系统辨识经典辨识方法
系统辨识

1. 模型与系统1)模型:把关于实际系统的本质的部分信息简缩成有用的描述形式。
它用来描述系统的运动规律,是系统的一种客观写照或缩影,是分析、预报、控制系统行为的有力工具。
模型是实体的一种简化描述。
模型保持实体的一部分特征,而将其它特征忽略或者变化。
不同的简化方法得到不同的模型。
2)系统:有些书里也称为过程,按某种相互依赖关系联系在一起的客体的集合。
本身的含义是比较广泛的,可以指某个工程系统、某个生物学系统,也可以指某个经济的或社会的系统。
这里所研究的“对象”是抽象的,重要的是其输入、输出关系。
2. 残差和新息1)新息(输出预报误差):是过程输出预报值与实测值之间的误差。
(P13)过程输出预报值: 输出预报误差: 过程输出量: 2)残差:是滤波估计值和实测值之差。
3. 系统可辨识的条件最小二乘方法满足开环可辨识条件;激励信号是持续激励,阶次至少要(na+nb+1)阶。
可辨识条件:为了辨识动态系统,激励信号u 必须在观测的周期内对系统的动态持续地激励。
满足辨识对激励信号最起码的要求的持续激励信号应具备的条件,称“持续激励条件”。
4. 建立数学模型1)建立方法:①理论分析法:机理法或理论建模,“白箱”问题②测试法:系统辨识,“黑箱”问题③两者结合:“灰箱”理论问题2)基本原则:①目的性-明确建模的目的,如控制、预测等。
因为不同的建模目的牵涉到的建模方法可能不同,它也将决定对模型的类型、精度的要求。
②实在性-模型的物理概念要明确。
③可辨识性-模型的结构要合理,输入信号必须是持续激励的;另外数据要充足。
④节省性-待辨识的模型参数个数要尽可能地少。
以最简单的模型表达所描述的对象特征。
5. 辨识:就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。
1)试验设计:包括输入信号(幅度、频带等)、采样时间、辨识时间(数据长度)、开环或闭环辨识、离线或在线辨识(P19)目的:使采集到的数据序列尽可能多地包含过程特性的内在信息。
系统辨识方法

系统辨识方学习总结一.系统辨识的定义关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。
L.Ljung也给“辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。
出了一个定义:二.系统描述的数学模型按照系统分析的定义,数学模型可以分为时间域和频率域两种。
经典控制理论中微分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程和离散状态空间方程也如此。
一般在经典控制论中采用频域传递函数建模,而在现代控制论中则采用时域状态空间方程建模。
三.系统辨识的步骤与内容(1)先验知识与明确辨识目的这一步为执行辨识任务提供尽可能多的信息。
首先从各个方面尽量的了解待辨识的系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。
对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。
(2)试验设计试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。
主要涉及以下两个问题,扰动信号的选择和采样方法和采样间隔(3)模型结构的确定模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的,对所辨识系统的眼前知识的掌握程度密切相关。
为了讨论模型和类型和结构的选择,引入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。
所谓模型结构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。
在单输入单输出系统的情况下,系统模型结构就只是模型的阶次。
当具有一定阶次的模型的所有参数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。
(4)模型参数的估计参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶段就称为模型参数估计。
(5)模型的验证一个系统的模型被识别出来以后,是否可以接受和利用,它在多大程度上反映出被识别系统的特性,这是必须经过验证的。
系统辨识经典辨识方法

经典辨识方法报告1. 面积法辨识原理分子多项式为1的系统 11)(111++++=--s a sa s a s G n n nn Λ……………………………………………()由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。
大多数自衡的工业过程对象的y(t)可以用下式描述来近似1)()()()(a 111=++++--t y dtt dy a dt t y d a dt t y d n n n nK ……………………………() 面积法原则上可以求出n 为任意阶的各系数。
以n=3为例,注意到1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dtt y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得⎰-=++t dt t y t y a dtt dy a dt t y d a 01223)](1[)()()(…………………………………() 定义⎰-=tdt t y t F 01)](1[)(……………………………………………………………()则由式()给出的条件可知,在t →∞⎰∞-=01)](1[a dt t y ……………………………………………………………()将式a 1y(t)移到等式右边,定义 )()]()([)()(a 201123t F dt t y a t F t y a dtt dy t =-=+⎰…………………………………()利用初始条件()当t →∞时)(a 22∞=F …………………………………………………………………… ()同理有a 3=F 3(∞)以此类推,若n ≥2,有a n =F n (∞)分子、分母分别为m 阶和n 阶多项式的系统当传递函数的形式如下所示时111111)()(11)(u h K m n s a s a s a s b s b s b K s G n n n n m m m m ∞=≥++++++++=----ΛΛ…………………………………定义∑∞=----+=++++++++==1111111111)()(1)(i ii m m m m n n nn s c s b s b s b s a s a s a s P s P Ks G ΛΛ………………………………由于⎰∞--=-0**)](1[)](1[dte t h t h L st …………………………………………则)](1[*t h -的Laplace 变换为: ∑∑∞=∞=-+=-=-111*1)(11)](1[i iii i i s C sC s sP s t h L ……………………………………定义一阶面积1A 为:11110011lim )](*1[lim )](*1[c sC sC t h L dt t h A i ii i i i s s =+=-=-=∑∑⎰∞=∞=-→∞→………令 )1(1)]([1*1s c s t h L +=……………………………………………………………定义二阶面积为:2122**0012)1)(1()]()([limc s c s c sc dtd h h A i i i i i i is t=++=-=∑∑⎰⎰∞=∞=-→∞τττ…同理,令 )...1(1)]([11221*1---++++=i i i s c s c s c s t h L ……………………………………定义i 阶面积为i i c A =。
系统辨识基础--经典辨识方法

其中
Lh i 1t s1c1 sc2s2 1 ci 1 si 1
h
9
进一步利用下式
e s t 1 s ts2 t2 si ti
1 ! 2 !
i!
可得 得
L1h*t 1h*testdt Misi
0
i0
Mi
0
1h*t
ti
i!
dt
1Aisi1Misi11
i1 i0
a4 4 4.1207
b1 7.5 7.50402
b2 17.5 17.5233
h
15
4.3 脉冲响应法
ut
yt
1 ut
过 程 yt
0
t
0
t
gk1hkhk1
T0
h
16
ut
过程
yt
gt,0
模型参数 调整机构
~yt +
-
模型
gt,
图4.6 “学习法”原理
h
17
由脉冲响应求过程的传递函数-一阶过程
条件
增益K
a1
噪声 情况
无测量噪 声
有测量噪 声(方差 为0.01)
采样时间 4秒 1.5秒
1.5秒
数据长度 12 30
30
1.0 0.999984 0.999965
1.00204
10.0 11.7097 10.2171
11.5776
a2
6.5 6.52053 6.49897
6.47451
参数
真值 估 计 值
h
14
例 4.2
G s4s41 1s.5 5 3 7s 21 .7 5 7 .s 52 s 7 1.5s1
系统辨识实验二

《系统辨识》实验二要点实验二 递推最小二乘估计(RLS)及模型阶次辨识(F-Test )一、实验目的① 通过实验,掌握递推最小二乘参数辨识方法 ② 通过实验,掌握F-Test 模型阶次辨识方法二、实验内容1、仿真模型实验所用的仿真模型如下: 框图表示模型表示)()2(5.0)1()2(7.0)1(5.1)(k v k u k u k z k z k z λ+-+-=-+-- 其中u (k )和z (k )分别为模型的输入和输出变量;v (k )为零均值、方差为1、服从正态分布的白噪声;λ为噪声的标准差(实验时,可取0.0、0.1、0.5、1.0);输入变量u (k )采用M 序列,其特征多项式取1)(4⊕⊕=s s s F ,幅度取1.0。
2、辨识模型辨识模型的形式取)()()()()(11k e k u z B k z z A +=--为方便起见,取n n n b a ==,即nn nn zb z b z b z B z a z a z a z A ------+++=++++= 22112211)(1)(根据仿真模型生成的数据{}L k k u ,,1),( =和{}L k k z ,,1),( =,辨识模型的参数n n b b b a a a ,,,,,,2121 和;并确定模型阶次n ,同时估计出模型误差)(k e 的方差(应近似等于模型噪声)(k v 的方差,即为2λ)和模型的静态增益K 。
3、辨识算法① 采用递推遗忘因子法:[][][]⎪⎪⎩⎪⎪⎨⎧--=+--=--+-=-)1()()(1)()()1()()()1()()1()()()()1()(1k k k μk μk k k k k k k k k z k k k P h K I P h P h h P K h K τττθθθ 其中,遗忘因子10≤<μ(具体值根据情况自已确定);数据长度L 可取100、300、500;初始值⎩⎨⎧==IP 2)0()0(a εθ。
系统辨识的经典方法

⎧T
⎨⎩τ
= 2(t2 − t1) = 2t1 − t2
对于以上结果,也可在
⎧⎪⎨tt34
≤τ,
= 0.8T
+τ
,
⎪⎩t5 = 2T +τ ,
y(t3 ) = 0 y(t4 ) = 0.55 y(t5 ) = 0.87
这几点上对实际曲线的拟合精度进行检验。
系统辨识的经典方法
频率响应法
频率响应法-1
; 阶跃响应法辨识原理
¾ 在系统上施加一个阶跃扰动信号,并测定出对象的响应随时间 而变化的曲线,然后根据该响应曲线,通过图解法而不是通过 寻求其解析公式的方法来求出系统的传递函数,这就是阶跃响 应法系统辨识。
¾ 如果系统不含积分环节,则在阶跃输入下,系统的输出将渐进 于一新的稳定状态,称系统具有自平衡特性,或自衡对象。
+ b1s + a1s
+ +
b0 a0
,
n>m
¾ 对应的频率特性可写成:
G(
jω)
=
bm ( an (
jω)m +" + b2 ( jω)2 + b1( jω)n +" + a2 ( jω)2 + a1(
jω) + b0 jω) + a0
=
(b0 − b2ω 2 (a0 − a2ω 2
+ b4ω 4 + a4ω 4
系统辨识的经典方法
肖志云
内蒙古工业大学信息工程学院自动化系
系统辨识的经典方法
1
引言
2
阶跃响应法
3
频率响应法
4
相关分析法
系统辨识课件-经典的辨识方法

ˆ (t ) Ru (t )dt Ruz ( ) g
0
此为辨识过程脉冲响应的理论依据
2 Ru ( ) u ( ) 白噪声输入时 ˆ 1 g ( ) Ruz ( ) 2 u
4.5.2 用M序列作输入信号的离散算法
第4章 经典的辨识方法
4.1 引言 ● 辨识方法的分类 ▲ 经典的辨识方法 (Classical Identification) :首先获得系统的非参数模型(频 率响应,脉冲响应,阶跃响应),通过特定方法,将非参数模型转化成参数 模型 (传递函数)。 ① 阶跃响应辨识方法 (Step Response Identification) ② 脉冲响应辨识方法 (Impulse Response Identification) ③ 频率响应辨识方法 (Frequency Response Identification) ④ 相关分析辨识方法 (Correlation Analysis Identification) ⑤ 谱分析辨识方法 (Spectral Analysis Identification) ▲ 现代的辨识方法 (Modern Identification):假定一种模型结构,通过模型与过 程之间的误差准则来确定模型的结构参数)。 ① 最小二乘类辨识方法 (Least Square Identification) ② 梯度校正辨识方法 (Gradient Correction Identification) ③概率逼近辨识方法(Probability Approximation Identification) 经典的辨识方法 1)首先得到系统的非参数模型; 2)由非参数模型转换成参数模型。
K 1 lim h1 (t )
hr (t ) [ K r 1 hr 1 ( )]d
系统辨识综述

系统辨识课程综述作者姓名:王瑶专业名称:控制工程班级:研硕15-8班系统辨识课程综述摘要系统辨识是研究建立系统数学模型的理论与方法。
虽然数学建模有很长的研究历史,但是形成系统辨识学科的历史才几十年在这短斩的几十年里,系统辨识得到了充足的发展,一些新的辨识方法相继问世,其理论与应用成果覆盖了自然科学和社会科学的各个领域。
而人工神经网络的系统辨识方法的应用也越来越多,遍及各个领域。
本文简单介绍了系统辨识的基本原理,系统辨识的一些经典方法以及现代的系统辨识方法,其中着重介绍了基于神经网络的系统辨识方法:首先对神经网络系统便是方法与经典辨识法进行对比,显示出其优越性,然后再通过对改进后的算法具体加以说明,最后展望了神经网络系统辨识法的发展方向。
关键字:系统辨识;神经网络;辨识方法0引言辨识、状态估计和控制理论是现代控制理论三个相互渗透的领域。
辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。
随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。
然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。
所以说系统辨识是自动化控制的一门基础学科。
图1.1 系统辨识、控制理论与状态估计三者之间的关系随着社会的进步 ,越来越多的实际系统变成了具有不确定性的复杂系统 ,经典的系统辨识方法在这些系统中应用 ,体现出以下的不足 :(1) 在某些动态系统中 ,系统的输入常常无法保证 ,但是最小二乘法的系统辨识法一般要求输入信号已知,且变化较丰富。
(2) 在线性系统中,传统的系统辨识方法比在非线性系统辨识效果要好。
(3) 不能同时确定系统的结构与参数和往往得不到全局最优解,是传统辨识方法普遍存在的两个缺点。
1系统辨识理论综述1.1系统辨识的基本原理根据L.A.Zadel的系统辨识的定义:系统辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
取r(t)=δ(t),则c(t)=g(t),有
G(z) C(z) g(z) g(0) g(1)z 1 g(2)z 2 R(z)
任务:已知{g(i)}及n,求G(z)中系数ai和bi
由上两式有
4.2 脉冲响应序列求脉冲传递函数
b0 b1z 1 bn z n 1 a1z 1 an z n
4.3 相关分析法
4.3 相关分析法
(t)
u(t)
z(t) + y(t)
线性系统 g( )
模型 gm ( )
+
ym (t) + e(t) -
1、最优准则:当以同样的输入作用于系统和模型时,系统 输出与模型输出之间的残差e(t)的均方差J应尽可能的小,
J lim 1 T e2 (t)dt T T 0
)d
2
w( )
0
0 gˆ ()Ruu (
)dd
4.3 相关分析法
0 w( )Ruy ( )d
=
0
w(
)
0 gˆ()Ruu (
)d
d
维纳-霍夫方程( Wiener-Hopf )
Ruy ( ) 0 g()Ruu ( )d
输入输出互相关函数 = 系统模型 与 输入自相关函数 卷积 如果已经测得输入的自相关函数和输出的互相关函数, 则可能通过该方程获得被辨识对象的脉冲响应函数。 Wiener-Hopf方程是辨识过程脉冲响应的理论依据
i1
g(n 1) n ai g(n 1 i)z(n1) g(2n) n ai g(2n i)z2n
i1
i1
注:上式表明g(τ)序列长度N>=(2n+1)
4.2 脉冲响应序列求脉冲传递函数
由上式两边对应系数相等有
b0 1 0 0 0 0 g(0)
b1
a1
1
0
0
0
g
(1)
b2
第4章 线性系统的经典辨识方法
4.1 辨识方法分类 4.2 脉冲响应序列求脉冲传递函数 4.3 相关分析法 4.4 用M序列求脉冲响应
1. 现代辨识方法:
4.1 辨识方法分类
被控对象
e(k )
数据
u(k)
y(k) 待辨识系统
z(k)
数学模型
J
辨识算法
ym (k)
e(k)
模型类
准则
4.1 辨识方法分类
4.2 脉冲响应序列求脉冲传递函数
4.2 脉冲响应序列求脉冲传递函数
g(t)G(z)
R(z)
G(z)
B( z 1 ) A( z 1 )
C(z)
G(z)称为系统的脉冲传递函数,是系统的离散数学模型。
G(z)
C(z) R(z)
b0 b1z 1 bn z n 1 a1z 1 an z n
g(0) g(1)z1 g(2)z2
上式左边的分母分别乘其等号两边得
b0 b1z 1 b2 z 2 bn z n (g(0) g(1)z 1 g(2)z 2 )(1 a1z 1 an z n )
g(0) g(1) a1g(0)z1 g(n) n1 ai g(n i)zn
2. 经典的辨识方法 :
思路:首先获得系统的非参数模型(频率响应,阶跃响 应,脉冲响应), 然后通过特定的方法将这些非参数模型转化 成参数模型(如传递函数)。
① 阶跃响应辨识方法 ② 脉冲响应辨识方法 ③ 频率响应辨识方法 ④ 相关分析辨识方法 ⑤ 谱分析辨识方法
要求无噪声或噪声很小
允许有噪声
e(t
) y(t) ym
e2(t)y(t)(t
)
0
y(t) gm ( )u(t
0
gm ( )u(t
)d
2
)d
y2 (t) 2y(t)
0 gm ( )u(t )d
0 gm ( )u(t )d
0 gm ()u(t )d
4.3 相关分析法
e2 (t) y2 (t) 2 y(t)
a
2
a1
1
0 0 g(2)
(1)
bn an an1 an2 a1 1 g(n)
g(1) g(2) g(n) an g(n 1)
g(2)
g(3)
g(n 1)
an1
g(n
2)
(2)
g(n)
g(n 1)
g(2n
1)
a1
g(2n)
解(2)式可得ai,i=1,2,···,n. 代入(1)式可得bi,i=0,1,2,···,n.
但一般情况下,上述方程极难求解。只有在某些特殊情况, 维纳霍夫方程才可解。
特殊情况:白噪声
4.3 相关分析法
白噪声的自相关函数 Ruu ( t) K ( t)
Ruy ( ) 0 g()Ruu ( )d Kg( )
(t)
白噪声 u(t)
g( )
+ +
y(t)
时延
乘 法
Ruy ( ) Kg( )
M序列的循环周期为Np,移位脉冲的周期为t
M序列的自相关函数为
a2 ,
RM
(
)
a2 Np
,
Ruy ( ) 0 gˆ ()Ruu ( )d
0, N,2N, 0, N,2N,
利用Wiener-Hopf方程的离散形式 (采样时间为M序列移位脉冲周期t)
N 1
RMy ( ) gˆ ( j)RM ( j)t j0
1/s
器
积分器
缺点:白噪声作为输入信号,观测时间较长
(1)白噪声在工程上人为不可产生; (2)上述方法只是理论层面上; (3)实际工程上,常用M序列来代替白噪声输入信号。
解决方法:采用具有周期性,近似于白噪声的伪随机序列
4.4 M序列辨识线性系统的脉冲响应
4.4 M序列辨识线性系统的脉冲响应
1. 算法分析
4.4 M序列辨识线性系统的脉冲响应
2. 用M序列作为输入信号的一次完成算法
由离散的Wiener-Hopf方程可得
N 1
u
(t
)u(t
)dt
d
J
Ryy (0)
2
0 gm ( )Ruy ( )d
0 gm ()d
0 gm ( )Ruu (
)d
令 gm (t) gˆ (t) w(t) J 0
Ryy (0) 0
2
0
gm ( )Ruy (
)d
2
0
w(
)Ruy (
)d
0
gm ()d
0
gm ( )Ruu (
0 gm ( )u(t )d
0 gm ( )u(t )d
0 gm ()u(t )d
J lim 1
T T
T e2 (t)dt lim 1
0
T T
T 0
y2 (t)dt
2
0
gm
(
)
Tlim
1 T
T 0
y(t)u(t
)dt
d
0 gm ( )
0
gm
(
)d
Tlim
1 T
T 0