数据结构实验一一元多项式相加
一元多项式的加法数据结构

一元多项式的加法数据结构一元多项式是数学中常见的一种代数表达式形式,由多个单项式按照一定的规则相加而成。
在计算机科学中,为了方便对一元多项式进行处理,需要定义一种合适的数据结构来表示和操作一元多项式的加法运算。
一元多项式的加法数据结构可以使用链表来实现。
每个节点表示一个单项式,包含两个成员变量:系数和指数。
系数表示单项式的系数,指数表示单项式的指数。
通过将多个单项式的系数和指数组织成一个链表,即可表示一个一元多项式。
在链表中,每个节点按照指数从小到大的顺序排列。
这样可以方便进行多项式的加法运算。
当两个一元多项式相加时,只需按照指数的大小依次比较两个链表中的节点,并根据指数的大小关系进行相应的操作。
具体的加法算法如下:1. 创建一个新的链表作为结果链表。
2. 初始化两个指针分别指向两个原始链表的头节点。
3. 循环比较两个链表中的节点,直到其中一个链表遍历完为止。
4. 比较当前节点的指数大小关系:- 如果两个节点的指数相等,将它们的系数相加,并将结果添加到结果链表中。
- 如果第一个链表中的节点指数较小,将第一个链表的节点添加到结果链表中,并将指针指向下一个节点。
- 如果第二个链表中的节点指数较小,将第二个链表的节点添加到结果链表中,并将指针指向下一个节点。
5. 当其中一个链表遍历完后,将另一个链表中剩余的节点依次添加到结果链表中。
6. 返回结果链表作为两个一元多项式相加的结果。
通过上述算法,可以实现对一元多项式的加法运算。
这种链表结构的一元多项式加法数据结构具有以下优点:- 灵活性:可以表示任意长度的一元多项式,不受固定数组长度的限制。
- 高效性:在添加节点和遍历节点时,时间复杂度为O(n),其中n 为一元多项式的项数。
- 可扩展性:可以方便地扩展其他操作,如乘法、求导等。
除了链表结构,还可以使用数组等数据结构来表示一元多项式的加法。
不同的数据结构适用于不同的应用场景。
链表结构适合于插入和删除操作较多的情况,而数组结构适合于随机访问和内存占用较小的情况。
数据结构综合实验报告_一元多项式

目录1 设计内容和要求 (1)1.1设计要求 (1)1.2设计内容 (1)2 概要设计 (1)2.1程序主要流程 (1)3 详细设计 (3)3.1源程序 (3)4 调试分析 (8)5 总结 (9)6 致谢 (10)参考文献 (11)1 设计内容和要求1.1 设计要求编写一个实现多项式相加和相减的程序。
1、首先,根据键盘输入的一元实系数多项式的系数与指数序列,对多项式进行初始化,并按未知数x的降幂形式输出多项式的合理表示。
2、对于从键盘输入的任意两个一元多项式,正确计算它们的和以及差的多项式,并输出结果。
1.2 设计内容利用单链表表示一元多项式,然后实现各个项的系数和指数的输入,并且进行建立和输出,以及实现各个一元多项式之间的相加和相乘的操作。
2 概要设计实现的方法是先定义多项式结点的结构,该多项式每个结点由三个元素:输入的系数、输入的指数、以及指向下一个结点的指针构成。
该链表采用链式存储结构。
然后通过多次的输入,依次得到两个一元多项式的各个项的系数与指数。
该输入以零结尾。
然后通过对结点的判断是否为零后,进行相加或者终止的操作。
再初始化一个链表LC,将LC的各项系数和指数的指针指向LA+LB所得的结果的值,完成了最后的输出。
2.1程序主要流程建立链表,将多项式的系数与数指数作为链表节点的数据;指示输入两个多项式的数据,分别存在LA与LB中;利用Getlength(PotyNode *L)函数计算出LA与LB的表长;使用循环语句进行两链表的相应数据相加,并将所得到的新链表存放到LC中;打印输出。
如图2-1就是程序主流程图。
在上交资料中请写明:存储结构、多项式相加的基本过程的算法(可以使用程序流程图)、源程序、测试数据和结果、算法的时间复杂度、另外可以提出算法的改进方法。
要求可以按照降指数次序进行排列,结合数据结构中排序的相关知识,运用相应函数实现,实现两个多项式的加减运算。
在此要建立多项式运算的相关规则。
一元多项式的相加实验报告

一元多项式的相加实验报告一元多项式的相加实验报告引言:一元多项式是数学中常见的概念,它由一个变量和一系列常数乘积的和组成。
在本实验中,我们将研究一元多项式的相加运算,并通过实验验证相加运算的性质和规律。
实验目的:1. 了解一元多项式的基本概念和相加运算规则;2. 掌握使用编程语言进行一元多项式相加的方法;3. 验证一元多项式相加的性质和规律。
实验过程:1. 准备工作:a. 确定一元多项式的表示方式:我们选择使用数组来表示一元多项式,数组的每个元素表示多项式中对应项的系数;b. 确定一元多项式的相加规则:将相同次数的项的系数相加得到新的多项式的对应项的系数;c. 编写程序:使用编程语言编写一段代码,实现一元多项式的相加运算。
2. 实验步骤:a. 输入两个一元多项式的系数:通过程序提示用户输入两个一元多项式的系数,以数组的形式保存;b. 进行相加运算:将两个一元多项式的对应项系数相加,得到新的一元多项式的系数;c. 输出相加结果:将相加得到的新的一元多项式的系数输出,以验证相加运算的正确性。
实验结果:我们进行了多次实验,以下是其中一次实验的结果:假设输入的两个一元多项式分别为:P(x) = 2x^3 + 4x^2 + 3x + 1Q(x) = 5x^2 + 2x + 6根据相加规则,我们将对应项系数相加,得到新的一元多项式的系数:R(x) = 2x^3 + (4+5)x^2 + (3+2)x + (1+6)= 2x^3 + 9x^2 + 5x + 7因此,相加运算的结果为:P(x) + Q(x) = 2x^3 + 9x^2 + 5x + 7实验结论:通过多次实验,我们验证了一元多项式的相加运算的正确性。
根据实验结果,我们可以得出以下结论:1. 一元多项式的相加运算是可行的,可以通过将相同次数的项的系数相加得到新的多项式的对应项的系数;2. 一元多项式的相加结果仍然是一元多项式,其次数和各项的系数均可能发生变化;3. 一元多项式的相加运算满足交换律和结合律。
算法与数据结构实验报告实验一 完成多项式的相加运算

实验一:完成多项式的相加运算(验证性、4学时)一、实验目的完成多项式的相加、相乘运算。
(1)掌握线性表的插入、删除、查找等基本操作设计与实现(2)学习利用线性表提供的接口去求解实际问题(3)熟悉线性表的的存储方法二、实验内容设计一个一元多项式的简单计算程序,其基本功能有:(1)输入并建立多项式;(2)输出多项式;(3)多项式的相加运算。
利用单链表实现。
三、算法描述及实验步骤1描述1、创建两个单链表A、B,分别调用CreatePolyn();2、输出多项式,分别调用PrintPolyn();3、多项式相加运算AddPolyn()。
2算法流程图4 65inputA-B inputA-B inputA-B end3代码(注释)#include<stdio.h>#include<malloc.h>#include<math.h>typedef struct Polynomial{float coef;//系数变量int exp;//指数变量struct Polynomial *next;//定义next指针}*Polyn,Polynomial; //Polyn为结点指针类型void Insert(Polyn p,Polyn h) //插入新的结点p{if(p->coef==0) free(p); //系数为0的话释放结点else{Polyn q1,q2;q1=h;q2=h->next;while(q2&&p->exp<q2->exp) //查找插入位置{q1=q2;q2=q2->next;}if(q2&&p->exp==q2->exp) //将指数相同相合并{q2->coef+=p->coef;free(p);if(!q2->coef) //系数为0的话释放结点{q1->next=q2->next;free(q2);}}else //指数为新时将结点插入{p->next=q2;q1->next=p;}}}//Insertint f(float x)//判断输入是否为整形{float a;a=x-(long int)x;if(a==0&&x==fabs(x))return 1;elsereturn 0;}Polyn CreatePolyn(Polyn head,int m) //建立一个头指针为head、项数为m的一元多项式{int i;Polyn p;p=head=(Polyn)malloc(sizeof(struct Polynomial));head->next=NULL;for(i=0;i<m;i++){p=(Polyn)malloc(sizeof(struct Polynomial));//建立新结点以接收数据printf("please input NO.%d coef and exp:",i+1);scanf("%f %d",&p->coef,&p->exp);while(!f(p->coef)&&!f(p->exp)){printf("输入有错,请重新输入: ");scanf("%f %d",&p->coef,&p->exp);}Insert(p,head); //调用Insert函数插入结点}return head;}//CreatePolynvoid DestroyPolyn(Polyn p) //销毁多项式p{Polyn q1,q2;q1=p->next;q2=q1->next;while(q1->next){free(q1);q1=q2;//指针后移q2=q2->next;}}void PrintPolyn(Polyn P)//输出多项式{Polyn q=P->next;int flag=1; //项数计数器if(!q) //若多项式为空,输出0{putchar('0');printf("\n");return;}while (q){if(q->coef>0&&flag!=1) putchar('+'); //系数大于0且不是第一项if(q->coef!=1&&q->coef!=-1) //系数非1或-1的普通情况{printf("%g",q->coef);if(q->exp==1) putchar('X');else if(q->exp) printf("X^%d",q->exp);}else{if(q->coef==1){if(!q->exp) putchar('1');else if(q->exp==1) putchar('X');else printf("X^%d",q->exp);}if(q->coef==-1){if(!q->exp) printf("-1");else if(q->exp==1) printf("-X");else printf("-X^%d",q->exp);}}q=q->next;flag++;}//whileprintf("\n");}//PrintPolynint compare(Polyn a,Polyn b){if(a&&b){if(!b||a->exp>b->exp) return 1;else if(!a||a->exp<b->exp) return -1;else return 0;}else if(!a&&b) return -1;//A多项式已空,但B多项式非空else return 1;//B多项式已空,但A多项式非空}//comparePolyn AddPolyn(Polyn pa,Polyn pb)//求解并建立多项式A+B,返回其头指针{Polyn qa=pa->next;Polyn qb=pb->next;Polyn headc,hc,qc;hc=(Polyn)malloc(sizeof(struct Polynomial)); //建立头结点hc->next=NULL;headc=hc;while(qa||qb){qc=(Polyn)malloc(sizeof(struct Polynomial));switch(compare(qa,qb)) //功能选择{ case 1:{qc->coef=qa->coef;qc->exp=qa->exp;qa=qa->next;break;}case 0:{qc->coef=qa->coef+qb->coef;qc->exp=qa->exp;qa=qa->next;qb=qb->next;break;}case -1:{qc->coef=qb->coef;qc->exp=qb->exp;qb=qb->next;break;}}//switchif(qc->coef!=0){qc->next=hc->next;hc->next=qc;hc=qc;}else free(qc);//当相加系数为0时,释放该结点}//whilereturn headc;}//AddPolynPolyn SubtractPolyn(Polyn pa,Polyn pb){//求解并建立多项式A-B,返回其头指针Polyn h=pb;Polyn p=pb->next;Polyn pd;while(p){ //将pb的系数取反p->coef*=-1;p=p->next;}pd=AddPolyn(pa,h);for(p=h->next;p;p=p->next) //恢复pb的系数p->coef*=-1;return pd;}//SubtractPolynPolyn MultiplyPolyn(Polyn pa,Polyn pb){//求解并建立多项式A*B,返回其头指针Polyn hf,pf;Polyn qa=pa->next;Polyn qb=pb->next;hf=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点hf->next=NULL;for(;qa;qa=qa->next){for(qb=pb->next;qb;qb=qb->next){pf=(Polyn)malloc(sizeof(struct Polynomial));pf->coef=qa->coef*qb->coef;pf->exp=qa->exp+qb->exp;Insert(pf,hf);//调用Insert函数以合并指数相同的项}}return hf;}//MultiplyPolynvoid DevicePolyn(Polyn pa,Polyn pb){//求解并建立多项式A/B,返回其头指针Polyn hf,pf,af,temp1,temp2,q;Polyn qa=pa->next;Polyn qb=pb->next;hf=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点,存储商hf->next=NULL;pf=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点,存储余数pf->next=NULL;temp1=(Polyn)malloc(sizeof(struct Polynomial));temp1->next=NULL;temp2=(Polyn)malloc(sizeof(struct Polynomial));temp2->next=NULL;temp1=AddPolyn(temp1,pa);while(qa!=NULL&&qa->exp>=qb->exp){temp2->next=(Polyn)malloc(sizeof(struct Polynomial));temp2->next->coef=(qa->coef)/(qb->coef);temp2->next->exp=(qa->exp)-(qb->exp);Insert(temp2->next,hf);pa=SubtractPolyn(pa,MultiplyPolyn(pb,temp2));qa=pa->next;temp2->next=NULL;}pf=SubtractPolyn(temp1,MultiplyPolyn(hf,pb));pb=temp1;printf("the quotient is :");PrintPolyn(hf);printf("the remainder is :");PrintPolyn(pf);}//DevicePolynint main(){int m,n,flag=0;float x;Polyn pa=0,pb=0,pc,pd,pe,pf;//定义各式的头指针,pa与pb在使用前付初值NULL printf("please input A number:");scanf("%d",&m);pa=CreatePolyn(pa,m);//建立多项式Aprintf("please input B number:");scanf("%d",&n);pb=CreatePolyn(pb,n);//建立多项式B//输出菜单printf("**********************************************\n");printf("choise:\n\t1.Output A and B\n\t2.CreatePolyn A+B\n");printf("\t3.CreatePolyn A-B\n\t4.CreatePolyn A*B\n");printf("\t5.CreatePolynA/B\n\t6.Return\n**********************************************\n");for(;;flag=0){printf("choise");scanf("%d",&flag);if(flag==1){printf("多项式A:");PrintPolyn(pa);printf("多项式B:");PrintPolyn(pb);continue;}if(flag==2){pc=AddPolyn(pa,pb);printf("多项式A+B:");PrintPolyn(pc);DestroyPolyn(pc);continue;}if(flag==3){pd=SubtractPolyn(pa,pb);printf("多项式A-B:");PrintPolyn(pd);DestroyPolyn(pd);continue;}if(flag==4){pf=MultiplyPolyn(pa,pb);printf("多项式a*b:");PrintPolyn(pf);DestroyPolyn(pf);continue;}if(flag==5){DevicePolyn(pa,pb);continue;}if(flag==6) break;if(flag<1||flag>6) printf("Error\n");continue;}//forDestroyPolyn(pa);DestroyPolyn(pb);return 0;}一、调试过程一次调试二次调试二、实验结果测试数据(1)多项式A:3x^4+11x^3+21x^2多项式B:2x^5+11x^4+12x^3+7x实验结果(1)多项式A+B=2x^5+14x^4+23x^3+21x^2+7x多项式A-B=-2x^5-8^4-x^3+21x^2-7x多项式A*B=6x^9+55x^8+199x^7+363x^6+273x^5+77x^4+147x^3多项式A/B=0实验截图(1)测试数据(2):多项式A:2x^3+5x^-3多项式B:9x^2+6x^-2+11x^-3实验结果(2):多项式A+B=2x^3+9x^2+6x^-2+16x^-3多项式A-B=2x^3-9x^2-6x^(-2)=16x^(-3)多项式A*B=18x^5+12x+22+45x^(-1)+30x^(-5)+55x^(-6)多项式A/B=0.222222x实验截图(2):测试数据(3)多项式A:-x^7+3x^5多项式B:x^7-4x6%+7x^3实验结果(3)多项式A+B=-x^5+7x^3多项式A-B=-2x^7+7x^5-7x^3多项式A*B=-x^14+7x^12-19x^10+21x^8多项式A/B=-1实验截图(3):三、总结1.在熟悉VC6.0环境的同时,对单链表的存储格式有了深刻的理解;2.复习C++语法的同时,对刚学的线性表进行综合性理解和表达,与之前所学融合。
一元多项式相加实验报告

一元多项式相加实验报告1. 引言本实验旨在研究一元多项式的相加操作。
一元多项式是数学中的一个重要概念,常用于代数运算和函数表达。
相加操作是多项式运算中的基本操作之一,通过对多项式的系数进行相加,可以得到一个新的多项式。
2. 实验目的本实验的主要目的是通过编写代码实现一元多项式的相加操作,并对相加操作进行测试和验证。
具体的实验目标包括: - 设计一种数据结构来表示一元多项式 -实现一元多项式的相加操作 - 编写测试代码,对相加操作进行验证3. 实验方法本实验使用Python编程语言实现一元多项式的相加操作。
具体步骤如下:3.1 设计数据结构首先,我们需要设计一种数据结构来表示一元多项式。
在本实验中,我们选择使用列表来表示一元多项式。
列表的每个元素表示一个项,项由系数和指数组成。
3.2 实现相加操作基于设计的数据结构,我们可以编写代码实现一元多项式的相加操作。
相加操作的基本思路是遍历两个多项式的项,将对应指数的系数相加,并将结果保存到一个新的多项式中。
3.3 编写测试代码为了验证相加操作的准确性,我们需要编写一些测试代码。
测试代码的主要功能是创建一些多项式,并调用相加操作进行计算。
通过比较计算结果和预期结果,可以验证相加操作的正确性。
4. 实验结果经过实验,我们成功地实现了一元多项式的相加操作。
在测试代码中,我们通过比较计算结果和预期结果,验证了相加操作的准确性。
5. 结论与讨论在本实验中,我们通过编写代码实现了一元多项式的相加操作,并进行了测试和验证。
实验结果表明,相加操作的实现是正确的。
然而,相加操作只是一元多项式运算中的基本操作之一。
在实际应用中,还需要考虑其他运算,如相减、乘法和除法等。
此外,实验中使用的数据结构可能还可以进行优化,以提高运算效率。
总的来说,本实验为进一步研究和应用一元多项式提供了基础。
通过进一步的研究和实践,可以深入理解一元多项式的运算规则,并将其应用于更广泛的数学和工程领域。
一元多项式相加问题实验报告

一元多项式相加问题一.问题描述设计算法实现一元多项式的简单运算。
二.数据结构设计分析任意一元多项式的描述方法可知,一个一元多项式的每一个子项都由“系数---指数”两部分组成,所以可以将它抽象成一个由“系数----指数对”构成的线性表。
基于这样的分析,可以采用一个带有头结点的单链表来表示一个一元多项式。
具体数据类型定义为:typedef struct node{float cofe; //系数域int exp; //指数域struct node* next; //指针域指向下一个子项}*polynode,poly;Polynode head_a,head_b,head_c;这三个指针分别作为链表A,B和C的头指针。
三.功能设计1.输入并建立多项式的功能模块此模块要求按照“系数---指数对”的输入格式输入各个子项,输入一个子项,通过遍历链表比较指数的大小,将新结点插在合适的位置,使多项式的指数按递增的顺序存储。
当遇到输入结束标志是停止输入,而转去执行程序下面的部分。
具体函数构造为:polynode creat_polynode(){polynode A ,p,q,s; //建立这种类型的头指针,尾指针,遍历指针和动态指针float a;int b;A=new poly;A->next=NULL;q=A;p=A;cin>>a;cin>>b;while(a!=0||b!=0){s=new poly;s->cofe=a;s->exp=b;while(q->next){if(q->next->exp<b)q=q->next; //遍历链表,若指数大于原链表指数,指针后移一个else{s->next=q->next;q->next=s;break; //若不是,将结点插入指针后面}}if(q->next==NULL){s->next=p->next;p->next=s;p=s; //q遍历到链表尾仍未插入,将结点插入最后,改变尾指针使其指向新结点}q=A; //让q返回头指针处,以便下一次遍历链表cin>>a;cin>>b;}if(p!=NULL)p->next=NULL;return A;}2.多项式相加的功能模块此模块根据在1中建立的两个多项式进行相加运算,并存放在以C为头指针的一个新链表中。
c语言数据结构实现——一元多项式的基本运算

文章标题:深入理解C语言中的数据结构实现——一元多项式的基本运算在C语言中,数据结构是非常重要的一个概念,它为我们处理各种复杂的数据提供了便利。
其中,一元多项式的基本运算是数据结构中的一个重要内容,它涉及到多种数据结构的操作和算法,是我们学习C 语言中数据结构的一个重要入口。
在本文中,我们将深入探讨C语言中一元多项式的基本运算,帮助读者更深入地理解这一重要的概念。
一、一元多项式的表示方式在C语言中,一元多项式可以使用数组来表示。
每个数组元素对应一个项,数组的下标对应每一项的次数,数组的值对应该项的系数。
一个一元多项式可以表示为:```cfloat polynomial[10] = {0, 1, 2, 0, 4}; // 表示多项式 1 + 2x + 4x^4 ```二、一元多项式的基本运算1. 一元多项式的加法有两个多项式 A 和 B,它们分别表示为 `float polynomialA[10]` 和`float polynomialB[10]`,那么它们的加法运算可以表示为:```cfor (int i = 0; i < 10; i++) {polynomialC[i] = polynomialA[i] + polynomialB[i];}```2. 一元多项式的减法一元多项式的减法是指将两个多项式相减得到一个新的多项式。
与加法类似,多项式 A 和 B 的减法运算可以表示为:```cfor (int i = 0; i < 10; i++) {polynomialC[i] = polynomialA[i] - polynomialB[i];}```3. 一元多项式的乘法式 A 和 B 的乘法运算可以表示为:```cfor (int i = 0; i < 10; i++) {for (int j = 0; j < 10; j++) {polynomialC[i+j] += polynomialA[i] * polynomialB[j];}}```4. 一元多项式的除法一元多项式的除法涉及到较为复杂的算法,需要考虑余数和商的处理。
数据结构-实验一-一元多项式相加

数据结构实验报告实验一:一元多项式相加姓名:周成学号: 13083511专业:软件工程任课教师:马慧珠2013年12 月01 日1.实验名称:一元多项式相加2.实验目的:如何使用C语言实现链表的说明、创建以及结点的插入和删除等操作。
3.实验要求:对一元多项式能实现输入、输出,以及两个一元多项式相加及结果显示。
4.实验内容:一元多项式的表示在计算机内用链表来实现,同时为了节省存储空间,只存储其中非零的项,链表中的每个节点存放多项式的系数非零项。
它包含三个域,分别存放多项式的系数,指数,以及指向下一个项的指针。
根据一元多项式相加的运算规则:对于两个一元多项式中所有指数相同的项,对应系数相加,若其和不为零,则构成“和多项式”中的一项,对于两个一元多项式中所有指数不相同的项,则分别复抄到“和多项式”中去。
核心算法PolyAdd是把分别由pa和pb所指的两个多项式相加,结果为pa所指的多项式。
运算规则如下:相加时,首先设两个指针变量qa和qb分别从多项式的首项开始扫描,比较qa和qb所指结点指数域的值,可能出现下列三种情况之一:(1)qa->exp大于qb->exp,则qa继续向后扫描。
(2)qa->exp等于qb->exp,则将其系数相加。
若相加结果不为零,将结果放入qa->coef中,并删除qb所指结点,否则同时删除qa和qb所指结点。
然后qa、qb继续向后扫描。
(3)qa->exp小于qb->exp,则将qb所指结点插入qa所指结点之前,然后qa、qb继续向后扫描。
扫描过程一直进行到qa或qb有一个为空为止,然后将有剩余结点的链表接在结果表上。
所得pa指向的链表即为两个多项式之和。
5.实验程序代码及运行结果:#include"stdafx.h"#include<stdio.h>#include<stdlib.h>#include<malloc.h>#include<stdio.h>#define NULL 0typedef struct NODE{float coef; //系¦Ì数ºyint expn; //指?数ºystruct NODE *next;}NODE;NODE *Creat(int n);void print(NODE *head);NODE *AddPolyn(NODE *head1, NODE *head2);NODE *Delfirst(NODE *head, NODE *q);void InsertBefore(NODE *p1, NODE *p2);int compare(int a, int b);/*创ä¡ä建¡§链¢¡ä表À¨ª*/NODE *Creat(int n){NODE *current, *previous, *head;int i;head = (NODE *)malloc(sizeof(NODE)); /*创ä¡ä建¡§头ª¡¤结¨¢点Ì?*/previous = head;for(i = 0; i < n; i++){current = (NODE *)malloc(sizeof(NODE));printf("请?输º?入¨?系¦Ì数ºy和¨ª指?数ºy : ");scanf("%f%d", ¤t->coef, ¤t->expn);previous->next = current;previous = current;}previous->next = NULL;return head;}/*一°?元a多¨¤项?式º?的Ì?想?加¨®,ê?总Á¨¹体¬?考?虑?,ê?可¨¦分¤?qa的Ì?指?数ºy比À¨¨qb小?,ê?或¨°等̨¨于®¨²pb(如¨?果?系¦Ì数ºy相¨¤加¨®等̨¨于®¨²0和¨ª不?等̨¨于®¨²0),或¨°大䨮于®¨²pb里¤?面?由®¨¦InsertBefore和¨ªDelfirst两¢?个?小?模¡ê块¨¦组Á¨¦成¨¦一°?部?分¤?*/ NODE *AddPolyn(NODE *head1, NODE *head2){NODE *ha, *hb, *qa, *qb;int a, b;float sum;ha = head1; /*ha和¨ªhb指?向¨°头ª¡¤结¨¢点Ì?*/hb = head2;qa = ha->next; /*qa和¨ªqb指?向¨°头ª¡¤结¨¢点Ì?的Ì?下?一°?个?结¨¢点Ì?*/qb = hb->next;while(qa && qb) /*qa和¨ªqb均¨´非¤?空?*/{a = qa->expn;b = qb->expn;switch(compare(a, b)) {case -1 : /*qa->expn < qb->expn*/ha = qa;qa = qa->next;break;case 0 :sum = qa->coef + qb->coef; /*系¦Ì数ºy的Ì?和¨ª*/if(sum != 0.0) { /*如¨?果?不?是º?0.0*/qa->coef = sum; /*改?变À?系¦Ì数ºy*/ha = qa;}else{free(Delfirst(ha, qa));}free(Delfirst(hb, qb));qa = ha->next;qb = hb->next; /*qb释º¨ª放¤?后¨®要°a重?新?赋3值¦Ì*/ break;case 1 : /*如¨?果?qa-> expn > qb -> expn*/Delfirst(hb, qb);InsertBefore(ha, qb); /*把ã?qb插?入¨?到Ì?ha下?一°?个?结¨¢点Ì?之?前¡ã*/qb = hb->next;ha = ha->next;break;}}if(qb)ha->next = qb; /*插?入¨?剩º¡ê余®¨¤的Ì?pb*/free(head2);return head1;}/*比À¨¨较?*/int compare(int a, int b){if(a < b)return -1;else if(a > b)return 1;elsereturn 0;}/*删¦?除y结¨¢点Ì?q*/NODE *Delfirst(NODE *p1, NODE *q){p1 -> next = q -> next;return (q);}/*插?入¨?结¨¢点Ì?,引°y入¨?结¨¢点Ì?p,可¨¦以°?让¨?p插?入¨?到Ì?p2和¨ªp1之?间?*/ void InsertBefore(NODE *p1, NODE *p2){NODE *p;p = p1->next;p1->next = p2;p2->next = p;}/*打䨰印®?,为a了¢?美¨¤观?程¨¬序¨°分¤?开a打䨰印®?*/void print(NODE *head){NODE *current;current = head->next;while(current->next != NULL){printf("%0.f * x^%d + ", current->coef, current->expn);current = current -> next;}printf("%0.f * x^%d", current->coef, current->expn);//system(ê¡§"pause");}int main(){NODE *head1, *head2, *head3;int n1, n2;printf("请?输º?入¨?你?需¨¨要°a的Ì?多¨¤项?式º?的Ì?项?数ºy n1 : "); scanf("%d", &n1);head1 = Creat(n1);printf("第̨²一°?个?多¨¤项?式º?的Ì?显?示º? : \n");print(head1);printf("\n请?输º?入¨?你?需¨¨要°a的Ì?多¨¤项?式º?的Ì?项?数ºy n2 : "); scanf("%d", &n2);head2 = Creat(n2);printf("\n第̨²二t个?多¨¤项?式º?的Ì?显?示º? : \n");print(head2);head3 = AddPolyn(head1, head2);printf("\n合?并¡é后¨®的Ì?多¨¤项?式º?的Ì?显?示º? : \n");print(head3);printf("\n");}运行结果:实验数据1如图:输入一个四次二项式X^3+2X^4,一个五次二项式X^4+2X^5,输出如图:实验数据2如图:输入一个五次四项式X^2+X^3+X^4+X^5,还有一个五次五项式1+X+X^3+2X^4+2X^5输出如图所示实验数据3如图:输入一个七次三项式1+2x^5+3X^7,还有一个五次四项式1+2X^2+3X^4+4X^5,输出如图:6.实验总结本来我对编程很没有信心,做这样一个课程设计感觉有点吃力,虽然有些人觉得很简单,但是我还是坚持做下来了,我不断的看书,翻阅资料,询问同学,上网搜索,总算有模有样地把这个程序编的能运行了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构实验报告实验一:一元多项式相加
姓名:周成
学号:
专业:软件工程
任课教师:马慧珠
2013年12 月01 日
1.实验名称:
一元多项式相加
2.实验目的:
如何使用C语言实现链表的说明、创建以及结点的插入和删除等操作。
3.实验要求:
对一元多项式能实现输入、输出,以及两个一元多项式相加及结果显示。
4.实验内容:
一元多项式的表示在计算机内用链表来实现,同时为了节省存储空间,只存储其中非零的项,链表中的每个节点存放多项式的系数非零项。
它包含三个域,分别存放多项式的系数,指数,以及指向下一个项的指针。
根据一元多项式相加的运算规则:对于两个一元多项式中所有指数相同的项,对应系数相加,若其和不为零,则构成“和多项式”中的一项,对于两个一元多项式中所有指数不相同的项,则分别复抄到“和多项式”中去。
核心算法PolyAdd是把分别由pa和pb所指的两个多项式相加,结果为pa所指的多项式。
运算规则如下:相加时,首先设两个指针变量qa和qb分别从多项式的首项开始扫描,比较qa和qb所指结点指数域的值,可能出现下列三种情况之一:
(1)qa->exp大于qb->exp,则qa继续向后扫描。
(2)qa->exp等于qb->exp,则将其系数相加。
若相加结果不为零,将结果放入qa->coef中,并删除qb所指结点,否则同时删除qa和qb所指结点。
然后qa、qb继续向后扫描。
(3)qa->exp小于qb->exp,则将qb所指结点插入qa所指结点之前,然后qa、qb继续向后扫描。
扫描过程一直进行到qa或qb有一个为空为止,然后将有剩余结点的链表接在结果表上。
所得pa指向的链表即为两个多项式之和。
5.实验程序代码及运行结果:
#include""
#include<>
#include<>
#include<>
#include<>
#define NULL 0
typedef struct NODE
{
float coef;
验总结
本来我对编程很没有信心,做这样一个课程设计感觉有点吃力,虽然有些人觉得很简单,但是我还是坚持做下来了,我不断的看书,翻阅资料,询问同学,上网搜索,总算有模有样地把这个程序编的能运行了。
其次,这次编程是我更多地理解掌握了线性链表的逻辑机构和物理特性。
对学过的知识有了很好的巩固。
困难还是很多的,比如初次运行的时候,好几十个错误,当时真的感到非常崩溃。
幸亏我没有放弃,才最终完成。
长舒一口气。
最后,通过这次编程,不仅仅考察了我对知识的掌握,更重要的是锻炼了我的思维能力和耐心,在最困难的时候没有放弃,今天才能如此舒心。