
C .5个
D .6个 简单练习:
1.下列图形中,既是轴对称图形又是中心对称图形的是(
)
2.平行四边形的两条对角线分别为6和10,则其中一条边x 的取值范围为( ).
ABCD AC BD O ABCD 2cm 12BOC 2
cm ABCD E F AD CD EF EB FB AC AF CE ABE ABE A B
C
D E F
G
H
P
A B
D
C
E F
(A )4<x<6 (B )2<x<8 (C )0<x<10 (D )0<x<6 3.四边形四条边长分别是a ,b ,c ,d ,其中a ,b 为对边, 且满足a 2+b 2+c 2+d 2=2ab +2cd ,则这个四边形是 ( )
A .任意四边形
B .平行四边形 C. 对角线相等的四边形 D .对角线垂直的四边形 4.如果限定用一种正多边形镶嵌,在下面的正多边形中,不能镶嵌成一个平面的是( ) A 、正三角形 B 、正方形
C 、正五边形
D 、正六边形 5.已知下列命题①直角都相等 ②若am 2
>bm 2
则a >b
③若x 2=y 2则∣x ∣=∣y ∣其中原命题与逆命题均为真命题的个数是( ) A 、1个 B 、2个 C 、3个 D 、0个 6.如图,在Y ABCD 中,E ,F 分别是AB ,BC 的中点,则S
△BEF
等于S
Y
ABCD
的( )
A 、
16 B 、18 C 、14 D 、13
7.如图,在△ABC 中,CD 平分∠ACB ,AD ⊥CD ,E 是AB 的中
点,AC=20,BC=38,求DE 的长。
8.已知:如图,四边形AEFD 和四边形EBCF 都是平行四边形。
求证:△ABE ≌△DCF 。
9.在四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=23,AD=2,求四边形ABCD 的面积。
10.李大伯家有一口如图所示的四边形的池塘,在它的四个角上均有一棵大柳树.李大伯准备开挖池塘,使池塘面积扩大一倍,又想保持柳树不动.如果要求新池塘成平行四边形的形状.请问李大伯的愿望能否实现?若能,请画出你的设计;若不能,请说明理由.
A B
C
D E F
11.如图,△ABC 是等边三角形,D,E分别是BC,CA边上的点,且
BD=CE ,以AD为边作等边三角形ADF,使点F位于AB的同侧.求
证:∠EFD=∠EBD.
12、如图,在Y ABCD中,点E,F在AC上,且AF=CE,点G,H分别在AB,CD上,且AG=CH,AC 与GH相交于O。
求证:(1)EG∥FH
(2)GH、EF互相平分
动点题目;
1如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是平行四边形,且AB=AO,点A 的坐标为(-3,4),
点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t 秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
2.已知:如图,在直角梯形COAB中,OC AB
∥,以O为原点建立平面直角坐标系,A B C
,,三点的坐标分别为(80)(810)(04)
A B C
,,,,,,点D为线段BC的中点,动点P从点O 出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.
(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC
的面积是梯形COAB面积的2
7
?(3)动点P从点O出发,沿折线OABD的路线移动过程中,
设OPD
△的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;B
D
C
y。