顺序结构、动态链表结构下的一元多项式的加法、减法、乘法的实现。
第1关:基于链表的两个一元多项式的基本运算

第1关:基于链表的两个一元多项式的基本运算在计算机科学中,一元多项式是常见的代数表达式形式,通常用来表示多项式函数。
虽然一元多项式的计算看似简单,但如果使用数据结构来实现,将会大大提高计算效率。
这篇文档将详细介绍基于链表的两个一元多项式的基本运算。
一元多项式的定义:在代数学中,一元多项式是一种含有一个未知数的代数多项式。
它是指一个代数式,它是由保持仅仅又有限个多项式的乘积。
此外,一元多项式在基本运算方面具有封闭性,这也是为什么它被广泛应用的原因之一。
在这里,我们将讨论在计算机科学中对一元多项式的实现。
链表的定义:链表是一种线性数据结构,其中数据元素不是常规的数组索引组织,而是通过信息存储元素之间的链来相互连接。
每个元素被称为节点,并且每个节点包含一个下一个节点的指针。
基于链表的一元多项式的实现:基于链表的一元多项式的实现涉及到将每个多项式的系数和指数存储为链表中的节点。
这种实现的主要优点是,它可以轻松地进行添加和删除操作,可以有效地分配内存,而不会浪费存储空间。
考虑到一元多项式的基本运算包括加法,减法和乘法,我们将详细介绍每种操作的实现。
一、基于链表的两个一元多项式的加法操作在实现一元多项式加法时,我们需要创建两个链表来存储两个多项式。
链表节点应该包含两个属性:系数和指数。
然后我们可以使用以下方法将两个多项式相加。
1. 定义两个指针p1和p2分别指向多项式链表的头部。
2. 定义一个新链表,用于存储相加的项。
3. 当p1和p2都不为空时循环进行以下操作:a. 如果p1当前节点的指数小于p2当前节点的指数,则将p1的节点添加到新链表中并将p1指针向下移动一个节点。
b. 如果p1当前节点的指数大于p2当前节点的指数,则将p2的节点添加到新链表中并将p2指针向下移动一个节点。
c. 如果p1和p2当前节点的指数相等,则将两个节点的系数相加,并将结果添加到新链表中,并将p1和p2指针都向下移动一个节点。
的所有剩余项添加到新链表中。
数据结构课程设计-一元多项式的加法、减法、乘法的实现

数据结构课程设计-一元多项式的加法、减法、乘法的实现一、设计题目一元多项式的加法、减法、乘法的实现。
二、主要内容设有一元多项式A m(x)和B n(x).A m(x)=A0+A1x1+A2x2+A3x3+… +A m x mB n(x)=B0+B1x1+B2x2+B3x3+… +B n x n请实现求M(x)= A m(x)+B n(x)、M(x)= A m(x)-B n(x)和M(x)=A m(x)×B n(x)。
要求:1) 首先判定多项式是否稀疏2) 采用动态存储结构实现;3) 结果M(x)中无重复阶项和无零系数项;4) 要求输出结果的升幂和降幂两种排列情况三、具体要求及应提交的材料1.每个同学以自己的学号和姓名建一个文件夹,如:“312009*********张三”。
里面应包括:学生按照课程设计的具体要求所开发的所有源程序(应该放到一个文件夹中)、任务书和课程设计说明书的电子文档。
2.打印的课程设计说明书(注意:在封面后夹入打印的“任务书”以后再装订)。
四、主要技术路线提示为把多个小功能结合成一个完整的小软件,需使用“菜单设计”技术(可以是控制台方式下的命令行形式,若能做成图形方式则更好)。
五、进度安排共计两周时间,建议进度安排如下:选题,应该在上机实验之前完成需求分析、概要设计可分配4学时完成详细设计可分配4学时调试和分析可分配10学时。
2学时的机动,可用于答辩及按教师要求修改课程设计说明书。
注:只用课内上机时间一般不能完成设计任务,所以需要学生自行安排时间做补充。
六、推荐参考资料(不少于3篇)[1]苏仕华等编著,数据结构课程设计,机械工业出版社,2007[2]严蔚敏等编著,数据结构(C语言版),清华大学出版社,2003[3]严蔚敏等编著,数据结构题集(C语言版),清华大学出版社,2003指导教师签名日期年月日系主任审核日期年月日摘要分析了matlab,mathmatic,maple等数学软件对一元多项式的计算过程,步骤后。
《算法设计综合实训》题目讲解

算法设计综合实训题目0.逆序数字(借助栈)编写一个函数,接收一个4位整数值,返回这个数中数字逆序后的结果值。
例如,给定数7631,函数返回1367.输入:第一行一个正整数T(T<=10),表示有T组测试数据; 以下T行,每行一个非负的整数N。
输出:共T行,对于每组输入数据输出一行,即数字逆序后的结果值。
样本输入:3763110185158样本输出:1367810185151.人见人爱A+B这个题目的A和B不是简单的整数,而是两个时间,A和B 都是由3个整数组成,分别表示时分秒,比如,假设A为34 45 56,就表示A所表示的时间是34小时 45分钟 56秒。
输入:输入数据有多行组成,首先是一个整数N,表示测试实例的个数,然后是N行数据,每行有6个整数AH,AM,AS,BH,BM,BS,分别表示时间A和B所对应的时分秒。
题目保证所有的数据合法。
输出:对于每个测试实例,输出A+B,每个输出结果也是由时分秒3部分组成,同时也要满足时间的规则(即:分和秒的取值范围在0-59),每个输出占一行,并且所有的部分都可以用32位整数表示。
样本输入:21 2 3 4 5 634 45 56 12 23 34样本输出:5 7 947 9 302.敲七【问题描述】输出7和7的倍数,还有包含7的数字例如(17,27,37...70,71,72,73...)【要求】【数据输入】一个整数N。
(N不大于30000)【数据输出】从小到大排列的不大于N的与7有关的数字,每行一个。
【样例输入】20【样例输出】714173.统计同成绩学生人数问题【问题描述】读入N名学生的成绩,将获得某一给定分数的学生人数输出。
【要求】【数据输入】测试输入包含若干测试用例,每个测试用例的格式为第1行:N第2行:N名学生的成绩,相邻两数字用一个空格间隔。
第3行:给定分数当读到N=0时输入结束。
其中N不超过1000,成绩分数为(包含)0到100之间的一个整数。
c语言数据结构实现——一元多项式的基本运算

文章标题:深入理解C语言中的数据结构实现——一元多项式的基本运算在C语言中,数据结构是非常重要的一个概念,它为我们处理各种复杂的数据提供了便利。
其中,一元多项式的基本运算是数据结构中的一个重要内容,它涉及到多种数据结构的操作和算法,是我们学习C 语言中数据结构的一个重要入口。
在本文中,我们将深入探讨C语言中一元多项式的基本运算,帮助读者更深入地理解这一重要的概念。
一、一元多项式的表示方式在C语言中,一元多项式可以使用数组来表示。
每个数组元素对应一个项,数组的下标对应每一项的次数,数组的值对应该项的系数。
一个一元多项式可以表示为:```cfloat polynomial[10] = {0, 1, 2, 0, 4}; // 表示多项式 1 + 2x + 4x^4 ```二、一元多项式的基本运算1. 一元多项式的加法有两个多项式 A 和 B,它们分别表示为 `float polynomialA[10]` 和`float polynomialB[10]`,那么它们的加法运算可以表示为:```cfor (int i = 0; i < 10; i++) {polynomialC[i] = polynomialA[i] + polynomialB[i];}```2. 一元多项式的减法一元多项式的减法是指将两个多项式相减得到一个新的多项式。
与加法类似,多项式 A 和 B 的减法运算可以表示为:```cfor (int i = 0; i < 10; i++) {polynomialC[i] = polynomialA[i] - polynomialB[i];}```3. 一元多项式的乘法式 A 和 B 的乘法运算可以表示为:```cfor (int i = 0; i < 10; i++) {for (int j = 0; j < 10; j++) {polynomialC[i+j] += polynomialA[i] * polynomialB[j];}}```4. 一元多项式的除法一元多项式的除法涉及到较为复杂的算法,需要考虑余数和商的处理。
c语言数据结构实现——一元多项式的基本运算

c语言数据结构实现——一元多项式的基本运算在C语言中,一元多项式的表示与运算是常见的数据结构操作之一。
一元多项式由一系列具有相同变量的单项式组成,每个单项式由系数和指数组成。
本文将介绍如何使用C语言实现一元多项式的基本运算,包括多项式的创建、求和、差、乘积等操作。
首先,我们需要定义一个结构体来表示单项式。
每个单项式由一个系数和一个指数组成,我们可以将其定义如下:```cstruct term{float coefficient; // 系数int exponent; // 指数};typedef struct term Term;```接下来,我们可以定义一个结构体来表示一元多项式。
一元多项式由一系列单项式组成,可以使用一个动态数组来存储这些单项式。
```cstruct polynomial{Term* terms; // 单项式数组int num_terms; // 单项式数量};typedef struct polynomial Polynomial;```现在,我们可以开始实现一元多项式的基本运算了。
1. 创建一元多项式要创建一元多项式,我们需要输入每个单项式的系数和指数。
我们可以使用动态内存分配来创建一个适应输入的单项式数组。
```cPolynomial create_polynomial(){Polynomial poly;printf("请输入多项式的项数:");scanf("%d", &poly.num_terms);poly.terms = (Term*)malloc(poly.num_terms * sizeof(Term));for(int i = 0; i < poly.num_terms; i++){printf("请输入第%d个单项式的系数和指数:", i+1);scanf("%f %d", &poly.terms[i].coefficient, &poly.terms[i].exponent);}return poly;}```2. 求两个一元多项式的和两个一元多项式的和等于对应指数相同的单项式系数相加的结果。
顺序链式一元多项式加法,减法,乘法运算的实现

顺序链式一元多项式加法,减法,乘法运算的实现1.1设计内容及要求 1)设计内容(1)使用顺序存储结构实现多项式加、减、乘运算。
例如:10321058)(2456+-+-+=x x x x x x f ,x x x x x x g +--+=23451020107)(求和结果:102220128)()(2356++-+=+x x x x x g x f (2)使用链式存储结构实现多项式加、减、乘运算,10305100)(1050100+-+=x x x x f ,x x x x x x g 320405150)(10205090+++-=求和结果:1031040150100)()(102090100++-++=+x x x x x x g x f 2)设计要求(1)用C 语言编程实现上述实验内容中的结构定义和算法。
(2)要有main()函数,并且在main()函数中使用检测数据调用上述算法。
(3)用switch 语句设计如下选择式菜单。
***************数据结构综合性实验**************** *******一、多项式的加法、减法、乘法运算********** ******* 1.多项式创建********** ******* 2.多项式相加********** ******* 3.多项式相减***************** 4.多项式相乘 ********** ******* 5.清空多项式 ********** ******* 0.退出系统 ********** ******* 请选择(0—5) ********** **************************************************请选择(0-5):1.2数据结构设计根据下面给出的存储结构定义:#define MAXSIZE 20 //定义线性表最大容量//定义多项式项数据类型typedef struct{float coef; //系数int expn; //指数}term,elemType;typedef struct{term terms[MAXSIZE]; //线性表中数组元素int last; //指向线性表中最后一个元素位置}SeqList;typedef SeqList polynomial;1.3基本操作函数说明polynomial*Init_Polynomial();//初始化空的多项式int PloynStatus(polynomial*p)//判断多项式的状态int Location_Element(polynomial*p,term x)在多项式p中查找与x项指数相同的项是否存在int Insert_ElementByOrder(polynomial*p,term x)//在多项式p中插入一个指数项xint CreatePolyn(polynomial*P,int m)//输入m项系数和指数,建立表示一元多项式的有序表p char compare(term term1,term term2)//比较指数项term1和指数项term2polynomial*addPloyn(polynomial*p1,polynomial*p2)//将多项式p1和多项式p2相加,生成一个新的多项式polynomial*subStractPloyn(polynomial*p1,polynomial*p2) //多项式p1和多项式p2相减,生成一个新的多项式polynomial*mulitPloyn(polynomial*p1,polynomial*p2) //多项式p1和多项式p2相乘,生成一个新的多项式void printPloyn(polynomial*p)//输出在顺序存储结构的多项式p1.4程序源代码#include#include#include#define NULL 0#define MAXSIZE 20typedef struct{float coef;int expn;}term,elemType;typedef struct{term terms[MAXSIZE];int last;}SeqList;typedef SeqList polynomial; void printPloyn(polynomial*p); int PloynStatus(polynomial*p) {if(p==NULL){return -1;}else if(p->last==-1){return 0;}else{return 1;}}polynomial*Init_Polynomial() {polynomial*P;P=new polynomial;if(P!=NULL){P->last=-1;return P;}else{return NULL;}}void Reset_Polynomial(polynomial*p){if(PloynStatus(p)==1){p->last=-1;}}int Location_Element(polynomial*p,term x){int i=0;if(PloynStatus(p)==-1)return 0;while(i<=p->last && p->terms[i].expn!=x.expn) { i++;}if(i>p->last){return 0;}else{return 1;}}int Insert_ElementByOrder(polynomial*p,term x) { int j;if(PloynStatus(p)==-1)return 0;if(p->last==MAXSIZE-1){cout<<"The polym is full!"<<endl;< p=""> return 0;}j=p->last;while(p->terms[j].expn=0){p->terms[j+1]=p->terms[j];j--;}p->terms[j+1]=x;p->last++;return 1;}int CreatePolyn(polynomial*P,int m){float coef;int expn;term x;if(PloynStatus(P)==-1)return 0;if(m>MAXSIZE){printf("顺序表溢出\n");return 0;}else{printf("请依次输入%d对系数和指数...\n",m); for(int i=0;i<m;i++)< p="">scanf("%f%d",&coef,&expn);x.coef=coef;x.expn=expn;if(!Location_Element(P,x)){Insert_ElementByOrder(P,x);}}}return 1;}char compare(term term1,term term2) { if(term1.expn>term2.expn){return'>';}else if(term1.expn<term2.expn)< p=""> {return'<';}{return'=';}}polynomial*addPloyn(polynomial*p1,polynomial*p2) { int i,j,k;i=0;j=0;k=0;if((PloynStatus(p1)==-1)||(PloynStatus(p2)==-1)) { return NULL;}polynomial*p3=Init_Polynomial();while(i<=p1->last && j<=p2->last){switch(compare(p1->terms[i],p2->terms[j])){case'>':p3->terms[k++]=p1->terms[i++];p3->last++;break;case'<':p3->terms[k++]=p2->terms[j++];p3->last++;break;case'=':if(p1->terms[i].coef+p2->terms[j].coef!=0){p3->terms[k].coef=p1->terms[i].coef+p2->terms[j].coef;p3->terms[k].expn=p1->terms[i].expn;k++;p3->last++;}i++;j++;}}while(i<=p1->last){p3->terms[k++]=p1->terms[i++];p3->last++;}return p3;}polynomial*subStractPloyn(polynomial*p1,polynomial*p2) { int i;i=0;if((PloynStatus(p1)!=1)||(PloynStatus(p2)!=1)){return NULL;}polynomial*p3=Init_Polynomial();p3->last=p2->last;for(i=0;i<=p2->last;i++){p3->terms[i].coef=-p2->terms[i].coef;p3->terms[i].expn=p2->terms[i].expn;}p3=addPloyn(p1,p3);return p3;}polynomial*mulitPloyn(polynomial*p1,polynomial*p2){int i;int j;int k;i=0;if((PloynStatus(p1)!=1)||(PloynStatus(p2)!=1)){return NULL;}polynomial*p3=Init_Polynomial();polynomial**p=new polynomial*[p2->last+1];for(i=0;i<=p2->last;i++){for(k=0;k<=p2->last;k++){p[k]=Init_Polynomial();p[k]->last=p1->last;for(j=0;j<=p1->last;j++){p[k]->terms[j].coef=p1->terms[j].coef*p2->terms[k].coef; p[k]->terms[j].expn=p1->terms[j].expn+p2->terms[k].expn; }p3=addPloyn(p3,p[k]);}}return p3;}void printPloyn(polynomial*p){int i;for(i=0;i<=p->last;i++){if(p->terms[i].coef>0 && i>0)cout<<"+"<terms[i].coef;elsecout<terms[i].coef;cout<<"x^"<terms[i].expn;}cout<<endl;< p="">}void menu(){cout<<"\t\t*******数据结构综合性实验*********"<<endl;< p="">cout<<"\t\t***一、多项式的加、减、乘法运算***"<<endl;< p="">cout<<"\t\t******* 1.多项式创建*********"<<endl;< p="">cout<<"\t\t******* 2.多项式相加*********"<<endl;< p="">cout<<"\t\t******* 3.多项式相减*********"<<endl;< p="">cout<<"\t\t******* 4.多项式相乘*********"<<endl;< p="">cout<<"\t\t******* 5.清空多项式*********"<<endl;< p="">cout<<"\t\t******* 0.退出系统*********"<<endl;< p="">cout<<"\t\t****** 请选择(0-5) ********"<<endl;< p="">cout<<"\t\t***********************************"<<="">void main(){int sel;polynomial*p1=NULL;polynomial*p2=NULL;polynomial*p3=NULL;while(1){menu();cout<<"\t\t*请选择(0-5):";cin>>sel;switch(sel){case 1:p1=Init_Polynomial();p2=Init_Polynomial();int m;printf("请输入第一个多项式的项数:\n"); scanf("%d",&m); CreatePolyn(p1,m);printf("第一个多项式的表达式为p1="); printPloyn(p1); printf("请输入第二个多项式的项数:\n"); scanf("%d",&m); CreatePolyn(p2,m);printf("第二个多项式的表达式为p2="); printPloyn(p2); break;case 2:printf("p1+p2=");if((p3=subStractPloyn(p1,p2))!=NULL) printPloyn(p3); break;case 3:printf("\np1-p2=");if((p3=subStractPloyn(p1,p2))!=NULL)printPloyn(p3);break;case 4:printf("\np1*p2=");if((p3=mulitPloyn(p1,p2))!=NULL) printPloyn(p3);case 5:Reset_Polynomial(p1);Reset_Polynomial(p2);Reset_Polynomial(p3);break;case 0:return;}}return;}1.5程序执行结果</endl;<></endl;<></endl;<></endl;<></endl;<></endl;<></endl;<></endl;<></endl;<></endl;<></term2.expn)<> </m;i++)<></endl;<>。
数据结构课程设计报告顺序结构动态链表结构下的一元多项式的加法减法乘法的实现。

山东理工大学计算机学院课程设计(数据结构)级班名姓号学指导教师二○一二年一月十日课程设计任务书及成绩评定顺序结构、动态链表结构下的一元多项式的加法、减法、乘法的课题名称实现。
Ⅰ、题目的目的和要求:1. 巩固和加深对数据结构的理解,通过上机实验、调试程序,加深对课本知识的理解,最终使学生能够熟练应用数据结构的知识写程序。
1)通过本课程的学习,能熟练掌握几种基本数据结构的基本操作。
2)能针对给定题目,选择相应的数据结构,分析并设计算法,进而给出问题的正确求解过程并编写代码实现。
2.设计题目要求:1)首先判定多项式是否稀疏2)分别采用顺序和动态存储结构实现;结果M(x)3)中无重复阶项和无零系数项;要求输出结果的升幂和降幂两种排列情况; 4)Ⅱ、设计进度及完成情况Ⅲ、主要参考文献及资料[1] 严蔚敏数据结构(C语言版)清华大学出版社 1999[2] 严蔚敏数据结构题集(C语言版)清华大学出版社 1999[3] 谭浩强 C语言程序设计清华大学出版社[4] 与所用编程环境相配套的C语言或C++相关的资料Ⅳ、成绩评定:设计成绩:(教师填写)(签字)指导老师:日十月一年二○一二目录第一章概述 (1)第二章系统分析 (2)第三章概要设计 (3)第四章详细设计 (4)第五章运行与测试 (17)第六章总结与心得 (19)20参考文献……………………………………………………………….第一章概述课程设计是实践性教学中的一个重要环节,它以某一课程为基础,可以涉及和课程相关的各个方面,是一门独立于课程之外的特殊课程。
课程设计是让同学们对所学的课程更全面的学习和应用,理解和掌握课程的相关知识。
《数据结构》是一门重要的专业基础课,是计算机理论和应用的核心基础课程。
数据结构课程设计,要求学生在数据结构的逻辑特性和物理表示、数据结构的选择和应用、算法的设计及其实现等方面,加深对课程基本内容的理解。
同时,在程序设计方法以及上机操作等基本技能和科学作风方面受到比较系统和严格的训练。
数据结构PTA-一元多项式的乘法与加法运算数组链表

数据结构PTA-⼀元多项式的乘法与加法运算数组链表⼀元多项式的乘法与加法运算输⼊格式:输⼊分2⾏,每⾏分别先给出多项式⾮零项的个数,再以指数递降⽅式输⼊⼀个多项式⾮零项系数和指数(绝对值均为不超过1000的整数)。
数字间以空格分隔。
输出格式:输出分2⾏,分别以指数递降⽅式输出乘积多项式以及和多项式⾮零项的系数和指数。
数字间以空格分隔,但结尾不能有多余空格。
零多项式应输出0 0。
输⼊样例:4 3 4 -5 26 1 -2 03 5 20 -74 3 1输出样例:15 24 -25 22 30 21 -10 20 -21 8 35 6 -33 5 14 4 -15 3 18 2 -6 15 20 -4 4 -5 2 9 1 -2 0思路⽤了太多次链表实在是⽤吐了,虽然运⾏起来很爽,但是编写太⿇烦了,换数组解决。
这⾥参考了⼀下其他⼤佬的思路问题的关键在于变量其实是两个(指数和系数),放在⼀起紧挨着或分成两个数组都不好处理,尤其是多项式相乘是⼀种交叉相乘的计算。
⽐较巧妙的处理⽅式是将取数组的位置为指数,该位置对应的值为系数。
应注意反之不可,因为可以存在n倍的x0(即常数),⽽不存在0倍的x n。
区别于其他⼲扰数可以通过初始化数组为0来实现。
参考:https:///yuxiaoba/p/8326018.htmlhttps:///Jie-Fei/p/10138885.html代码:#include<bits/stdc++.h>using namespace std;#define P 10000int main(){int a[10000]= {0},b[10000]= {0};//输⼊数组int c[10000]= {0},d[10000]= {0};//结果数组int n,m;int i,j;int flag; //⽤于判断输出空格int x,y; //系数&指数scanf("%d",&n);for(i=0; i<n; i++){scanf("%d %d",&x,&y);a[y]=x; //指数为位置,系数为数组}scanf("%d",&m); //同上输⼊for(i=0; i<m; i++){scanf("%d %d",&x,&y);b[y]=x;}for(i=P-1; i>=0; i--) //////////两数相乘{if(a[i]!=0){for(j=0; j<P; j++){if(b[j]!=0){c[i+j]+=a[i]*b[j];}}}}flag=0; //输出乘式 for(i=P-1; i>=0; i--){if(c[i]!=0){if(flag!=0)printf(" ");printf("%d %d",c[i],i);flag++;}}if(flag==0 ) //扣分点{printf("0 0");}printf("\n"); //换⾏for(i=P-1; i>=0; i--) //两式相加 {if(a[i]!=0)d[i]+=a[i];if(b[i]!=0)d[i]+=b[i];}flag=0; //输出加式 for(i=P-1; i>=0; i--){if(d[i]!=0){if(flag!=0)printf(" ");printf("%d %d",d[i],i);flag++;}}if(flag==0 ) //扣分点{printf("0 0");}}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计(数据结构)班级姓名学号指导教师二○一○年七月十日课程设计任务书及成绩评定课题名称顺序结构、动态链表结构下的一元多项式的加法、减法、乘法的实现。
Ⅰ、题目的目的和要求1、设计目的巩固和加深对数据结构的理解,通过上机实验、调试程序,加深对课本知识的理解,最终使学生能够熟练应用数据结构的知识写程序。
(1)通过本课程的学习,能熟练掌握几种基本数据结构的基本操作。
(2)能针对给定题目,选择相应的数据结构,分析并设计算法,进而给出问题的正确求解过程并编写代码实现。
2、设计题目要求(给出你所选择的题目的要求描述)1)首先判定多项式是否稀疏2)分别采用顺序和动态存储结构实现;3)结果M(x)中无重复阶项和无零系数项;4)要求输出结果的升幂和降幂两种排列情况;Ⅱ、设计进度及完成情况Ⅲ、主要参考文献及资料[1] 严蔚敏.数据结构(C语言版).清华大学出版社,2007[2] 严蔚敏.数据结构题集(C语言版).清华大学出版社,2007[3] 谭浩强.C语言程序设计.清华大学出版社,2005[4] 与所用编程环境相配套的C语言或C++相关的资料Ⅳ、成绩评定设计成绩:(教师填写)指导老师:(签字)二○一○年七月十日目录第一章概述 (1)第二章系统分析 (1)第三章概要设计 (2)第四章详细设计 (3)第五章运行与测试 (13)第六章总结与心得 (16)参考文献 (17)本目录是根据正文文档自动生成的,请在报告完成后,更新目录的页码,更新方法如下:1.鼠标单击目录任意部分选中目录;2.单击鼠标右键选择“更新域”;3.在出现的“更新目录”的对话框中选择“只更新页码”,见图1-3,单击“确定”按钮,目录页码将被更新。
更新完成后,最好再核对一下。
图1-3 更新目录页码示意图第一章概述课程设计是实践性教学中的一个重要环节,它以某一课程为基础,可以涉及和课程相关的各个方面,是一门独立于课程之外的特殊课程。
课程设计是让同学们对所学的课程更全面的学习和应用,理解和掌握课程的相关知识。
《数据结构》是一门重要的专业基础课,是计算机理论和应用的核心基础课程。
数据结构课程设计,要求学生在数据结构的逻辑特性和物理表示、数据结构的选择和应用、算法的设计及其实现等方面,加深对课程基本内容的理解。
同时,在程序设计方法以及上机操作等基本技能和科学作风方面受到比较系统和严格的训练。
在这次的课程设计中我选择的题目是顺序结构、动态链表结构下的一元多项式的加法、减法、乘法的实现。
分别采用顺序结构和链式存储结构,利用多项得结果,最后得多项式中不含有重复阶项和零系数得项。
除此之外,还得分为降幂和升幂两种排序方式。
第二章系统分析1.顺序结构、动态链表结构下的一元多项式的加法、减法、乘法的实现。
可以分为几个模块:输入模块、输出模块(升幂降幂)、数据处理模块(多项式的加减乘)、主程序模块。
2.在程序过程中加入汉字提示符,让读者清楚明白的操作该程序。
运行程序时看起来简洁有序,操作简单明了。
3.程序执行时的命令:①选择创建两个一元多项式②输入第一个一元多项式的项数③依次输入一元多项式的系数和指数④以相同方式输入第二个一元多项式⑤选择操作方式⑥选择降幂或升幂排序⑦输出结果⑧是否退出4.测试数据。
输入的一元多项式系数指数分别为7 0,3 1,9 8,5 17和8 1,22 7,-9 8。
加法结果为;升幂降幂减法结果为:升幂降幂乘法结果为:升幂降幂第三章概要设计1、数据结构的设计在该程序中分别分为顺序存储和链式存储结构。
2、算法的设计本程序主要分为四大模块①主程序模块②输入模块:通过Getpolyn函数输入③输出模块(升幂降幂):PrintPolyn函数实现输出④数据处理模块(多项式的加减乘):通过一元多项式的Polynomial基本操作实现3、抽象数据类型的设计一元多项式抽象数据类型的定义:抽象数据类型Polynomial的定义:第四章详细设计#include<stdio.h>#include<stdlib.h>typedef struct{ float coef; //系数int expn; //指数}term;typedef struct LNode{ term data; //term多项式值struct LNode *next;}LNode,*LinkList;typedef LinkList polynomail;/*比较指数*/int cmp(term a,term b){ if(a.expn>b.expn) return 1;if(a.expn==b.expn) return 0;if(a.expn<b.expn) return -1;else exit(-2);}/*又小到大排列*/void arrange1(polynomail pa){ polynomail h=pa,p,q,r;if(pa==NULL) exit(-2);for(p=pa;p->next!=NULL;p=p->next); r=p;for(h=pa;h->next!=r;)//大的沉底{ for(p=h;p->next!=r&&p!=r;p=p->next)if(cmp(p->next->data,p->next->next->data)==1) { q=p->next->next;p->next->next=q->next;q->next=p->next;p->next=q;}r=p;//r指向参与比较的最后一个,不断向前移动} }/*由大到小排序*/void arrange2(polynomail pa){ polynomail h=pa,p,q,r;if(pa==NULL) exit(-2);for(p=pa;p->next!=NULL;p=p->next); r=p;for(h=pa;h->next!=r;)//小的沉底{ for(p=h;p->next!=r&&p!=r;p=p->next)if(cmp(p->next->next->data,p->next->data)==1) { q=p->next->next;p->next->next=q->next;q->next=p->next;p->next=q;}r=p;//r指向参与比较的最后一个,不断向前移动} }/*打印多项式,求项数*/int printpolyn(polynomail P){ int i;polynomail q;if(P==NULL) printf("无项!\n");else if(P->next==NULL) printf("Y=0\n");else{ printf("该多项式为Y=");q=P->next;i=1;if(q->data.coef!=0&&q->data.expn!=0){ printf("%.2fX^%d",q->data.coef,q->data.expn); i++; } if(q->data.expn==0&&q->data.coef!=0)printf("%.2f",q->data.coef);//打印第一项q=q->next;if(q==NULL){printf("\n");return 1;}while(1)//while中,打印剩下项中系数非零的项,{ if(q->data.coef!=0&&q->data.expn!=0){ if(q->data.coef>0) printf("+");printf("%.2fX^%d",q->data.coef,q->data.expn); i++;}if(q->data.expn==0&&q->data.coef!=0){ if(q->data.coef>0) printf("+");printf("%f",q->data.coef);}q=q->next;if(q==NULL){ printf("\n"); break; }}}return 1;}/*1、创建并初始化多项式链表*/polynomail creatpolyn(polynomail P,int m){ polynomail r,q,p,s,Q;int i;P=(LNode*)malloc(sizeof(LNode));r=P;for(i=0;i<m;i++){ s=(LNode*)malloc(sizeof(LNode));printf("请输入第%d项的系数和指数:",i+1);scanf("%f%d",&s->data.coef,&s->data.expn);r->next=s; r=s;}r->next=NULL;if(P->next->next!=NULL){ for(q=P->next;q!=NULL/*&&q->next!=NULL*/;q=q->next)//合并同类项for(p=q->next,r=q;p!=NULL;)if(q->data.expn==p->data.expn){ q->data.coef=q->data.coef+p->data.coef;r->next=p->next;Q=p;p=p->next;free(Q);}else{ r=r->next;p=p->next;}}return P;}/*2、两多项式相加*/polynomail addpolyn(polynomail pa,polynomail pb){ polynomail s,newp,q,p,r;int j;p=pa->next;q=pb->next;newp=(LNode*)malloc(sizeof(LNode));r=newp;while(p&&q){ s=(LNode*)malloc(sizeof(LNode));switch(cmp(p->data,q->data)){case -1: s->data.coef=p->data.coef;s->data.expn=p->data.expn;r->next=s; r=s;p=p->next;break;case 0: s->data.coef=p->data.coef+q->data.coef;if(s->data.coef!=0.0){ s->data.expn=p->data.expn;r->next=s;r=s;}p=p->next;q=q->next;break;case 1: s->data.coef=q->data.coef;s->data.expn=q->data.expn;r->next=s; r=s;q=q->next;break;}//switch}//whilewhile(p){ s=(LNode*)malloc(sizeof(LNode));s->data.coef=p->data.coef;s->data.expn=p->data.expn;r->next=s; r=s;p=p->next;}while(q){ s=(LNode*)malloc(sizeof(LNode));s->data.coef=q->data.coef;s->data.expn=q->data.expn;r->next=s; r=s;q=q->next;}r->next=NULL;for(q=newp->next;q->next!=NULL;q=q->next)//合并同类项for(p=q;p!=NULL&&p->next!=NULL;p=p->next)if(q->data.expn==p->next->data.expn){ q->data.coef=q->data.coef+p->next->data.coef;r=p->next;p->next=p->next->next;free(r);}printf("升序1 , 降序2\n");printf("选择:");scanf("%d",&j);if(j==1) arrange1(newp);else arrange2(newp);return newp;}/*3、两多项式相减*/polynomail subpolyn(polynomail pa,polynomail pb){ polynomail s,newp,q,p,r,Q; int j;p=pa->next;q=pb->next;newp=(LNode*)malloc(sizeof(LNode));r=newp;while(p&&q){ s=(LNode*)malloc(sizeof(LNode));switch(cmp(p->data,q->data)){case -1: s->data.coef=p->data.coef;s->data.expn=p->data.expn;r->next=s; r=s;p=p->next;break;case 0: s->data.coef=p->data.coef-q->data.coef;if(s->data.coef!=0.0){ s->data.expn=p->data.expn;r->next=s;r=s;}p=p->next;q=q->next;break;case 1: s->data.coef=-q->data.coef;s->data.expn=q->data.expn;r->next=s; r=s;q=q->next;break;}//switch}//whilewhile(p){ s=(LNode*)malloc(sizeof(LNode));s->data.coef=p->data.coef;s->data.expn=p->data.expn;r->next=s; r=s;p=p->next;}while(q){ s=(LNode*)malloc(sizeof(LNode));s->data.coef=-q->data.coef;s->data.expn=q->data.expn;r->next=s; r=s;q=q->next;}r->next=NULL;if(newp->next!=NULL&&newp->next->next!=NULL)//合并同类项{ for(q=newp->next;q!=NULL;q=q->next)for(p=q->next,r=q;p!=NULL;)if(q->data.expn==p->data.expn){ q->data.coef=q->data.coef+p->data.coef;r->next=p->next;Q=p;p=p->next;free(Q); }else{ r=r->next;p=p->next; }} printf("升序1 , 降序2\n");printf("选择:");scanf("%d",&j);if(j==1) arrange1(newp);else arrange2(newp);return newp;}/*4两多项式相乘*/polynomail mulpolyn(polynomail pa,polynomail pb){ polynomail s,newp,q,p,r;int i=20,j;newp=(LNode*)malloc(sizeof(LNode));r=newp;for(p=pa->next;p!=NULL;p=p->next)for(q=pb->next;q!=NULL;q=q->next){ s=(LNode*)malloc(sizeof(LNode));s->data.coef=p->data.coef*q->data.coef;s->data.expn=p->data.expn+q->data.expn;r->next=s;r=s;}r->next=NULL;printf("升序1 , 降序2\n");printf("选择:");scanf("%d",&j);if(j==1) arrange1(newp);else arrange2(newp);for(;i!=0;i--){for(q=newp->next;q->next!=NULL;q=q->next)//合并同类项for(p=q;p!=NULL&&p->next!=NULL;p=p->next)if(q->data.expn==p->next->data.expn){ q->data.coef=q->data.coef+p->next->data.coef;r=p->next;p->next=p->next->next; free(r);}}return newp;}/*5、销毁已建立的两个多项式*/void delpolyn(polynomail pa,polynomail pb){ polynomail p,q;p=pa;while(p!=NULL){ q=p;p=p->next;free(q);}p=pb;while(p!=NULL){ q=p;p=p->next;free(q);}printf("两个多项式已经销毁\n");}void main(){ polynomail pa=NULL,pb=NULL;polynomail p,q;polynomail addp=NULL,subp=NULL,mulp=NULL;int n,m;int sign='y';printf("1、创建两个一元多项式\n");printf("2、两多项式相加得一新多项式\n");printf("3、两多项式相减得一新多项式\n");printf("4、两多项式相乘得一新多项式\n");printf("5、销毁已建立的两个多项式\n");printf("6、退出\n");printf("\n");while(sign!='n'){ printf("请选择:");scanf("%d",&n);switch(n){case 1:if(pa!=NULL){ printf("已建立两个一元多项式,请选择其他操作!");break;}printf("请输入第一个多项式:\n");printf("要输入几项:");scanf("%d",&m);while(m==0){ printf("m不能为0,请重新输入m:"); scanf("%d",&m);}pa=creatpolyn(pa,m);printpolyn(pa);printf("请输入第二个多项式:\n"); printf("要输入几项:");scanf("%d",&m);pb=creatpolyn(pb,m);printpolyn(pb);break;case 2:if(pa==NULL){ printf("请先创建两个一元多项式!\n"); break;}addp=addpolyn(pa,pb);printpolyn(addp);break;case 3:if(pa==NULL){ printf("请先创建两个一元多项式!\n"); break;}subp=subpolyn(pa,pb);printpolyn(subp);break;case 4:if(pa==NULL){ printf("请先创建两个一元多项式!\n"); break;}mulp=mulpolyn(pa,pb);printpolyn(mulp);break;case 5:if(pa==NULL){ printf("请先创建两个一元多项式!\n"); break;}delpolyn(pa,pb);pa=pb=NULL;break;case 6:if(addp!=NULL){ p=addp;while(p!=NULL){ q=p;p=p->next;free(q);}}if(subp!=NULL){ p=subp;while(p!=NULL){ q=p;p=p->next;free(q);}}exit(-2);}//switch}//while}第五章运行与测试本章主要说明:1、算法的性能分析2、设计了哪些测试数据?测试结果是什么?请考虑选取有代表性的界面贴图说明。