数学与战争(图)

合集下载

数学建模实例战争模型

数学建模实例战争模型

x
y0
x = f ( y)
x0
x
战争模型正规战和游击战军备竞赛核武器竞赛正规战与游击战战争分类正规战争游击战争混合战争只考虑双方兵力多少和战斗力强弱兵力因战斗及非战斗减员而减少因增援而增加战斗力与射击次数及命中率有关第一次世界大战lanchester提出预测战役结局的模型00ytgxyvtxtfxyxyut?????一般模型?每方战斗减员率取决于双方的兵力和战斗力?每方非战斗减员率与本方兵力成正比?甲乙双方的增援率为utvtxt甲方兵力yt乙方兵力模型假设fg取决于战争类型模型vtxyaybxxyut???????正规战争模型?甲方战斗减员率只取决于乙方的兵力和战斗力fxy?aya乙方每个士兵的杀伤率arypyry射击率py命中率双方均以正规部队作战xxgbxbrp??忽略非战斗减员?假设没有增援0000xyxaybxxyy???????正规战争模型???????000y0xyxbxyayxaybxdxdy???2020bxayk?0kbxay?22tytx0ak0k0kbk?0k00kx?y0kk??0yyxxprprabxy甲方胜?????200乙方胜平局游击战争模型双方都用游击部队作战?甲方战斗减员率还随着甲方兵力的增加而增加fxy?cxyc乙方每个士兵的杀伤率crypyry射击率py命中率sry乙方射击有效面积?忽略非战斗减员?假设没有增援gxyxxxrxydxydrprss???0000xyxcxydxyxyy?????pysrysxsx甲方活动面积tycm0dm?tx0m0m0m??????游击战争模型?dxyy0000xyyxcxyx00dxcymmdxcy??r?000mxy?y00yryyxrxxssrsscdxmm00??cddxdy乙方胜甲方胜平局tytx0乙方胜0n平局0n甲方胜0n0000xyxcxybxxyy???????220022cynbx???ncy??0ybx混合战争模型甲方为游击部队乙方为正规部队?yx??设x0100rxry12px01sx1km2sry1m2200202crb2??0nx200100yx00xsrspxryyxxx??????乙方必须10倍于甲方的兵力乙方胜美国人曾用这个模型对越南战争进行分析认为在混合战争中要想战胜至少应投入8倍于游击部队一方的兵力而美国人只能派出6倍于越南的兵力那么就不得不接受和谈的结局退兵根据二战中的硫磺岛战役中的纪录数据engel对正规战争模型进行了验证

数学与战争

数学与战争

数学与战争一、海湾战争是数学战争1991年海湾战争时,有一个问题放在美军计划人员面前,如果伊拉克把科威特的油井全部烧掉,那么冲天的黑烟会造成严重的后果,这还不只是污染,满天烟尘,阳光不能照到地面,就会引起气温下降,如果失去控制,造成全球性的气候变化,可能造成不可挽回的生态与经济后果。

五角大楼因此委托一家公司研究这个问题,这个公司利用流体力学的基本方程以及热量传递的方程建立数学模型,经过计算机仿真,得出结论,认为点燃所有的油井后果是严重的,但只会波及到海湾地区以至伊朗南部、印度和巴基斯坦北部,不至于产生全球性的后果。

这对美国军方计划海湾战争起了相当的作用,所以有人说:“第一次世界大战是化学战争(炸药),第二次世界大战是物理学战争(为原子弹),而海湾战争是数学战争。

”二、巴顿抓住了“可怕的机会”军事边缘参数是军事信息的一个重要分支,它是以概率论、统计学和模拟试验为基础,通过对地形、天侯、波浪、水文等自然情况和作战双方兵力兵器的测试计算,在一般人都认为无法克服、甚至容易处于劣势的险恶环境中,发现实际上可以通过计算运筹,利用各种自然条件的基本战术参数的最高极限或最低极限,如通过计算山地的坡度、河水的深度、雨雪风暴等来驾驭战争险象,提供战争胜利的一种科学依据。

1942 年10月,巴顿将军率领4万多美军,乘100艘战舰,直奔距离美国4000公里的摩洛哥,在11月8日凌时晨登陆。

11月4日,海面上突然刮起西北大风,惊涛骇浪使舰艇倾斜达42°。

直到11月6日天气仍无好转。

华盛顿总部担心舰队会因大风而全军覆没,电令巴顿的舰队改在地中海沿海的任何其他港口登陆。

巴顿回电:不管天气如何,我将按原计划行动。

11月7日午夜,海面突然息浪静,巴顿军团按计划登陆成功。

事后人们说这是侥幸取胜,这位"血胆将军"拿将士的生命作赌注。

其实,巴顿将军在出发前就和气象学家详细研究了摩洛哥海域风浪变化的规律和相关参数,知道11月4日至7日该海域虽然有大风,但根据该海域往常最大浪高波长和舰艇的比例关系,恰恰达不到翻船的程序,不会对整个舰队造成危险。

数学与战争的关系

数学与战争的关系

机械化作战时的运算分析
• 随着科技和兵器的进步,作战规模不断扩大, 随着科技和兵器的进步,作战规模不断扩大, 地域更加开阔和复杂, 地域更加开阔和复杂,单纯的思维活动已难以全面 展开对兵力编成、 展开对兵力编成、装备器材分配以及作战决策等一 系列复杂指挥活动进行计算和推演。 系列复杂指挥活动进行计算和推演。单纯运用 对军事问题进行“模糊”分析已不适用, 算”对军事问题进行“模糊”分析已不适用, 之以运用数学方法量化分析军事问题的“ 之以运用数学方法量化分析军事问题的“运算分析 则成为指挥员的一种新的数学素质。 则成为指挥员的一种新的数学素质。
“庙算在先,谋智于上” 庙算在先,谋智于上”
• “庙算”是我国古代最早提出的以计 庙算” 算取得军事胜利的概念。 算取得军事胜利的概念。孙子特别强 根据掌握的敌我双方的情况, 调,根据掌握的敌我双方的情况,立 足于对已有的物质条件和战争潜力各 方面进行比较,在打与不打,如何打、 方面进行比较,在打与不打,如何打、 打到什么程度, 打到什么程度,怎样结束战争等关键 问题上进行综合“庙算”考虑。 问题上进行综合“庙算”考虑。
战争中密码学与数学的关系
• 1941年5月21日,英国情报机关终于 年 月 日 截获并破译了希特勒给海军上将雷德 尔的一份密电。 尔的一份密电。 • 中途岛海战
数学素质与军事指挥的关系
• 各个战争时期,有不同的数学素质。 各个战争时期,有不同的数学素质。 • “庙算在先,谋智于上” 庙算在先,谋智于上” • 机械化作战时的运算分析 • 信息时代的计算机仿真
信息时代的计算机仿真
• 计算机仿真是集计算机技术、军事运 计算机仿真是集计算机技术、 筹理论、军事学、多媒体技术、 筹理论、军事学、多媒体技术、通信 技术、控制技术于一身的现代高科技。 技术、控制技术于一身的现代高科技。

浅谈数学在战争中的应用

浅谈数学在战争中的应用

浅谈数学在战争中的应用一、陆军作战中数学的应用领域(一)数学在战术层面上的应用数学是一门基础性的学科,对于人类的生产和生活起到重要的指导作用。

同样,在军事领域中数学也同样扮演着重要的角色。

在陆军作战中,战术层面是数学应用的重要领域。

一方面,数学原理在陆军作战武器的开发和使用中发挥着重要的作用。

在人类战争的冷兵器时代,数学理论就被用于投石机等作战武器的制造和使用中,士兵可以根据一些初等数学理论知识,如平面几何学来预测投石机的抛射轨迹,从而在武器的使用中进行适当的调整,使巨石的落点更加精准,从而更好地发挥投石机的杀伤力,达到攻城或者杀伤敌人的目的。

而到了热兵器时代,数学理论在武器的开发和使用中的应用就更加深入了。

无论是轻武器如各类枪械,还是火炮、导弹的设计都需要数学知识,弹道的计算就是数学应用的突出例证。

而在武器使用上,狙击手在射击时需要结合实际的战场情况运用数学知识进行相应的调整,从而提高射击的精准度,达到一击必杀的震慑效果。

另一方面,在大规模军事战争中,为了能够制定出更加有效的战术就需要对大量的战场数据进行分析,数学在其中就发挥着重要的作用,军事统计学就是数学和战争结合的产物。

通过数学中的统计学和概率论的相关知识,结合陆军作战的实际情况就可以进行统计学分析,从而为预测战争的走势提供科学的依据,拟定出合理的战术,提前做出应对,在陆军作战中抢占先机。

(二)数学在战略层面上的应用数学在陆军作战中的应用还可以上升到战略的高度上,使得战略层面的作战决策更加科学,更加具有预见性。

尤其在信息化的作战环境下,陆军作战中可以依托于现代计算机超强的运算能力将复杂的数学模型用于战略决策当中。

通过数学模型就可以对陆军作战中的军事问题展开定量分析,来预测战争的走势,来指导作战决策,做出最优的战略抉择。

其中军事运筹学和军事边缘参数就是数学在战略层面应用的代表。

军事运筹学是一种通过计算机技术和数学工具定量分析军事问题,为陆军作战的战略决策进行数量依据支撑的科学方法,是一种现代的军事科学。

战争中的数学

战争中的数学
10统计毛概作业(3)
课题:数学中的战争问题
组长:武玮、秦星星
组员:杨博雅、曲林莉、袁冬梅、原贝贝、张颖、李萍、周利丹、樊竞颜、陈亚茹、王建路、谢营利、苏永秀、邹东
小组活动步骤:
1、小组成员开会讨论,确定研究的课题。
2、确定课题后,由组长分配任务。
3、大家积极地搜集资料……
4、对数学问题进行计算分析。
结果,在把炸弹换装鱼雷的五分钟内,日舰和“躺在甲板上的飞机”变成了活靶,受到迅速起飞的美军舰载飞机的“全面屠杀”。日本舰队损失惨重。从此,日本在太平洋海域由战略进攻转入了战略防御。
战后,有些军事评论家把日本联合舰队在中途岛海战失败原因之一归咎于那“错误的五分钟”。可见,忽略了这个看似很小的时间因素的损失是多么重大。
1948年英国科学家Lewis Fry Richardson发表了第一本关于战争统计学的学术专著。他花了7年时间搜集了从他研究开始之时往前一个多世纪里发生的共300多场战争的数据。当他把这些数据作图时,发现这些性质不一的战争却呈现出某种有规律的模式,似乎战争的混乱也遵循着一些至今还无人知晓的自然法则。Richardson发现死亡人数较少的冲突数量要比大量伤亡的战争数量多得多。不过这种显而易见的观察结果里隐藏了一个可以用数学给予精确描述的关系:即军事冲突的严重程度和发生频率之间的关系呈现出一个平滑的曲线,即遵循人们所知的“幂定律”。据此得出的一个结论是:诸如世界大战这样的极端事件并不能称之为反常,根据战争冲突发生的频率来看,它们的偶尔发生应该是在人们预计之内的。这些研究结果后来深深吸引了大量数学家和军事战略家们,它们也被重现了很多次。可是对于指导真正的战争来说,它们还没有起到太多影响。毕竟说明某种模式存在是一回事,而让它发挥实际作用又是另一回事。

战争中的数学

战争中的数学
从人类早期的战争开始,数学就无处不在。不论是发射弩箭还是挖掘地道攻城,数学定律就像冥冥之中的命运之神一样在起作用。
今天,我们小组沿着历史的足迹,搜集各种史实资料,用数学解密战争中的问题!
A;中国战争中的数学显威力
坦克从第一次世界大战登上战争舞台开始,就成为众矢之的——从早期的榴弹炮、反坦克枪、地雷,到后来的反坦克炮、反坦克导弹、武装直升机等等,无不虎视眈眈地准备猎杀这个“陆战之王”。在各种反坦克武器中,自行反坦克炮可谓元老级“杀手”,它以机动能力强.火炮威力大,装甲防护好,以及价廉物美的特点,长期雄居坦克杀手榜的榜首,就是在当今反坦克导弹笑傲群雄时,自行反坦克炮仍然占有一席之地,被称为“冷面杀手”。
当发射榴弹----HE----时
射程普遍达到10千米以上
当然
这时候
坦克的角色就是业余压制火炮了
至于精度
就不那么重要了
中俄主要使用125口径坦克炮
虽然拥有1800米/秒的炮口初速
但是由于弹芯较轻较短
弹芯速度衰减快
威力反而不如欧美的120坦克炮
一般而言
125发射APFSDS的有效射程在2200米左右
美欧主要使用120口导地位时,其最大射程角则小于45°,如85 加农炮。对于步枪来说,由于弹丸飞行速度受空气阻力影响很大,它的最大射程角只有30°左右。当飞行时间影响弹丸飞行射程占主导地位时,火炮的最大射程角则大于45°。如大口径高初速的远射程火炮,由于弹丸飞行时保持速度能力强,当大于45°的射角射击时,弹丸可以穿过稠密大气层,以低阻力在空气稀薄的高空飞行,延长了飞行时间。
第二次世界大战末期,法西斯德国有一种起威吓作用的所谓巴黎大炮,其口径为210 毫米,初速为1700 米每秒,弹重为125公斤,当其达到127 公里的最大射程时,弹丸的最大飞行高度达39 公里,空中飞行时间达3 分半钟,它的最大射程角是53°。

数字化战争

数字化战争

外军数字化状况——英军
• 首先从陆军开始发展和规划英国的数字化 部队
– 国防部颁发了“英国陆军数字化部队总纲”
• 成立了第一个数字化机构--"地面指挥信息 系统作战需求办公室"
• 加强数字化部队建设,首先要在技术上取 得重大突破
外军数字化状况——英军
美军——理论准备
• 区分信息战的类型 • 探讨信息战的特点及其在现代高技术战
牛津关于中国数字化信息战的发展报告
• 意义: • 分析: • 作战能力: • 进展: • 结论:
西方发达国家信息化战略
• 西方发达国家信息化发展状况 • 西方发达国家信息化战略及措施 • 对我国的启示
西方发达国家信息化发展状况
• 美国:遥遥领先 • 日本:迅猛发展 • 欧盟各国:全力以赴
美国各行业的网络市场在2000年和 2003年所占据市场份额
• 第二代计算机的主要逻辑部件采用晶体管,内存储器 主要采用磁芯,外存储器主要采用磁盘,输入和输出 方面有了很大的改进,价格大幅度下降。
• 在程序设计方面,研制出了一些通用的算法和语言, 其中影响最大的是FORTRAN语言。操作系统的雏形开 始形成。
晶体管
• 1950年,美国首先研制出面结型晶体管; • 1954年再次研制成功硅平面型晶体管;进而又
了其信息战网络的脆弱性
国外军事家眼中的具有中国特色的信息战
• 人民战争与信息战结合
– 人人可以成为新人民战争中的主力军。 – 用人民战争思想打信息战。 – 用家用微机即可进行的战争,需要时动员成
千上万人,攻击外国计算机系统。 – 中国拥有一批杰出的软件专家,在信息战领
域有巨大潜力。
国外军事家眼中的具有中国特色的信息战

数学与战争

数学与战争

题目1:游击战与混合战的兰彻斯特作战模型:混合战模型:如果甲军是游击队,乙军是正规部队,由于游击队对当地地形熟,常常位于不易发现的有利地形。

设游击队占据区域R ,由于乙军看不清楚甲军,只好向区域R 射击,但并不知道杀伤情况。

我们认为如下的假设是合理的:游击队x 的战斗减员率应当与x(t)成正比,因为x(t)越大,目标越大,被敌方子弹命中的可能性越大;另一方面游击队x(t)的战斗减员率还与y(t)成正比,因为y(t)越大,火力越强,x 的伤亡人数也就越大。

因此游击队x 的战斗减员率等于cx(t)y(t),常数c 称为敌方的战斗有效系数。

如果f(t)和g(t)分别为游击队和正规部队增援率,则游击队和正规部队的作战模型为dxdt cxy f t dy dtdx g t =-+=-+⎧⎨⎪⎩⎪()() (7)若无增援f(t)和g(t),则(7)式为dxdt cxydy dtdx =-=-⎧⎨⎪⎩⎪ (8)积分(8)式得cy dx cy dx M 202022-=-=(9)(9)式在x-y 平面上定义了一族抛物线,如图17.9所示:如果M > 0,则正规部队胜,因为当y(t)减小到M c ,部队x 已经被消灭。

同样,如M < 0,则游击队胜。

游击战模型: 若甲乙双方都是游击部队,则双方都隐蔽在对方不易发现的区域内活动。

由混合战部分的分析,得游击战数学模型dxdt cxy f t dydtdxy g t =-+=-+⎧⎨⎪⎩⎪()() (10)其中f(t)和g(t)分别是甲军和乙军的增援率,常数c 是乙军的战斗有效系数,常数d 是甲军的战斗有效系数。

如果甲乙双方增援率均为零,则游击战数学模型为dx dtcxy dy dt dxy x x y y =-=-==⎧⎨⎪⎪⎪⎩⎪⎪⎪(),()0000 (11) (11)的解为 cy dx cy dx m -=-=00 (12)(12)式在x-y 平面上定义了一族直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学与战争军人讲究的是孔武之道,写写算算是文人的事情。

在连队里,和数学最接近的大概就是司务长了,要把粮饷之事计算清楚。

但数学和战争其实相距不远。

第一次世界大战前夕,多才多艺的英国人兰切斯特用数学开创了半经验的作战模拟方法,建立了经典的兰切斯特方程。

兰切斯特用平方律定量地解释了特拉法尔加海战中纳尔逊各个击破的成功诀窍(人称Nelson Touch),恩格尔在1954年用线性律精确地复现了硫磺岛中美军伤亡情况。

经典兰切斯特方程对士气、地形、机动、增援和撤退等没有考虑,但对战斗的一般规律仍有指导意义。

兰切斯特把战斗简化为两种基本情况:远距离交火杀伤和近距离集中火力杀伤。

远距离交火时,一方损失率既和对方兵力成正比,也和己方兵力成正比。

换句话说,敌人越多,自己损失越大;另一方面,自己人越多,目标越大,损失也越大。

这个情况以微分方程表示即为dy/dt=-axydx/dt=-bxy其中x和y分别为红军和蓝军的战斗单位数量,a和b分别为红军和蓝军的平均单位战斗力,因此双方实力相等的条件为ax=by即任一方的实力和本身战斗单位的数量成线性关系,也称兰切斯特线性律。

这就是说,如果蓝军平均单位战斗力(包括武器、训练等因素)是红军四倍的话,100 名蓝军和400名红军的战斗力相同,100名蓝军和400名红军交战的结果是同归于尽。

集中优势兵力只是拼消耗,并不占便宜。

但近距离集中火力杀伤时,一方损失率仅和对方战斗单位数量成正比,而和己方战斗单位数量无关。

换句话说,敌人越多,自己损失依然越大;但短兵相接,自己方面已经无所谓目标大小的问题。

于是微分方程变为:dy/dt=-axdx/dt=-by双方实力相等的条件变为ax^2=by^2即任一方实力和本身战斗单位数量的平方成正比,也称兰切斯特平方律。

仍假定蓝军平均单位战斗力是红军的四倍,100名蓝军和400名红军近战后,当蓝军100人全军覆没时,红军仍有√(〖400〗^2-4×〖100〗^2 )=346人留下,即损失54人,实际损失比蓝军还小。

这就是集中兵力打歼灭战和避免添油战术的数学依据。

考虑另一个情况:200名蓝军和400名红军近战,双方实力相等(√(〖400〗^2-4×〖200〗^2 )=0)。

如果红军通过战术动作或计策使蓝军分成各为100人但互不支援的两半,则红军可以54人的代价先歼灭蓝军的第一个100人,再用剩余的力量以64人的代价歼灭蓝军的第二个100人,红军总代价为118人,总战果为200人。

这就是“各个击破”原则的数学解释,也是兵败如山倒的数学解释,因为兵败的典型特征是各自为战,首尾不顾,即使不考虑战斗意志瓦解的问题,也在客观上强化了被各个击破的机会。

再考虑一个情况。

仍然考虑蓝军100人,红军400人,双方战斗力差距为4:1的情况,但双方相距很远。

如果红军付出一半的代价推进到近距离,按4:1的线性律,这时红军还剩200人,蓝军50人。

但接下来红军就可以发挥近战优势,以27人的代价消灭蓝军的第二个50人。

这就是勇猛突破、近战歼敌以克服敌人远射火力优势的数学解释。

兰切斯特平方律和线性律还可以有特殊情况,比如游击战中,游击的一方在暗处,容易主动集中兵力,近战歼敌;反游击的一方在明处,需要分兵把守,比较被动。

这样游击一方服从平方律,反游击一方服从线性律,游击一方占便宜。

空袭和反空袭也是类似的情况。

兰切斯特方程当然是把战场情况简单化、理想化了,后人在此基础上大大扩充,用于研究更现实的战场实际。

但兰切斯特方程在本质上是确定性的,没有考虑随机的因素,比如说,规模相当的王牌军和乌合之众交战,王牌军的胜算较大,但不能排除偶然的因素,使得乌合之众获胜。

这个胜算的大小就是概率和随机的范畴。

在兰切斯特之前,德国总参谋部就在世界上率先使用沙盘演习。

沙盘演习不仅构造一个模仿战场的模型,还要在摆兵布阵时考虑部队机动能力、天气地形条件等因素,到最后交战的时候,丢骰子决定战斗的胜负。

根据战斗力的差别,较强的一方可以多丢几次,较弱的一方少丢几次,但最后结果依然是随机的。

这里面的科学道理就是概率和随机过程。

老毛奇指挥下的德军依靠这一科学的指挥体系,在普法战争中像机器一样精确地作战,把曾经称霸欧洲大陆的法军打得一筹莫展。

在第二次世界大战后期的阿登反击战中,德军丧失先机,遭到美军反击。

莫德尔元帅命令A集团军参谋部和所有尚未投入战斗的一线部队主官在指挥部继续进行作战模拟,当前的战况作为输入数据。

后来的战事果然如作战模拟所示那样危急,第116装甲师师长瓦尔登堡将军在几分钟内就将作战模拟时的假想性命令作为实际作战命令下达,待命的第116师得以在短得不可思议的时间内有计划地投入战斗,虽然没能最终扭转战局,但还是显示了作战模拟的实战价值。

另一方面,忽视作战模拟所揭示的问题,有可能在战争中带来巨大损失。

第一次世界大战坦能堡战役前,俄军总参谋部的作战模拟表明,为避免形成缺口和被各个击破,萨姆索诺夫的第二集团军必须先于莱能肯普夫的第一集团军三天行动,方能在因斯特堡形成钳击。

但这一要求没有在作战计划中反映出来,也没有包括进后来的行动中。

果然,德国名将鲁登道夫将军和兴登堡元帅(两人关系有点象解放战争中三野的粟裕和陈毅)及时抓住战机,先全歼萨姆索诺夫的第二集团军于坦能堡,再重创莱能肯普夫的第一集团军于马苏莱湖,扭转了德军在东普鲁士的危局,给沙俄这个已经危机重重的柴禾堆上添加了一大捧干柴,只等十月革命的最后一根火柴了。

在中途岛海战前日本海军的作战模拟中,当假想的美军空袭时,南云的飞机在攻击中途岛,舰队受到惨重损失,裁判判定南云的航母受到9次命中,赤诚号和加贺号沉没。

演习总指挥宇垣海军少将专断地否决裁决,将击中次数减少3次,航母沉没为1艘,于是被判沉没的1艘航母重新参加战斗,演习继续。

实战结果比演习更具灾难性,4艘航母全被击沉。

描述作战过程的数学理论还有诺依曼的博奕论(也称对策论)、马尔科夫过程的微分-差分方程、杜普伊的战斗效能定量比较方法、蒙特卡洛方法等其他数学方法。

计算机的出现使作战过程的数学模拟实用化,计算机化的作战模拟已经成为现代军队制订作战计划、研究战略战术、评估武器效能的有力工具。

除了作战模拟,数学还用于作战分析。

在第二次世界大战前后,美英科学家用数学方法对雷达搜索、船队护航、反水雷和反潜搜索进行研究,推出一系列有效的战术,为盟军所采用,为反法西斯战争的胜利立下了功绩,成为人们所熟悉的佳话。

在今天,战争的焦点转向反恐,至少对美英来说如此。

在伊拉克和阿富汗,最使盟军头疼的是防不胜防的土地雷,这种IED(Improvised Explosive Device的缩写,意为自制爆炸装置)不仅造成很大的伤亡,还给盟军官兵带来巨大的心理阴影。

在所有巡逻路经上全时监视是不可能的,但时不时来一遍空中侦察是完全可以做到的,在巡逻队到达前空中侦察更是不在话下。

但空中侦察如何探测地下的IED呢?空中侦察可以形成高分辨率图像,包括多光谱图像。

有经验的老兵可以用目视观察,仔细对比以前同一地点的图片,发现蛛丝马迹,找到IED 的迹象。

但人工判别工作连太大,时间太长,数学再次出马,这就是图像识别和比较。

最简单化的图像比较就是把两张图放到一起比较。

在数码光学时代,数码相机把一幅图像数字化,也就是说,一幅画面被分割成几百万甚至更多的细小方格,每一方格是一个象素,每一个象素的亮度范围用0-255的数值范围表示,0为全黑,255为全白。

当然全黑到全白也可以用更大的数值范围表示,那样可以反映更细腻的细节。

市面上通常的数码相机是8位通道,就是0-255的范围;更高级的数码单反有的已经采用16位通道,那就是0-65535了。

单一通道只能表示亮度,图像就是黑白的,如果在单纯黑白通道上加红、蓝、绿滤色镜,就形成红、蓝、绿通道。

用相邻的三个像素分别担任红、蓝、绿三个通道,分别记录亮度,然后再把三个通道的信息叠加起来,就可以还原彩色图像。

这就是数码相机的基本原理。

由于每一个象素的信息都是数字,计算机就可以对两幅数码图像作逐格比较。

最简单的做法就是把图像A和图像B相减,相同部分数值相等,结果为零;不同部分数值有差值,结果数值取绝对值消除负数的问题,就可以在图像上还原出“问题区域”。

进一步判别就可以有的放矢,容易找出IED;或者省点事,指令巡逻队直接绕过去了事。

当然,实际上图像比较没有那么简单,前后两幅图像不大可能在绝对相同的角度、光线、距离下拍摄,简单比较容易造成太多的误判。

这就牵涉到图像识别。

图像识别通过对数字化的图像的分析,像筛子淘沙一样,用分类算法把数据分类,抓出特征性的数据。

在图像识别的基础上,前后图像只比较特征性的数据,这样就可以避免为琐碎因素所误导。

除了对可见光图像比较,还可以用多光谱图像捕捉红外、紫外特征,区分土壤温度、植被变化,进一步增加探测的几率和精度。

由于巡逻路经很长,空中侦察下载的图像信息量巨大,图像处理本身需要很强的计算能力,再厉害的普通个人电脑也跟不上这样的数据处理要求。

另一方面,图像数据处理需要的是大量的向量处理能力,也就是说,运算量是天文数字,但运算本身并不复杂,所以基于电脑图像卡技术的GPU反而比通用的CPU更加适合。

美国陆军已经向阿富汗运送了大批具有特别加强数据处理能力的微型超级计算机,这些是具有向量处理插件的顶级普通个人电脑,专门用于图像数据处理,为巡逻队保驾护航。

这样的技术在常规战争中也可以应用,用于判断战场态势、敌军动向等。

图像识别是模式识别的一个分支,另一个分支是语音识别,这在战场上也很有用。

每一支巡逻队、野战分队作战回来,都有大量有用信息上报。

但要疲惫的官兵再写详尽的书面报告不现实,口头报告加语音识别,可以迅速把前线信息数字化,以备后用。

语音识别也用到大量的数学。

在反恐战争中,数学的应用还不止于此。

反恐作战的难点不在于实际战斗,正规军的火力不是恐怖分子能比的,但要发现恐怖分子的活动规律,有目的、有准备地打,而不是被动应付,这才是难点。

在常规战争中也有类似的问题,找到敌军的规律,对症下药,敌变我变,这比制定一厢情愿的战略战术要有效得多。

发现对手活动规律分为两步:1、定性确定因果关系2、对因果关系定量化在朝鲜战争中,刚愎自用的麦克阿瑟在仁川登陆得手后,轻敌冒进,被志愿军打了个鼻青脸肿。

李奇微审时度势,准确地找到了志愿军“星期攻势”的规律,并制定反制战术,最终导致志愿军在第五次战役中的失利。

志愿军“星期攻势”的规律看似不难找到,主要变量就是一个时间,李奇微找到了,麦克阿瑟没有,这不能完全怪罪于麦克阿瑟的无能。

事后诸葛亮是容易做的,但在事前要找出因果关系并不容易,这里面的关键就是在浩如烟海的数据中,找到因与果之间的配对。

在科研和工业实践里,这样的问题也很多,人们开发了很多数学方法,有些很直观,有些就需要一点写写算算。

相关文档
最新文档