导数常考题型总结

合集下载

导数大题20 种主要题型讲解

导数大题20 种主要题型讲解

答案详解:本题主要考查导数在研究函数中的应用。

(1)求出比较其与的大小,得到的单调性表,于是得到的极值。

(2)将代入到中,并求得当时,此时恒成立,即在单调递增,同理可以得到在上为增函数,则原不等式可化为在上恒成立,令,对其求导得知若为减函数时其导数恒小于,便可得到的取值范围。

(3)若存在,使得假设成立,也即在上不是单调增或单调减,故,对求导得到其极小值点为,由于解得此时,此时需证明当,使得即可,此时可取,发现成立,故的取值范围为。

答案详解(Ⅰ),由是的极值点得,所以。

于是,定义域为,,函数在上单调递增,且。

因此,当时,;当时,。

所以,在上单调递减,在上单调递增。

(Ⅱ)当,时,,故只需要证明当时,。

当时,函数在单调递增,又,,故在有唯一实根,且。

当时,;当时,;从而当时,取得最小值。

由得:,,故。

综上:当时,。

解析:本题主要考查函数的求导和函数的单调性的判断。

(Ⅰ)先对函数求导,得导函数,由题,则可得的值,当时,单调递增,求得的的取值范围即为单调增区间;当时,单调递减,求得的的取值范围即为单调减区间。

(Ⅱ)由分析知,只需证明当时,,此时通过分析函数单调性,求得即可得证。

例题5:函数。

(Ⅰ)讨论的导函数零点的个数;(Ⅱ)证明:当时,。

答案详解(Ⅰ)的定义域为,()。

当时,,没有零点;当时,因为单调递增,单调递增,所以在单调递增。

又,当满足且时,,故当时,存在唯一零点。

(Ⅱ)由(Ⅰ),可设在的唯一零点为,当时,;当时,。

故在单调递减,在单调递增,所以当时,取得最小值,最小值为。

由于,所以。

故当时,。

解析:本题主要考查导数的概念及其几何意义以及导数在函数研究中的应用。

(Ⅰ)求导得出的表达式,根据其表达式,对进行分类讨论。

当时,可知没有零点;当时,可知单调递增,且存在使得而,因此存在唯一零点。

(Ⅱ)由(Ⅰ),可设的最小值在时取到,最小值为。

写出的表达式,再运用均值不等式即可得出。

题型3:先构造,再赋值,证明和式或积式不等式例题:已知函数。

导数题型总结(12种题型)

导数题型总结(12种题型)

导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。

二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。

2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。

导数常见题型归纳

导数常见题型归纳

导数常见题型归纳1.高考命题回顾例1.(2013全国1)已知函数()f x =2x ax b ++,()g x =()xe cx d +,若曲线()yf x =和曲线()yg x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

分析:⑴2d c b 4,a ==== ⑵由⑴知()24x f 2++=x x ,()()12+=x ex g x设()()()()24122---+=-=x x x ke x f x kg x F x,则()()()122-+='xke x x F 由已知()100≥⇒≥k F ,令()k x x x F ln ,20-==⇒='①若21e k <≤则021≤<-x ,从而当()1,2x x -∈时,()0<'x F ,()x F 递减()+∞∈,1x x 时,()>'x F 0,()x F 递增。

()()()02x 111≥+-=≥x x x F F故当2-≥x 时()0≥x F 即()()x kg x f ≤恒成立。

②若2e k = 则()()()02222>-+='-ee x e x F x 。

()2->x 。

所以()x F 在()+∞-,2上单调递增,而()02=-F .所以-2x ≥时,()0≥x F 恒成立。

③若2e k >,则()()02222222<--=+-=---e k e ke F ,从而()0≥x F 不可能恒成立即()()x kg x f ≤不恒成立。

综上所述。

k 的取值范围[]2,1e例2.(2013全国2)已知函数)ln()(m x e x f x+-=.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;(Ⅱ)当2m ≤时,证明()0f x >. 分析:(Ⅰ)1m =。

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳题型一 : 利用导数研究函数的性质利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般观察两类题型:(1)谈论函数的单调性、极值、最值,(2) 利用单调性、极值、最值求参数的取值范围.【例 1】已知函数 f ( x) =ln x+ a(1 -x).(1)谈论 f ( x) 的单调性;(2)当 f x有最大值,且最大值大于a-2时,求实数a的取值范围.( )21解(1) f ( x) 的定义域为 (0 ,+∞ ) , f ′( x) =x- a.若 a≤0,则 f ′ ( x) >0,因此 f ( x) 在 (0 ,+∞ ) 上单调递加 .1若 a>0,则当 x∈ 0,a时, f ′( x) >0;当x∈1,+∞ 时, f ′x<,a()011因此 f ( x) 在 0,a上单调递加,在a,+∞ 上单调递减 .综上,知当 a≤0时, f ( x) 在(0 ,+∞ ) 上单调递加;当 a>0 时, f ( x) 在 0,1上单调递加,在1,+∞ 上单调递减 .a a(2)由 (1) 知,当 a≤0时, f ( x) 在(0 ,+∞ ) 上无最大值;1111当 a>0 时, f ( x) 在 x=a处获取最大值,最大值为 f a=ln a+ a 1-a=- ln a+ a- 1.因此f1>a-2等价于lna+ a-<a2 1 0.令g( a) =ln a+a-1,则 g( a) 在(0 ,+∞ ) 上单调递加,g(1) =0.于是,当 0<a<1 时, g( a) <0;当a>1 时, g( a) > 0.因此,实数 a 的取值范围是 (0 , 1).【类题通法】 (1) 研究函数的性质平时转变成对函数单调性的谈论,谈论单调性要先求函数定义域,再谈论导数在定义域内的符号来判断函数的单调性.(2) 由函数的性质求参数的取值范围,平时依照函数的性质获取参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则能够直接解不等式得参数的取值范围;若不等式是一个不能够直接解出的超越型不等式时,如求解 ln a +a -1<0,则需要构造函数来解 .【变式训练】 已知 a ∈ R ,函数 f ( x) = ( - x 2+ax)e x ( x ∈ R , e 为自然对数的底数 ).(1) 当 a =2 时,求函数 f ( x) 的单调递加区间;(2) 若函数 f ( x) 在 ( - 1,1) 上单调递加,求实数 a 的取值范围 .解 (1) 当 a = 2 时, f ( x) =( -x 2+2x)e x ,因此 f ′(x) = ( - 2x +2)e x +( - x 2+2x)e x= ( - x 2+2)e x .令 f ′(x)>0 ,即 ( -x 2+2)e x >0,由于 e x >0,因此- x 2+ 2>0,解得- 2<x< 2.因此函数 f ( x) 的单调递加区间是 ( - 2, 2).(2) 由于函数 f ( x) 在( -1, 1) 上单调递加,因此 f ′(x) ≥0对 x ∈( - 1,1) 都成立,由于 f ′(x) = ( - 2x +a)e x +( - x 2+ax)e x=- x 2+( a -2) x +a]e x ,因此- x 2+ ( a -2) x + a]e x ≥0 对 x ∈( - 1, 1) 都成立 .由于 e x >0,因此- x 2+( a - 2) x +a ≥0对 x ∈( - 1, 1) 都成立,x 2+2x(x +1)2- 1即 a ≥ x +1 =x +11= ( x +1) -x +1对 x ∈( - 1,1) 都成立 .11令 y =( x + 1) -x +1,则 y ′= 1+(x +1)2>0.1因此 y =( x +1) - x + 1在( -1,1) 上单调递加,因此 y<(1 +1) -1 3 3 1+1 = . 即 a ≥ .223因此实数 a 的取值范围为 a ≥2.题型二 : 利用导数研究函数零点或曲线交点问题函数的零点、方程的根、曲线的交点,这三个问题实质上同属一个问题,它们之间可相互转变,这类问题的观察平时有两类: (1) 谈论函数零点或方程根的个数; (2) 由函数零点或方程的根求参数的取值范围 .m【例 2】设函数 f(x) = ln x +x,m∈R.(1)当 m=e(e 为自然对数的底数 ) 时,求 f ( x) 的极小值;x(2) 谈论函数 g( x) =f ′(x) -3零点的个数 .e解(1) 由题设,当 m=e 时, f ( x) =ln x+x,x- e定义域为 (0 ,+∞ ) ,则 f ′(x) =x2,由f′(x)=0,得x=e.∴当 x∈(0 , e) , f ′ ( x) < 0, f ( x) 在 (0 ,e) 上单调递减,当 x∈(e,+∞ ) , f ′( x) >0,f ( x) 在(e ,+∞ ) 上单调递加,e∴当 x=e 时, f ( x) 获取极小值 f (e) =ln e +e=2,∴f ( x) 的极小值为 2.x 1 m x(2) 由题设 g( x) = f ′(x) -3=x-x2-3( x>0) ,1令g( x) =0,得 m=- x3+ x( x>0).31 3设φ( x) =-3x +x( x>0) ,则φ′(x) =- x2+ 1=- ( x-1)( x+1) ,当x∈(0 , 1) 时,φ′( x) >0,φ ( x) 在(0 , 1) 上单调递加;当x∈(1 ,+∞ ) 时,φ′( x) <0,φ ( x) 在(1 ,+∞ ) 上单调递减 .∴x= 1 是φ ( x) 的唯一极值点,且是极大值点,因此 x=1 也是φ ( x) 的最大值点 .2∴ φ( x) 的最大值为φ(1) =3.又φ(0) = 0,结合 y=φ( x) 的图象 ( 如图 ) ,2可知①当 m>3时,函数 g( x) 无零点;2②当 m=3时,函数 g( x) 有且只有一个零点;2③当 0<m<3时,函数 g( x) 有两个零点;④当 m≤0时,函数 g( x) 有且只有一个零点 .2综上所述,当 m>3时,函数 g( x) 无零点;2当 m=3或 m≤0时,函数 g( x) 有且只有一个零点;2当 0<m<3时,函数 g( x) 有两个零点 .【类题通法】利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;(2)将函数零点问题转变成方程根的问题,利用方程的同解变形转变成两个函数图象的交点问题,利用数形结合来解决 .【变式训练】函数 f ( x) =( ax2+ x)e x,其中 e 是自然对数的底数, a∈R.(1)当 a>0 时,解不等式 f ( x) ≤0;(2)当 a=0 时,求整数 t 的所有值,使方程 f ( x) = x+ 2 在 t ,t +1] 上有解 .解(1) 由于 e x>0, ( ax2+x)e x≤ 0.∴ax2+ x≤0. 又由于 a>0,1因此不等式化为x x+a≤ 0.1因此不等式 f ( x) ≤0的解集为-a,0 .(2)当 a=0 时,方程即为 xe x=x+2,由于 e x>0,因此 x=0 不是方程的解,2x因此原方程等价于 e -x- 1=0.x2令h( x) =e -x-1,x2由于 h′(x) = e +x2>0 对于 x∈( -∞, 0) ∪(0 ,+∞ ) 恒成立,因此 h x 在 -∞, 0) 和 (0,+∞ )内是单调递加函数,( ) (又 h= - ,h2h - =-3-1,(1) e 3<0(2) =e -2>0, (3)e3<0h -2) =- 2,( e >0因此方程 f x ) =x + 有且只有两个实数根且分别在区间, 和- ,- 2]上,因此整数 t 的所有值( 21 2] 3为 { - 3, 1}.题型三 : 利用导数研究不等式问题导数在不等式中的应用是高考的热点,常以解答题的形式观察,以中高档题为主,突出转变思想、函数思想的观察,常有的命题角度: (1) 证明简单的不等式; (2) 由不等式恒成立求参数范围问题;(3)不等式恒成立、能成立问题 .【例 3】设函数 f ( x) = e 2x -aln x.(1) 谈论 f ( x) 的导函数 f ′(x) 零点的个数;2 (2) 证明:当 a >0 时, f ( x) ≥2a +aln .axa(1) 解 f( x) 的定义域为 (0 ,+∞ ) , f ′( x) = 2e 2-x ( x >0).当 a ≤0时, f ′x > ,f ′ x 没有零点.( )( )2xa当 a >0 时,设 u( x) =e , v( x) =- x ,由于 u x = 2x 在 (0 ,+∞ 上单调递加, v x =- a 在 (0,+∞ ) 上单调递加,因此f ′(x 在 (0,+( ) e ) ( ) x)∞) 上单调递加 .a1又 f ′(a) >0,当 b 满足 0<b < 4且 b <4时, f ′( b) < 0( 谈论 a ≥1或 a <1 来检验 ) ,故当 a >0 时, f ′( x) 存在唯一零点 .(2)证明 由 (1) ,可设 f ′(x 在 (0 ,+∞ 上的唯一零点为 x 0,当 x ∈(0 , x 0 时, f ′ x < ;) ) ) ( ) 0当 x ∈(x 0 ,+∞ ) 时, f ′( x) >0.故 f ( x) 在(0 , x 0 ) 上单调递减,在 ( x 0,+∞ ) 上单调递加,因此当 x = x 0 时, f ( x) 获取最小值,最小值为 f ( x 0 )a由于 2e2x 0- x 0=0,因此 f ( x 0 ) = a+ 2ax 0+aln 2 2a ≥2a + aln .x 0a22故当 a >0 时, f ( x) ≥2a + aln a .【类题通法】 1. 谈论零点个数的答题模板第一步:求函数的定义域;第二步:分类谈论函数的单调性、极值;第三步:依照零点存在性定理,结合函数图象确定各分类情况的零点个数.2. 证明不等式的答题模板第一步:依照不等式合理构造函数;第二步:求函数的最值;第三步:依照最值证明不等式 .【变式训练】 已知函数 f ( x) =ax +ln x( a ∈R).(1) 若 a =2,求曲线 y =f ( x) 在 x =1 处的切线方程;(2) 求 f ( x) 的单调区间;(3) 设 g( x) =x 2-2x +2,若对任意 x 1∈ (0 ,+∞ ) ,均存在 x 2∈0,1] 使得 f ( x 1)< g( x 2) ,求 a 的取值范围 .1解(1) 由已知得 f ′(x) = 2+ x ( x>0) ,因此 f ′(1) =2+1=3,因此斜率 k = 3. 又切点为 (1 , 2) ,所以切线方程为 y - 2= 3( x - 1) ,即 3x - y - 1= 0,故曲线 y = f ( x) 在 x =1 处的切线方程为 3x -y -1=0.1 ax +1(2) f ′(x) = a + x = x ( x>0) ,①当 a ≥0时,由于 x>0,故 ax +1>0, f ′ ( x)>0 ,因此 f ( x) 的单调增区间为 (0 ,+∞ ).1②当 a<0 时,由 f ′(x) =0,得 x =- a .11在区间 0,- a 上, f ′( x )>0 ,在区间 -a ,+∞ 上, f ′( x)<0 ,因此函数 f ( x) 的单调递加区间为0,- 1 ,单调递减区间为 1.a - ,+∞ a(3) 由已知得所求可转变成 f ( x) max <g( x) max ,g( x) =( x -1) 2+1,x ∈0, 1] ,因此 g( x) max=2,由(2) 知,当 a≥0时, f ( x) 在(0 ,+∞ ) 上单调递加,值域为 R,故不吻合题意 .a时, f x在 0,-1上单调递加,在1x的极大值即为最大值,当<0-,+∞ 上单调递减,故 f( )a a( )11是f -a=- 1+ln -a=- 1-ln( -a) ,1因此 2>-1-ln( -a) ,解得 a<-e3.。

2-2导数及其应用常考题型导数的运算法则 含解析

2-2导数及其应用常考题型导数的运算法则 含解析

导数的运算法则【知识梳理】1.导数的四则运算法则(1)条件:f(x),g(x)是可导的.(2)结论:①f(x)±g(x)]′=f′(x)±g′(x).②f(x)g(x)]′=f′(x)g(x)+f(x)g′(x).③错误!′=错误!(g(x)≠0).2.复合函数的求导公式(1)复合函数的定义:①一般形式是y=f(g(x)).②可分解为y=f(u)与u=g(x),其中u称为中间变量.(2)求导法则:复合函数y=f(g(x))的导数和函数y=f(u),u =g(x)的导数间的关系为:y x′=y u′·u x′.【常考题型】题型一、利用导数四则运算法则求导典例]求下列函数的导数:(1)y=x2+log3x;(2)y=x3·e x;(3)y=错误!。

解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+错误!.(2)y′=(x3·e x)′=(x3)′·e x+x3·(e x)′=3x2·e x+x3·e x=e x(x3+3x2).(3)y′=错误!′=错误!=错误!=-错误!。

【类题通法】求函数的导数的策略(1)先区分函数的运算特点,即函数的和、差、积、商,再根据导数的运算法则求导数.(2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.【对点训练】求下列函数的导数:(1)y=sin x-2x2;(2)y=cos x·ln x;(3)y=e x sin x。

解:(1)y′=(sin x-2x2)′=(sin x)′-(2x2)′=cos x-4x。

(2)y′=(cos x·ln x)′=(cos x)′·ln x+cos x·(ln x)′=-sin x·ln x+错误!.(3)y′=错误!′=错误!=错误!=错误!题型二、复合函数的导数运算典例]求下列函数的导数:(1)y=错误!;(2)y=e sin(ax+b);(3)y=sin2错误!;(4)y=5log2(2x+1).解] (1)设y=u-错误!,u=1-2x2,则y′=(u-12)′ (1-2x2)′=错误!·(-4x)=-错误!(1-2x2)-错误!(-4x)=2x(1-2x2)-错误!。

导数常考题型

导数常考题型

导数常考题型一、用导数求函数的切线问题:[例1].已知曲线3231y x x =--,过点()1,3-作其切线,求切线方程。

1、方法提升:函数y=f(x)在点0x 处的导数的几何意义,就是曲线y=f(x)在点 P (0x ,y=f(0x ))处的切线的斜率。

也就是说,曲线y=f(x)在点P (0x , y=f(0x ))处的切线的斜率是f′(0x ) ,相应的切线方程为000y- y = f'(x )(x-x )。

二、用导数判断函数的单调性问题:[例2].求函数22ln y x x =-的单调区间。

【反思】 利用导数的符号判断函数的单调性是导数几何意义在研究曲线变化规律时的一个重要应用,它充分体现了数形结合的基本思想.因此必须重视对数学思想、方法进行归纳提炼,提高应用数学思想、方法解决问题的熟练程度,达到优化解题思维、简化解题过程的目的.我们在做题过程中需要弄清以下几点:(1) 正确理解利用导数符号判断函数的单调性的原理,掌握利用导数符号判断函数单调性的方法.(2) 在利用导数符号讨论函数的单调区间时,首先要确定函数的定义域.解决问题的过程只能在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.(3) 注意在某一区间内f ′(x )>0或(f ′(x )<0)是函数f (x )在该区间上为增(减)函数的充分条件.2、方法提升:利用导数判断函数的单调性的步骤是:(1)确定f(x)的定义域;(非常的重要)★(2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)确定f(x)的单调区间.(若在函数式中含字母系数,往往要分类讨论。

)三、用导数求函数的极值问题:[例3].求函数2221x y x =-+的极值3、方法提升:求可导函数极值的步骤是:(1)确定函数定义域,求导数f′(x);(2)求f′(x)= 0的所有实数根;(3)对每个实数根进行检验,判断在每个根(如0x )的左右侧,导函数f′(x)的符号如何变化,如果f′(x)的符号由正变负,则f(0x )是极大值;如果f′(x)的符号由负变正,则f(0x )是极小值.。

高中数学导数题型归纳总结

高中数学导数题型归纳总结

高中数学导数题型归纳总结高中数学中,导数是一个重要的概念,它是微积分的基础。

在考试中,导数题型往往是必考的内容。

为了帮助同学们更好地复习导数,下面对高中数学导数题型进行归纳总结。

1. 求函数的导数:这是最基本的导数题型,要求根据函数的定义求出其导数。

常见的函数包括多项式函数、指数函数、对数函数、三角函数等。

2. 导数的四则运算:利用导数的基本性质,可以进行导数的四则运算。

例如,两个函数的和、差、积或商的导数可以通过分别求出函数的导数,然后利用四则运算的性质计算得到。

3. 链式法则:当函数是复合函数时,可以使用链式法则进行求导。

链式法则的基本思想是将复合函数分解为内层函数和外层函数,并利用导数的链式法则求出导数。

4. 隐函数求导:当一个函数的表达式中包含未知数的隐式关系时,可以利用隐函数求导的方法求出导数。

常见的隐函数求导题型包括求曲线的切线斜率、求极值等。

5. 参数方程求导:当函数由参数表示时,可以通过对参数方程进行求导,然后用参数方程的导数表达式消去参数,得到函数的导数。

6. 反函数求导:如果函数存在反函数,可以利用反函数求导的方法求出导数。

反函数求导的基本思想是将函数的自变量和因变量互换,然后求出反函数的导数。

7. 极限与导数:导数的定义中包含了极限的概念,所以在求导过程中经常需要应用极限的性质。

例如,使用极限的性质求出函数导数的极限,或者利用导数的定义证明极限存在等。

除了上述的题型,还有一些常见的应用题型,如最值问题、曲线的凹凸性、切线和法线方程等。

这些题型往往需要综合运用导数的概念和性质进行解答。

总之,高中数学导数题型的归纳总结包括基本的导数求法、导数的四则运算、链式法则、隐函数求导、参数方程求导、反函数求导以及与极限的关系等。

通过对这些题型的理解和熟练掌握,可以帮助同学们更好地应对高中数学考试中的导数题目。

高中数学导数大题八类题型总结

高中数学导数大题八类题型总结

导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。

(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.平均变化率
Δf f(x2)-f(x1) 函数 f(x)从 x1 到 x2 的平均变化率Δx= x2-x1 .
2.导数的概念
函数 y=f(x)在 x=x0 处的瞬时变化率是
Δxli→m 0
f(x0+Δx)-f(x0)
f′(x0)或 y′|x=x0 即 f′(x0)=
Δxli→m 0
f(x0+Δx)-f(x0)
3.导数的几何意义
Δx
Δx
.
lim
Δf
=Δx→0 Δx,我们称它为函数 y=f(x)在 x=x0 处的导数,记作
函数 f(x)在 x=x0 处的导数就是切线的斜率 k,即 k=
Δxli→m 0
f(x0+Δx)-f(x0)
4.导函数(导数)
Δx
=f′(x0).
当 x 变化时,f′(x)便是 x 的一个函数,我们称它为 f(x)的导函数(简称导数),y=f(x)的
导函数有时也记作 y′,即 f′(x)=y′=Δxli→m0
5.几种常见函数的导数
(1)c′=0(c 为常数),(xn)′=nxn-1(n∈Z)
(2)(sinx)′=cosx,(cosx)′=-sinx
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
答案:B
4.已知一个物体的运动方程是s=1-t+t2,其中s的单位是米,t的单位是秒,那么该 物体在3秒末的瞬间速度是________.
解析:s′=-1+2t,∴s′|t=3=-1+6=5. 答案:5米/秒 5.设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),¡­,fn+1(x)=fn′(x),n∈N,则f2008(x) =__________.
系为( )
A.k1>k2 B.k1<k2 C.k1=k2 D.不确定 解析:∵y=sinx,∴y′=(sinx)′=cosx,
π k1=cos0=1,k2=cos2=0,∴k1>k2.
3.函数y=xcosx-sinx的导数为( )
A.xsinx
B.-xsinx C.xcosx
解析:y′=(xcosx)′-(sinx)′=x′cosx+x(cosx)′-cosx=cosx-xsinx-cosx=-xsinx.
解析:f1(x)=cosx,f2(x)=-sinx,f3(x)=-cosx,f4(x)=sinx
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
变化率与导数、导数的运算 考纲要求 1.导数概念及其几何意义 (1)通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的 实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵. (2)通过函数图象直观地理解导数的几何意义. 2.导数的运算 (1)能根据导数的定义求函数 y=C,y=x,y=x2,y=x3,y= ,y= 的导数. (2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求 简单的复合函数〔仅限于形如 f(ax+b)〕的导数. (3)会使用导数公式表.
1
1.f(x)=ax3+3x2+2,若 f′(-1)=4,则 a 的值等于( )
19
A. 3 B. 3
16
C. 3
13
10 解析:f′(x)=3ax2+6x,f′(-1)=3a-6=4,a= 3 .
D. 3
10
π 2.设正弦函数 y=sinx 在 x=0 和 x=2附近的平均变化率为 k1,k2,则 k1,k2 的大小关
f(x+Δx)-f(x)
Δx .
1
(3)(lnx)′=x,(logax)′=xlogae
(4)(ex)′=ex,(ax)′=axlna
6.函Байду номын сангаас的和、差、积、商的导数
(u±v)′=u′±v′,(uv)′=u′v+uv′ u u′v-uv′
(v)′= v2 ,(cu)′=cu′(c 为常数).
7.复合函数的导数
相关文档
最新文档