高效环保型多通道真空射水抽气系统

高效环保型多通道真空射水抽气系统
高效环保型多通道真空射水抽气系统

Mechanical Engineering and Technology 机械工程与技术, 2020, 9(2), 125-130

Published Online April 2020 in Hans. https://www.360docs.net/doc/1615922674.html,/journal/met

https://https://www.360docs.net/doc/1615922674.html,/10.12677/met.2020.92013

Vacuum Ejector System of Efficient

and Environment-Friendly

Qizhi Xie

Lianyungang Jiusheng Auxiliary Power Co. Ltd., Lianyungang Jiangsu

Received: Mar. 26th, 2020; accepted: Apr. 2nd, 2020; published: Apr. 10th, 2020

Abstract

The new type of high efficient and environment-protecting multi-channel water-jet air ejector is a key equipment for condenser vacuum system in thermal power plants and other vacuuming uses. In this paper, a high efficient environment-protecting multi-channel water-jet air ejector system is successfully established in order to realize the functions reliably, ensure quality, and meet new va-cuuming requirements. Based on mature technology, the system is established by innovating processing technology and improving the designing idea. During the establishment of the system, anti-noise structure, monitoring terminal, gas filling controlling system, malfunction prediction and health management based on cloud computing and APP in the user's mobile phones have been re-searched and designed, thus the system is highly reliable, intelligent and energy-saving.

Keywords

Vacuum Ejector Suction Device, Efficient and Environmental Protection, Multichannel

高效环保型多通道真空射水抽气系统

谢其志

连云港久盛电力辅机有限公司,江苏连云港

收稿日期:2020年3月26日;录用日期:2020年4月2日;发布日期:2020年4月10日

摘要

新型高效环保型多通道射水抽气器是火力发电厂汽轮机组抽吸凝气器真空和其它需要抽真空的一种关键设备。为了可靠的实现其功能、保证装置设备质量,以适应新型抽吸真空任务的要求,本文以成熟技术为基础,通过创新加工工艺、改进设计思想,对防噪音结构设计、监控终端设计、气体充装控制系统设计、基于云计算的故障预测与健康管理、用户手机客户端APP设计等模块进行研究,成功建立高效环保型多通道真空射水抽气系统,该系统高度安全可靠、智能、节能。

谢其志

关键词

真空射水抽气装置,高效环保,多通道

Copyright ? 2020 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

https://www.360docs.net/doc/1615922674.html,/licenses/by/4.0/

1. 引言

进入二十一世纪以来,我国的电力辅机设备生产技术获得长足进步,需求不断增长,设备制造、原料生产和制品加工形成了全套供应链体系,其中射水抽气器的生产和应用发展尤为突出。随着国内真空技术应用领域的不断广泛普及,各种真空获得设备的发展非常迅速[1] [2] [3]。

目前我国生产的各种真空泵型号、规格、性能参数基本上能满足我国真空应用发展的基本需要,特别是老产品都在不断改进,新产品不断开发,取得了显著的成绩,而且满足了各行业不同的工艺需求

[4]-[11]。本研究主要是针对结构改进、控制系统设计和软件系统设计三方面内容,研发高效的环保型的多通道的真空射水抽气的装置。具体包含:① 结构改进创新设计。包含加装自动单向阀、加设防噪罩、采用新的流体通道等。以及生产工艺创新和应用创新。② 控制系统设计。包括监控终端设计,气体充装控制系统设计。③ 软件系统设计。包括基于云计算的故障预测与健康管理,用户手机客户端APP 设计。

2. 结构改进创新设计

2.1. 工作原理

多通道真空射水抽气装置的工作原理为:来自射水泵的具有一定压力的工作水经过水室进入喷嘴,喷嘴将压力水的压力转变为动能,水流从喷嘴高速喷出,卷吸空气,使空气吸入室产生高度真空,抽出凝汽器内的汽、气混合物,一起进入扩散管,水流速度减慢,压力逐渐升高,最后以略高于大气压的压力排出扩散管。高效环保型多通道真空射水抽气装置,结构示意如图1所示。

Figure 1. Structural sketch

图1. 结构示意图

Open Access

谢其志

采用两个工作喷头,两个工作喷头安装在工作室内部一端,两个工作喷头的尾部正对连接工作室的工作介质进口,水介质从工作介质进口内进入工作喷头中,工作室内部的另一端连接两个喉管的一端,两个工作喷头的喷嘴分别正对两个喉管的入口,工作喷头的喷嘴将介质喷入喉管内,工作室外表面连接进气口,气体从进气口进入工作室内部,进气口的口部安装有单向阀,保证气体单向从进气口进入工作室内部,喉管置于防噪罩内,喉管另一端连接喉管出气室,喉管出气室表面设置有余速抽气口。传统的机组由于管道和壳体不严密,空气就会渐入,从而破坏凝汽器真空,危及气轮机的安全经济运行。同时,空气在凝汽器中的分压力增加,致使凝结水的溶氧量增加,从而加剧对热力设备及管道的腐蚀,空气的存在还增大凝汽器中的传热热阻,影响循环冷却水对气轮机排气的冷却,增加厂用电消耗。因此在凝汽器运行时,必须不断的抽出其中的空气。

2.2. 结构改进

工作室中的水以最少的水量,裹吸最多的气体,达到低耗高效的条件。不存在动静体的磨损,使用寿命长。对水质的要求较低,能有效消除噪音。新型喷头内部角度采用特殊设计,具有雾化效果好,裹吸能力强,能达到水量少,裹吸气体多的优点。新型喷头内部中心距较精确,精度、光滑度较高,使水均匀喷出,不存在动静体磨损。新型喷头采用优质不锈钢,抗腐蚀性较强,对水质,水温度要求不高。当射水泵发生故障时,可以防止水和空气倒流入凝汽器。新型防噪罩的优点是能有效的消除汽水混合后的噪音,同时又能达到隔热效果。射水抽气系统既能保证进入射水抽气器内的水体温度符合工艺指标,亦不会造成水体的排放和浪费,整个抽气系统的运行成本降低。

3. 控制系统设计

本研究产品配置有APP终端检测装置。检测装置主要由手机APP客户端、监控终端、压缩气充装控制系统、后台数据存储及云计算平台四部分构成。

设备装置使用用户通过手机客户端能够实时知晓射水抽气装置状况并由此判断是否需要对装置进行维护保养。此外用户还可以通过客户端向质监局或交管局反应所遇问题,并能接收来自质监局或相关部门的信息推送。监控终端具有全球唯一ID,其能够记录装置的所有信息,如生产日期、装气量、上次检测日期等。此外,监控终端能够实时记录气压、温度、震动强度、位置等信息,并通过移动网络将数据传输至数据服务器。紧急情况下监控终端可以强制关闭气瓶,来保障驾驶人员安全。充装控制系统通过加气员手持的电子标签识别终端识别监控终端ID编号,并通过因特网获取装置的检修II期以及健康状态。通过这些数据,控制系统判断是否为装置充气,并将充气信息上传至数据服务器。对于没有电子标签或者不符合充气要求的装置,系统拒绝为其充气,降低充气过程中发生危险的概率。监控终端结构如图2所示。

图2. 监控终端结构图

谢其志

Figure 3. Gas filling control system structure diagram

图3. 气体充装控制系统结构图

后台数据存储及云计算平台用于收集并记录监控终端以及充装控制系统发送来的气瓶数据,云计算平台对海量数据进行分析处理,采用智能学习算法,实现对装置运行状态的预测,并通过网络将装置状态信息推送到用户手机客户端,让用户及时了解装置的健康状况。主要技术及性能指标:① 通过GSM 网络获取装置状态信息,保证信息的实时性;② 通过GPS 定位功能,快速获取故障装置位置信息;③ 能够非人为控制装置开关状态,保障人员安全;④ 通过云计算平台进行大数据处理,预测装置健康状况。气体充装控制系统结构,如图3所示。各模块的作用,如表1所示。监控终端硬件电路,如图4所示。

Table 1. List of module functions

表1. 模块作用一览表

模块名称

作用 电源模块

为控制核心以及其他模块供电 射频模块

存储终端ID ,并接受外部读卡设备访问 接口模块

获取参数数据并对阀门进行控制 记录模块

实时记录各类信息,便于本地获取状况 GPS 模块

定位位置 GSM 模块

使控制终端能够同远程服务器进行通信 控制核心

进行数据处理,并控制各种模块工作

Figure 4. Monitor terminal hardware circuit diagram

图4. 监控终端硬件电路图

谢其志

4. 软件系统设计

4.1. 基于云计算的故障预测与健康管理

PHM 系统一般应具备故障检测、故障隔离、故障诊断、性能检测、故障预测、健康管理、部件寿命追踪等能力,通过联合分布式信息系统(JDIS)与自主保障系统交联。

Figure 5. Process diagram of typical fault diagnosis and prediction

图5. 典型的故障诊断与预测流程图

大多数故障诊断与故障预测工具都具有领域相关的特点。采用开放式的体系结构(OSA),方便各种故障诊断与预测方法的不断完善,实现即插即用,是系统实现PHM 的一项关键技术。典型的故障诊断与预测流程,如图5所示。

4.2. 用户手机客户端APP 设计

本研究手机客户端APP 是基于Android 系统开发的。信息推送流程如图6所示。Android 系统由于其开放性和丰富的硬件选择,广泛应用于手机、平板电脑等移动终端设备。在设计上,采用的是安全套接层(Secure Sockets Layer, SSL)技术保证其通信安全。SSL 协议采用公开密钥体制和X.509数字证书技术,既保证了数据通信的保密性、可靠性、防窃听、防伪造,部署又较简单。SSL 协议已成为互联网上保密通信的工业标准。

Figure 6. Information push flow chart

图6. 信息推送流程图

谢其志

5. 结论

本研究产品高效环保型多通道真空射水抽气装置使用时,由来自射水泵的压力水,通过喷嘴将压力能转变成动能,以一定的速度从喷嘴喷出,在真空室中形成高度真空。凝汽器中的气汽混合物通过进汽室时行真空室与水混合,一起进入喉管(扩压管),在喉管中将动能转变成压力能,在略高于大气压的情况下随水流排出。由于在喉管中设有螺旋状导流板,可以有效地防止汽水返流现象的发生,有效地保证了机组的运行。

通过创新加工工艺,在真空室上连接设有进气室和进水室,进水室与真空室之间设有喷嘴,真空室上还连接设有若干根喉管,喉管的出水端与水箱连接,其特点是:喉管内设有螺旋状的导流板,采用的具体技术方案是:

1) 喉管的管壁上设有吸声材料层。减少本研究装置在使用时发出的噪声。

2) 设有罩住所有喉管的防噪罩,防噪罩由吸声材料制成。进一步减少本研究装置在使用时发出的噪

声。

3) 在进水室内设有喇叭射流分配过滤网。使进入真空室内的水进行均匀分配,同时还可过滤滤除杂

质,保证机组的正常运行。

4) 喷嘴为旋射流喷嘴。

5) 在真空室内设有连接在进气室上的气流分配盘,气流上均匀设有若干个出气孔。使真空室内的气

水混合均匀。

6) 喉管通过喇叭状收集管与真空室连接。

7) 在喉管的后端部上还连接设有余速抽气器。

8) 在水箱与进水室之间还设有回水管路。对水进行回收循环利用。

9) 在进汽室上设有自动止回阀。当射水泵发生故障时,防止汽水倒流入凝汽器。

本文建立了高效环保型多通道真空射水抽气智能化系统。与现有技术相比,本研究不仅具有高度安全可靠、智能节能特点,而且能实现现场数据的实时监控、远距离数据交互。

基金项目

本研究由江苏省产学研前瞻性合作项目(BY2018222)支持。

参考文献

[1]王升龙, 索英杰, 杨善让, 等. 射水抽气器结构优化的试验研究[J]. 化工机械, 2016, 43(3): 287-291+340.

[2]何乃昌, 刘永佳, 杨小青. 一种新型节能环保多通道射水抽气器的研发[J]. 设计与分析, 2014(18): 112-113.

[3]薛凤娟. 气液两相喷射器的实验研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2008.

[4]刘志强, 沈胜强, 李素芬. 喷射器一维设计理论的研究进展[J]. 热能动力工程, 2001, 16(3): 229-232.

[5]臧殿荣. 射水抽气器倒吸原因分析及处理[J]. 维护与修理, 2014(5): 30-31.

[6]杨黎斌. 射水抽气器改造的经济性评价[J]. 上海节能, 2014(9): 40-43.

[7]曾祥文, 陈明远, 曹镇海, 等. 汽轮机真空度不能维持的原因排查和处理[J]. 深冷技术, 2016(2): 57-59.

[8]任新, 张玄. 大型火力发电机组高效真空泵节能改造可行性研究[J].军民两用技术与产品, 2016(8): 125.

[9]王柏涛, 盛志钧, 彭勇超. 汽轮发电机组射水系统改造的技术方案[J]. 冶金动力, 2019(7): 53-54+56.

[10]屈彬彬, 张莉, 王富华. 考虑真空泵变工况影响的凝汽器性能数值计算[J]. 动力工程学报, 2018, 38(8): 640-644.

[11]王金伟, 胡希栓, 张向辉, 等. 液环抽真空系统的应用[J]. 水泥, 2017(4):55-56.

真空系统的抽气Word版

1.真空系统的抽气方程 真空系统的任务就是抽除被抽容器中的各种气体。我们可以把被抽容器中所产生的各种气体的流量称为真空系统的气体负荷。那么真空系统的气体负荷究竟来自哪些方面呢?或者说真空室内究竟有哪些气源呢?总起来说,可以归纳为下述几个方面: (1)被抽容器内原有的空间大气,若容器的容积为Vm3,抽气初始压强为 P o Pa,则容器内原有的大气量为VP Pa·m3; (2)被抽容器内一旦被抽空,暴露于真空下的各种材料构件的表面就将 把原来在大气压下所吸收和吸附的气体解析出来,这部分气体来源我们称之为放 气,单位时间内的放气流量可以用Q f Pa·m3/s来示; 实验表明,材料表面单位时间内单位表面积的放气率q可以用式(27)的经验公式来计算。 真空室内暴露于真空下的构件表面,可能有多种材料。所以总的表面放 气流量Q f 为式(49)。 (3)大气通过容器壁结构材料向真空室内渗透的气体流量,以Q s Pa·m3/s表示。渗透的气流量即是大气通过容器壁结构材料扩散到容器中的气体流量。气体的这种渗透是有选择性的,例如:氢只有分离为原子才能透过钯、铁、镍和铝;氢对钢的渗透将随钢中含碳量的增加而增加。氦分子能透过玻璃。氢、氮、氧和氩、氖、氦能透过透明的石英。一切气体都能透过有机聚合物,如橡胶、塑料等。但 是所有的隋性气体都不能透过金属。除了有选择性之外,渗透气流量Q s 还与温度、气体的分压强有关。在材料种类、温度和气体分压强确定时,渗透气流量 Q s 是个微小的定值。 (4)液体或固体蒸发的气体流量Q Z Pa·m3/s。空气中水分或工艺中的液体在真空状态下蒸发出来,这是在低真空范围内常常发生的现象。在高真空条件下,特别是在高温装置中,固体和液体都有一定的饱和蒸气压。当温度一定时,材料的饱和蒸气压是一定的,因而蒸发的气流量也是个常量。 (5)大气通过各种真空密封的连接处,通过各种漏隙通道泄漏进入真空 室的漏气流量Q L Pa·m3/s。对于确定的真空装置,漏气流量Q L 是个常数。漏气 流量通常可通过所说的压升率,即单位时间内容器中的压强增长率P x 来计算式 (28)。 当真空泵启动之后,真空系统即对被抽容器抽气。此时,真空系统对容 器的有效抽速若以S e 表示,容器中的压力以P表示,则单位时间内系统所排出 的气体流量即是S e P。容器中的压强变化率为dP/dt,容器内的气体减少量即是V dP/dt。根据动态平衡,可列出如下方程(29)。 这个方程称为真空系统抽气方程。式中V是被抽容器的容积,由于随着抽气时间t的增长,容器内的压力P降低,所以容器内的压强变化率dP/dt是个 负值。因而V dP/dt是个负值,这表示容器内的气体减少量。放气流量Q f ,渗透 气流量Q s ,蒸发的气流量Q z 和漏气流量Q L 都是使容器内气体量增多的气流量。 S e P则是真空系统将容器内气体抽出的气流量,所以方程中记为一S e P。 对于一个设计、加工制造良好的真空系统,抽气方程(29)中的放气Q f 渗气Q s 、漏气Q L 和蒸气Q z 的气流量都是微小的。因此抽气初期(粗真空和低真空 阶段)真空系统的气体负荷主要是容器内原有的空间大气。随着容器中压强的降低,原有的大气迅速减少,当抽空至1~10-1Pa时,容器中残存的气体主要是漏放气,而且主要的气体成分是水蒸汽。如果用油封式机械泵抽气,则试验表明,

射水抽气器

1 概述 由《汽轮机原理》知道,汽轮机设备在启动和正常运行过程中,都需要将设备(特别是凝汽器)和汽水管路中的不凝结气体及时抽出,以维持凝汽器的真空,改善传热效果,提高汽轮机设备的热经济性。因此,由抽气器,动力泵或冷却器,汽水管道,阀门等组成的抽气设备就成了凝汽设备中必不可少的一个重要组成部分。 抽气器的型式很多,按其工作原理可分为容积式(或称机械式)和射流式两大类。容积式抽气器是利用运动部件在泵壳内的连续回转或往复运动,使泵壳内工作室的容积变化而产生抽气作用,用于电站凝汽设备的有滑阀式真空泵,机械增压泵和液环泵。这些机械式抽气器,有点结构比较复杂,有的建立真空所需时间太长,有的工作不够可靠,因此,国内目前主要采用的是射流式抽气器。射流式抽气器按其工作介质又可分为射汽抽气器和射水抽气器两种。它们均是利用具有一定压力的流体,在喷嘴中膨胀加速,以很高速度将吸入室内的低压气流吸走。射流式抽气器没有运动部件,制造成本低,运行稳定可靠,占地面积小,能在较短时间内(通常5-6min)建立起所需要的真空,且可回收凝结水。 2 工作过程的具体描述与分析 射汽抽气器主要由工作喷嘴、混合室及扩压管三部分组成,其基本结构如图1所示。在结构上,工作喷嘴采用了缩放喷嘴的结构形式,这种结构可以在其出口获得超音速汽流。在混合室与扩压管之间还设有一段等截面的喉管,其作用是使工作蒸汽和被抽吸气体充分混合,以减少突然压缩损失和余速动能的损失。为突出射汽抽气器工作过程中的主要特点,将抽气器内流动的工质当作理想气体处理,并假设工质在抽气器内的流动是一维稳态绝热流动。射汽抽气器内工质的压力、速度变化曲线如图1所示。

真空度单位换算表

真空度单位换算表 真空表读数与真空度换算 ◇真空度用“绝对真空度”、“ 绝对压力” ,即比“ 理论真空” 高多少压力标识;" 绝对真空度 " 是指被测对象的实际压力值。在实际情况中,真空泵的绝对压力值介于 0 ~ 101.325KPa 之间。绝对压力值需用绝对压力仪表测量,在 20℃,海拔高度= 0 的地方,用于测量真空度的仪表 (绝对真空表)的初始值为 101325Pa( 即一个标准大气压) 。 ◇真空度用“ 相对真空度” 、“ 相对压力”,即比“ 大气压” 低多少压力来标识;" 相对真空度 " 是指被测对象的压力与测量地点大气压的差值。用普通真空表可测量。在没有真空的状态下,表的初始值为 0 ,当测量真空时,它的值介于 0 到-101325Pa (即-0.1MPa)之间。真空表上“0” 表示正一个大气压即101325Pa , “-0.1” 表示绝对真空(即为0)。真空表上的指示值不表示真空度的绝对值,只表示了真空度的相对值。 ◇真空度的绝对值与相对值可用下式换算:P≈100000 ×(1-Φ/0.1 )P a ;Φ为真空表的读数示值的绝对数。 ◇真空表的读数示值为 0,则P≈100000×(1-0/0.1 )=10000Pa 为 1 个大气压。 ◇真空表的读数示值为 0.1,则P≈1100000× (1-0.1/0.1) = 0 Pa 为绝对真空。 ◇真空表的读数示值为 0.075,则P≈100000×(1-0.075/0.1)= 25000 Pa。 ◇真空表的读数示值为 0.08,则P≈100000×(1-0.08/0.1)= 20000 Pa。 ◇真空表的读数示值为 0.09,则P≈100000×(1-0.09/0.1)= 10000 Pa。 ◇真空表的读数示值为 0.095,则P≈100000×(1-0.095/0.1)= 5000 Pa。 ◇真空表的读数示值为 0.097,则P≈100000×(1-0.097/0.1)= 3000 Pa。 ◇真空表的读数示值为 685mmHg,则P≈100000×(1-685/760)= 10000 Pa。 ◇真空表的读数示值为 700mmHg,则P≈100000×(1-700/760)= 8000 Pa。

真空泵抽气量抽气速度粗略计算公式

密闭容器内真空度随抽气时间的变化曲线 真空泵对密闭容器抽真空时,容器内部真空度的提高与抽气时间的函数关系如下: 式中:P为容器内的压力(即:绝对真空度);t为自变量,是抽气时间 K 3 为泵的极限真空度值,K 1 、K 2 为与泵、容器大小、环境压力等相关的常数。 函数曲线示意图如下: 由此可以看出,在抽气初期,容器内压力下降(即:真空度的提高)很快,而后呈指数关系衰减,越来越慢,并无限逼近泵的极限真空度值。 如果您想知道经过多长的抽气时间才能达到您指定的真空度值,可以点击帮您作理论计算。理论计算值仅供参考! 特别说明:根据我公司产品,计算公式作了简化,若用于计算其它品牌的真空泵出现的错误我们不负任何责任。 真空泵抽气量/抽气速度粗略计算公式 发表时间:2013-04-02 18:30 文章出处:编辑:admin点击 2205次 导读:Q=(V/T)×ln(P0/P1)其中:Q为真空泵抽气量(L/s)。V为真空室容积,单位为升(L)。T为达到要求绝对压强所需时间,单位为秒(S)。P0为被抽容积内部的初始压强。P1为要求达到的绝对压强,单位为帕(Pa)。 抽气量即为抽气速度,是真空泵的重要参数之一。单位一般式L/S或m^3/h。选型时,若选抽气量太小的泵,会因为漏气等系列因素导致无法达到预期的真空度;若抽气量选择太大又因功耗太大不经济。因此,合理选择真空泵的抽泣量非常重要。下面简单介绍真空泵抽气量粗略计算公式: Q=(V/T)×ln(P0/P1) 其中:Q为真空泵抽气量(L/s)。 V为真空室容积,单位为升(L)。 T为达到要求绝对压强所需时间,单位为秒(S)。 P0为被抽容积内部的初始压强,即一个大气压强。计算时应根据当地海拔值(点此查看不同海拔地区的大气压值)计算,沿海地区一般都取101325。单位为帕(Pa),也可以为托或毫米汞柱。 P1为要求达到的绝对压强,单位为帕(Pa),也可以为托或毫米汞柱。所谓绝对压强是以绝对零压作起点所计算的压强称绝对压强,通常所指的大气压强为101325帕,就是大气的绝对压强。当密封腔内部被抽走部分气体后,这个数值会下降,其反映出设备内压强的实际数值。水环式真空泵的绝对压强值为3300Pa,旋片式真空泵最高为之间。

常用真空单位换算表

常用真空单位换算表 1标准大气压=760毫米汞柱=76厘米汞柱=1.013×10^5帕斯卡=10.336米水柱 公斤不是单位,一般我们通常说的,事实上是一种非标准单位,名称叫:公斤力/平方厘米[Kgf/cm^2]1标准大气压=0.1MPa[兆帕]=101KPa=[千帕]左右=1bar[巴]=760mmHg(毫米汞柱)=14.696磅/英寸2(psi)≈1工程大气压 ≈1Kgf/cm^2[千克力/平方厘米] 千克:是质量单位,千克力:是作用在单位体积上一千克的力一个标准大气压一般约等于101千帕即0.1兆帕,约等于一工程大气压约等于一千克力每平方厘米工程大气压是比标准大气压小一点的1物理大气压=1标准大气压(atm) 为什么会多一个工程大气压我也不清楚但是工程大气压通常按千克力等,用一种质量作用力对单位面积获得的压强。而标准大气压(atm)则为标准的大气压强,比工程大气压精确,但他们是约等于的。没必要那么精确,除非你是在某些特定领域使用 饱和水蒸汽的压力与温度的关系( 摘自范仲元: "水和水蒸气热力性质图表 " p4~10 )

真空计算常用公式 1、玻义尔定律 体积V,压强P,P·V=常数(一定质量的气体,当温度不变时,气体的压强与气体的体积成反比。 即P1/P2=V2/V1) 2、盖·吕萨克定律 当压强P不变时,一定质量的气体,其体积V与绝对温度T成正比:(V1/V2=T1/T2=常数)当压强不变时,一定质量的气体,温度每升高(或P降低)1℃,则它的体积比原来增加(或缩小)1/273。3、查理定律 当气体的体积V保持不变,一定质量的气体,压强P与其他绝对温度T成正比,即:P1/P2=T1/T2在一定的体积下,一定质量的气体,温度每升高(或降低)1℃,它的压强比原来增加(或减少)1/273。 4、平均自由程: λ=(5×10-3)/P (cm) 5、抽速: S=dv/dt (升/秒)或S=Q/P Q=流量(托·升/秒) P=压强(托)V=体积(升) t=时间(秒) 6、通导:C=Q/(P2-P1) (升/秒) 7、真空抽气时间: 对于从大气压到1托抽气时间计算式:t=8V/S (经验公式) (V为体积,S为抽气速率,通常t在5~10分钟内选择。) 8、维持泵选择: S维=S前/10 9、扩散泵抽速估算: S=3D2 (D=直径cm)

中小型机组真空系统射水抽气器改造为水环式真空泵的可行性研究

中小型机组真空系统射水抽气器改造为水环式真空泵的可 行性研究 中小型机组真空系统射水抽气器改造为水环式真空泵的可行性研究胡光张欣1林柏左世伟2(1.黑龙江省电力科学研究院,黑龙江哈尔滨150030;2.哈尔滨第三发电厂,黑龙江哈尔滨150024)的主要优点,并将水环式真空泵与射水抽气器进行经济性对比,最后以哈三电厂200MW A机组为例,提出了改造设计方案。 降低汽轮机的排汽压力是提高火力发电厂循环热效率的重要手段之一。而维持汽轮机背压有两个比较有效的途径:一是加强密封,减少空气漏入;二是提供适当的抽气装置。减少空气漏入是最重要的。抽气装置类型很多,其中水环式真空泵具有非常明显的优越性,它具有结构独特、抽气量大、节能、安全可靠、寿命长等特点,因此被电厂广泛使用。目前在国内300MW及以上机组均采用水环式真空泵作为凝汽器抽真空设备,在200MW、50MW等中小型机组上也有将水环式真空泵作为凝汽器抽真空设备。 1射水喷射器在实际运行中存在的问题1.1效率低射水喷射器是靠射水泵提供高流速的水在喷射器内形成一定的真空,从而将凝汽器内的气体抽出的抽气设备。由于要求水的流速很高,管阻必然很大(管阻与流速的三次方成正比)射水泵的很大一部分作功都消耗在管道损失上,因此,射水喷射器的效率较低。

1.2用水量大射水喷射器采用抽取射水池的水进行抽真空,抽出的通常都是空气和水蒸汽的混合气体,所以有很多水蒸汽凝结成水进入射水池中,使射水池中的水温升高。而射水池中水温高低对射水喷射器抽气效果起决定性作用。因此,只有定期向射水池中加入冷水,排出热水,才能保持较低的射水池的水温。 1.3热备用效果不佳一般射水池设在射水泵的下方,有些电厂在射水泵处于热备用时,发现射水泵中的水由于泵的底阀不严漏到射水池中的现象。当备用泵要启动前,需要运行人员先向泵中注水,起不到真正热备用的作用。 真空度高的情况下抽汽效率低射水喷射装置是一种等质量抽气装置,虽然在低真空、空气密度较大的情况下抽气有一定效果,但在高真空度时,由于空气稀薄且流量不均匀,喷射器抽真空能力受到限制,而且运行不稳定。 1.5所占空间大射水喷射装置包括射水池、射水泵、喷射器及其管道,其布置空间通常从汽机厂房零米到运转平台,所占空间大且不美观。 2使用水环式真空泵的主要优点使用寿命长7水环式真空泵在运转时,叶轮外端速度很低(水环式真空泵转速为450~590i./min)。例如TC一11E型水环式真空泵叶轮外端的速度小于20.4m/s,使磨损降低到最小,并能避免气蚀,使泵的寿命大为增加。目前在300MW 机组上使用的水环式真空泵,目前已经过运行考验,基本无磨损、无腐蚀,未发生结构或部件的工作失效情况。

什么是绝对压力、表压力和真空度

绝对压力是相对于真空来说的,表压是实际压力减去大气压后显示的压力,真空是一特定空间内部部分物质被排出,使其压力小于一个标准大气压,如果有真空压力表,则压力表显示为-1---0bar,-1bar为绝对真空。 简单的说,绝对压力=表压+一个标准大气压(约1bar),工业应用来说,测量的压力大部分为表压,很少会用到绝对压力。 绝对真空下的压力称为绝对零压,以绝对零压为基准来表示的压力叫绝对压力。测量流体压力用的压力表的读数叫表压,它是流体绝对压力与该处大气压力的差值。 如果被测流体的绝对压力低于大气压,则压力表所测得的压力为负压,其值称为真空度。 绝对压力包围在地球表面一层很厚的大气层对地球表面或表面物体所造成的 压力称为大气压,符号为B;直接作用于容器或物体表面的压力,称为绝对压力,绝对压力值以绝对真空作为起点,符号为PABS(ABS为下标)。用压力表、真空表、U形管等仪器测出来的压力叫表 绝对压力 包围在地球表面一层很厚的大气层对地球表面或表面物体所造成的压力称为“大气压”,符号为B;直接作用于容器或物体表面的压力,称为“绝对压力”,绝对压力值以绝对真空作为起点,符号为PABS(ABS为下标)。 用压力表、真空表、U形管等仪器测出来的压力叫“表压力”(又叫相对压力),“表压力”以大气压力为起点,符号为Pg。 三者之间的关系是:PABS(绝对压力) = B(大气压0.1Mpa) + Pg(表压力)(ABS为下标) 压力的法定单位是帕(Pa),大一些单位是兆帕(MPa)=106Pa 1标准大气压 = 0.1013MPa 在旧的单位制中,压力用kgf/cm2(公斤/平方厘米)作单位,1 kgf/cm2=0.098MPa 表压(相对压力)单位:MPa(G) 绝对压力单位:MPa(A) 绝对压力量测使用的压力仪表叫做绝压表,在大气中,不加任何压力时,仪表指示仪表所在地的大气压(此为变量,根据仪表所在地的海拔决定指示的数值,当压力值为绝对真空时仪表的读数为零.绝对压力不存在负值. 派尔耐生产的P-Z 数字绝压表能够量测1010mbar~1mbar的绝压 派尔耐生产的 P-HV-55高真空计能够量测1*103mbar~1.0×10-3mbar的绝压

真空泵抽气量抽气速度粗略计算公式

真空泵抽气量抽气速度 粗略计算公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

密闭容器内真空度随抽气时间的变化曲线 真空泵对密闭容器抽真空时,容器内部真空度的提高与抽气时间的函数关系如下: 式中:P为容器内的压力(即:绝对真空度);t为自变量,是抽气时间 K 3 为泵的极限真空度值,K 1 、K 2 为与泵、容器大小、环境压力等相关的常数。 函数曲线示意图如下: 由此可以看出,在抽气初期,容器内压力下降(即:真空度的提高)很快,而后呈指数关系衰减,越来越慢,并无限逼近泵的极限真空度值。 如果您想知道经过多长的抽气时间才能达到您指定的真空度值,可以点击帮您作理论计算。理论计算值仅供参考! 特别说明:根据我公司产品,计算公式作了简化,若用于计算其它品牌的真空泵出现的错误我们不负任何责任。 真空泵抽气量/抽气速度粗略计算公式 发表时间:2013-04-02 18:30 文章出处:编辑:admin点击 2205次 导读:Q=(V/T)×ln(P0/P1)其中:Q为真空泵抽气量(L/s)。V为真空室容积,单位为升(L)。T为达到要求绝对压强所需时间,单位为秒(S)。P0为被抽容积内部的初始压强。P1为要求达到的绝对压强,单位为帕(Pa)。 抽气量即为抽气速度,是真空泵的重要参数之一。单位一般式L/S或m^3/h。选型时,若选抽气量太小的泵,会因为漏气等系列因素导致无法达到预期的真空度;若抽气量选择太大又因功

耗太大不经济。因此,合理选择真空泵的抽泣量非常重要。下面简单介绍真空泵抽气量粗略计算公式: Q=(V/T)×ln(P0/P1) 其中:Q为真空泵抽气量(L/s)。 V为真空室容积,单位为升(L)。 T为达到要求绝对压强所需时间,单位为秒(S)。 P0为被抽容积内部的初始压强,即一个大气压强。计算时应根据当地海拔值(点此查看不同海拔地区的大气压值)计算,沿海地区一般都取101325。单位为帕(Pa),也可以为托或毫米汞柱。 P1为要求达到的绝对压强,单位为帕(Pa),也可以为托或毫米汞柱。所谓绝对压强是以绝对零压作起点所计算的压强称绝对压强,通常所指的大气压强为101325帕,就是大气的绝对压强。当密封腔内部被抽走部分气体后,这个数值会下降,其反映出设备内压强的实际数值。水环式真空泵的绝对压强值为3300Pa,旋片式真空泵最高为之间。 以上公式都是粗略计算的,一般都忽略了外界因素(如循环水温度、海拔、供电电压、工作范围值等)对真空泵的效率。实际选型时要在以上计算出的抽气量的基础上加一定的安全值。 附:真空泵常见单位换算公式

凝汽器工作原理

凝汽器工作原理 凝汽器:使驱动汽轮机做功后排出的蒸汽变成凝结水的热交换设备。蒸汽在汽轮机内完成一个膨胀过程后,在凝结过程中,排汽体积急剧缩小,原来被 蒸汽充满的空间形成了高度真空。凝结水则通过凝结水泵经给水加热 器、给水泵等输送进锅炉,从而保证整个热力循环的连续进行。为防止 凝结水中含氧量增加而引起管道腐蚀,现代大容量汽轮机的凝汽器内还 设有真空除氧器。 凝汽器的主要作用: 1)在汽轮机排汽口造成较高真空,使蒸汽在汽轮机中膨胀到最低压力,增大蒸汽在汽轮机中的可用焓降,提高循环热效率; 2)将汽轮机的低压缸排出的蒸汽凝结成水,重新送回锅炉进行循环; 3)汇集各种疏水,减少汽水损失。 4)凝汽器也用于增加除盐水(正常补水) 表面式凝汽器的工作原理:凝汽器中装有大量的铜管,并通以循环冷却水。当汽轮机的排汽与凝汽器铜管外表面接触时,因受到铜管内水流的冷却,放出汽化潜热变成凝结水,所放潜热通过铜管管壁不断的传给循环冷却水并被带走。 这样排汽就通过凝汽器不断的被凝结下来。排汽被冷却时,其比容急剧缩小,因此,在汽轮机排汽口下凝汽器内部造成较高的真空。 凝汽器是火力发电厂的大型换热设备。图1为表面式凝汽器的结构示意图。

凝汽器运行时,冷却水从前水室的下半部分进来,通过冷却水管(换热管)进入后水室,向上折转,再经上半部分冷却水管流向前水室,最后排出。低温蒸汽则由进汽口进来,经过冷却水管之间的缝隙往下流动,向管壁放热后凝结为水。真空度定义: 从真空表所读得的数值称真空度。真空度数值是表示出系统压强实际数值低于大气压强的数值,即: 真空度=大气压强—绝对压强 凝汽器中真空的形成主要原因 在启动过程中凝汽器真空是由主、辅抽汽器将汽轮机和凝汽器内大量空气抽出而形成的。 在正常运行中,凝汽器真空的形成是由于汽轮机排汽在凝汽器内骤然凝结成水时其比容急剧缩小而形成的。如蒸汽在绝对压力4kpa时蒸汽的体积比水的体积大3万倍,当排汽凝结成水后,体积就大为缩小,使凝汽器内形成高度真空。凝结器的真空形成和维持必须具备三个条件: 1)凝汽器铜管必须通过一定的冷却水量; 2)凝结水泵必须不断地把凝结水抽走,避免水位升高,影响蒸汽的凝结; 3)抽汽器必须把漏入的空气和排汽中的其它气体抽走。 真空降低的原因: (1)循环水量减少或中断: ①循环水泵跳闸、循进阀门误关、循环水泵出口蝶阀阀芯落、循进滤网堵:水量中断,进水压力下降,出水真空至零,循泵电流至零或升高,须不破坏真空停机;若未关死,立即减负荷恢复;

高效环保型多通道真空射水抽气系统

Mechanical Engineering and Technology 机械工程与技术, 2020, 9(2), 125-130 Published Online April 2020 in Hans. https://www.360docs.net/doc/1615922674.html,/journal/met https://https://www.360docs.net/doc/1615922674.html,/10.12677/met.2020.92013 Vacuum Ejector System of Efficient and Environment-Friendly Qizhi Xie Lianyungang Jiusheng Auxiliary Power Co. Ltd., Lianyungang Jiangsu Received: Mar. 26th, 2020; accepted: Apr. 2nd, 2020; published: Apr. 10th, 2020 Abstract The new type of high efficient and environment-protecting multi-channel water-jet air ejector is a key equipment for condenser vacuum system in thermal power plants and other vacuuming uses. In this paper, a high efficient environment-protecting multi-channel water-jet air ejector system is successfully established in order to realize the functions reliably, ensure quality, and meet new va-cuuming requirements. Based on mature technology, the system is established by innovating processing technology and improving the designing idea. During the establishment of the system, anti-noise structure, monitoring terminal, gas filling controlling system, malfunction prediction and health management based on cloud computing and APP in the user's mobile phones have been re-searched and designed, thus the system is highly reliable, intelligent and energy-saving. Keywords Vacuum Ejector Suction Device, Efficient and Environmental Protection, Multichannel 高效环保型多通道真空射水抽气系统 谢其志 连云港久盛电力辅机有限公司,江苏连云港 收稿日期:2020年3月26日;录用日期:2020年4月2日;发布日期:2020年4月10日 摘要 新型高效环保型多通道射水抽气器是火力发电厂汽轮机组抽吸凝气器真空和其它需要抽真空的一种关键设备。为了可靠的实现其功能、保证装置设备质量,以适应新型抽吸真空任务的要求,本文以成熟技术为基础,通过创新加工工艺、改进设计思想,对防噪音结构设计、监控终端设计、气体充装控制系统设计、基于云计算的故障预测与健康管理、用户手机客户端APP设计等模块进行研究,成功建立高效环保型多通道真空射水抽气系统,该系统高度安全可靠、智能、节能。

!射水抽气器

射水抽气器原理及故障处理 原理:从射水泵来的具有一定压力的工作水经水室进入喷嘴。喷嘴将压力水的压力能转变为速度能,水流高速从喷嘴射出,使空气吸入室内产生高度真空,抽出凝汽器内的汽、气混合物,一起进入扩散管,水流速度减慢,压力逐渐升高,最后以略高于大气压的压力排出扩散管。在空气吸入室进口装有逆止门,可防止抽气器发生故障时,工作水被吸入凝汽器中。 我厂射水抽气器结构非传统的水、气垂直交错流动的设计模式,气相运动所需能量全来自水束,那么要让水质点裹协更多的气体来提高凝汽器真空,保证安全运行就必须: 1、在吸入室中选取水的最佳流速及单股水束的最佳截面,以期水束能实现最佳分散度,同时分散后的水质点又具最佳动量,以最小的水量裹胁最多的气体,这是达到低耗高效的起码条件。 2、吸入室内水质点与空气的接触达到最均匀。且使水束所裹协的气体能全部压入喉管。 3、制止初始段的气相返流偏流,以免造成冲击四壁而发生震动磨损。这一点单靠加长喉管是难以实现的。这是吸入室几何结构,喉口形状,喉径喷咀面积比,喉长喉咀径比,进水参数(水量水压)等实现的。 4、喉管的结构分气体压入段,旋涡强化段及增压段三部份。能实现两相流的均匀混合,降低气阻,消除气相偏流,增加两相质点能量交换,又能利用余速使排出的能量损失达到最少。 事件:10月3 日,我厂二期2#射泵因电气故障跳停,当值人员在启动备用泵后真 空仍持续下降,现场检查工作射水抽气器(1#)部有异音后安排人员对2#射水抽气器进行隔离,但真空仍然不能维持。再后来隔离1#射水抽气器,恢复2#射水抽气器运行后,真空

恢复正常。 分析: 2#射泵电气故障跳停,启动1#射泵后真空仍然下降原因。 1、1#射水抽气器空气侧逆止门不严,2#射泵跳停后抽气器处于倒吸状态,即便启动2#射泵,但射泵出口的水流在喷嘴处射出遇阻,速度能不能最大发挥,空气吸入室内产生的真空量不及凝汽器内真空度,抽气器仍处于倒吸状态,甚至有部分喷口出水被倒吸如凝汽器,加速凝汽器真空下降速度。此类现象最直观的表现为射泵出口压力和电机电流波动较大,凝汽器热井水位迅速上升,真空加速降低,并且凝结水水质受影响。 2、1#射水抽气器空气侧逆止门未能顺利打开。2#射泵跳停后,1#射水抽气器迅速关闭关严。启动1#射泵后,因启动时间较短,1#射水抽气器空气吸入室内真空度较低,不足以克服凝汽器真空将气侧逆止门打开。即使抽气未能起到预期作用,因凝汽器真空系统自身严密性以及快速降低了汽机负荷,真空有下降,但速度应较慢。 根据当班运行日志以及实时相关运行曲线,凝汽器热井水位在汽机快速降低负荷前无大幅异常升高,在整个故障处理过程中一直处于可控范围;凝汽器真空从故障发生至2#射水抽气器投运成功前后36分钟内无明显加速降低过程;凝结水质在事后经化验无异常。可以分析出启动1#射泵后真空仍然下降原因为以上第二种。 处理方法:遇到以上类似设备故障时,处理时应沉着,冷静分析各参数变化情况和现 场设备的运行状况,快速降低汽机负荷,终止汽轮机组其他相关工作,为故障排除争取时间。 1、当运行中射泵故障跳停,启动备用泵后真空不能恢复,判断为逆止门未能顺利打开时,在降低汽机负荷的同时可考虑迅速关闭运行抽气器空气门稍候再缓慢开启,观察真空变化情况,如真空停止下降,则说明逆止门开启,射水抽气器运投运正常。若判断为气侧逆止门不严时,备用射水抽气器无法投运时也可考虑该方法,但在再次缓慢开启空气门前必须确认射泵出口压力和电机电流稳定在额定范围内。 2、如在关闭运行抽气器气侧门再开启过程中,真空仍然不能维持(通常不会出现该现象),则应迅速关严该空气门,投运备用抽气器。 3、出现气侧逆止门不严时,在关闭故障抽气器气侧逆止门前不得启动备用射水泵。 4、故障处理中,不得出现一台设备带两台抽气器工作情况,不得在隔离或投运抽气器时出现气水侧门次序颠倒现象。操作时果断快速,不得拖泥带水犹豫不决。

真空度单位换算表

字体大小:大- 中- 小dgbowei17发表于11-02-15 11:15 阅读(227) 评论(0)分类:产品展示 真空表读数与真空度换算 ◇真空度用“绝对真空度”、“ 绝对压力” ,即比“ 理论真空” 高多少压力标识;" 绝对真空度" 是指被测对象的实际压力值。在实际情况中,真空泵的绝对压力值介于0 ~101.325KPa 之间。绝对压力值需用绝对压力仪表测量,在20℃,海拔高度= 0 的地方,用于测量真空度的仪表(绝对真空表)的初始值为101325Pa( 即一个标准大气压) 。 ◇真空度用“ 相对真空度” 、“ 相对压力”,即比“ 大气压” 低多少压力来标识;" 相对真空度" 是指被测对象的压力与测量地点大气压的差值。用普通真空表可测量。在没有真空的状态下,表的初始值为0 ,当测量真空时,它的值介于0 到-101325Pa (即-0.1MPa)之间。真空表上“0” 表示正一个大气压即101325Pa , “-0.1” 表示绝对真空(即为0)。真空表上的指示值不表示真空度的绝对值,只表示了真空度的相对值。 ◇真空度的绝对值与相对值可用下式换算:P≈100000 ×(1-Φ/0.1 )P a ;Φ为真空表的读数示值的绝对数。 ◇真空表的读数示值为0,则P≈100000× (1-0/0.1 )=10000Pa 为 1 个大气压。 ◇真空表的读数示值为0.1,则P≈1100000× (1-0.1/0.1)= 0 Pa 为绝对真空。 ◇真空表的读数示值为0.075,则P≈100000×(1-0.075/0.1)= 25000 Pa。 ◇真空表的读数示值为0.08,则P≈100000×(1-0.08/0.1)= 20000 Pa。 ◇真空表的读数示值为0.09,则P≈100000×(1-0.09/0.1)= 10000 Pa。 ◇真空表的读数示值为0.095,则P≈100000×(1-0.095/0.1)= 5000 Pa。 ◇真空表的读数示值为0.097,则P≈100000×(1-0.097/0.1)= 3000 Pa。

真空泵的选型及常用计算公式汇总

真空泵选型 真空泵的作用就是从真空室中抽除气体分子,降低真空室内的气体压力,使之达到要求的真空度。概括地讲从大气到极高真空有一个很大的范围,至今为止还没有一种真空系统能覆盖这个范围。因此,为达到不同产品的工艺指标、工作效率和设备工作寿命要求、不同的真空区段需要选择不同的真空系统配置。为达到最佳配置,选择真空系统时,应考虑下述各点: 确定工作真空范围: ----首先必须检查确定每一种工艺要求的真空度。因为每一种工艺都有其适应的真空度范围,必须认真研究确定之。 确定极限真空度 ----在确定了工艺要求的真空度的基础上检查真空泵系统的极限真空度,因为系统的极限真空度决定了系统的最佳工作真空度。一般来讲,系统的极限真空度比系统的工作真空度低20%,比前级泵的极限真空度低50%。 被抽气体种类与抽气量 检查确定工艺要求的抽气种类与抽气量。因为如果被抽气体种类与泵内液体发生反应,泵系统将被污染。同时必须考虑确定合适的排气时间与抽气过程中产生的气体量。 真空容积 检查确定达到要求的真空度所需要的时间、真空管道的流阻与泄漏。 考虑达到要求真空度后在一定工艺要求条件下维持真空需要的抽气速率。 主真空泵的选择计算 S=2.303V/tLog(P1/P2) 其中: S为真空泵抽气速率(L/s) V为真空室容积(L) t为达到要求真空度所需时间(s)

P1为初始真空度(Torr) P2为要求真空度(Torr) 例如: V=500L t=30s P1=760Torr P2=50Torr 则: S=2.303V/t Log(P1/P2) =2.303x500/30xLog(760/50) =35.4L/s 当然上式只是理论计算结果,还有若干变量因素未考虑进去,如管道流阻、泄漏、过滤器的流阻、被抽气体温度等。实际上还应当将安全系数考虑在内。目前工业中应用最多的是水环式真空泵和旋片式真空泵等 一般的要求是: 1、真空度、真空容积、主要介质、温度、主要容积类设备。 2、真空流入介质及流量、压力、温度、规律。 3、抽气量、抽出气体介质、温度。 4、真空设备的占地面积、自动化程度、真空管道规格 选用真空泵时需要注意事项: 1、真空泵的工作压强应该满足真空设备的极限真空及工作压强要求。如:真空镀膜要求1×10-5mmHg的真空度,选用的真空泵的真空度至少要5×10-6mmHg。通常选择泵的真空度要高于真空设备真空度半个到一个数量级。 2、正确地选择真空泵的工作点。每种泵都有一定的工作压强范围,如:扩散泵为10-3~10-7mmHg,在这样宽压强范围内,泵的抽速随压强而变化,其稳定的工作压强范围为5×10-4~5×10-6mmHg。因而,泵的工作点应该选在这个范围之内,而不能让它在10-8mmHg下长期工作。又如钛升华泵可以在10-2mmHg下工作,但其工作压强应小于1×10-5mmHg为好。

真空度单位换算表

真空单位换算表 真空度单位换算表 Pa Torr/mmHg in.Hg mbar psi atm pa17.50×10-3 2.90×10-4 1.00×10-2 1.45×10-49.87×10-6 Torr/mmHg 1.33×1021 3.94×10-2 1.33 1.93×10-3 1.31×10-3 in.Hg 3.39×103 2.54×101 3.38×10 4.91×10-1 3.34×10-2 mbar 1.00×1027.50×10-1 2.95×10-21 1.45×10-29.87×10-4 psi 6.89×103 5.17×10 2.04 6.89×101 6.80×10-2 atm 1.01×1057.60×102 2.99×10 1.01×103 1.47×101 流导与漏率单位换算表 Pa.m3/s Mbar.l/s Torr.l/s Atm.cm3/s sccm Pa.m3/s1107.59.87592 Mbar.l/s0.110.750.987 5.92 Torr.l/s0.133 1.331 1.3278.9 Atm.cm3/s0.101 1.010.76160 sccm 1.69×10-3 1.69×10-2 1.27×10-2 1.67×10-21 真空表读数与真空度的换算 P≈100000×(1-?/0.1)pa,?为真空表的读数示值的绝对值: 真空表的读数示值为-0.075,则P≈100000×(1-0.075/0.1)=25000pa 真空表的读数示值为-700mmHg,则P≈100000×(1-700/760)=8000pa 抽速单位换算表 L/s M3/s Cft/min L/s1 3.60 2.12 M3/s0.2810.59 Cft/min0.47 1.691 20℃空气中不同压力下的分子平均自由程λ P(Torr)110-310-410-510-610-9 λ(cm) 4.72×10-3 4.7247.24724720 4.72×106 不同压强下空气分子密度n0 P(Torr)110-310-410-510-610-9 n0(cm)4×10164×10134×10124×10114×10104×107 温度单位换算表 K℃F K1℃+273.155/9(F+459.67) ℃K-273.1515/9(F-32) F9/5K-459.679/5℃+321

射水射汽抽气器工作原理介绍

射水、射汽抽气器结构组成、工作原理介绍 一、凝汽设备的作用 凝汽设备的作用是增大蒸汽在汽轮机中的理想焓降△h,提高机组的循环热效率。另一个作用是将排汽凝结成水,以回收工质,重新送回锅炉作为给水使用。 增大汽轮机的理想焓降,可通过提高蒸汽的初参数和降低排汽参数来获得。 二、凝汽器内真空的形成 凝汽器内真空的形成可分为两种情况来讨论。在启动或停机过程中,凝汽器内的真空是由抽气器将其内部空气抽出而形成的。而在正常情况下,凝汽器内的真空是由汽轮机排汽在凝汽器内骤然凝结成水时,其比容急剧缩小而形成的,抽气器将不凝结的气体和空气连续不断地抽出,起到维持真空的作用,此时真空的形成主要靠蒸汽的凝结。 发电机组在夏季高温季节,由于受环境温度升高影响,冷却水温度上升,凝汽器内冷凝蒸汽效果下降,换热效率下降,导致凝汽器内排汽压力上升,真空下降,从而使汽轮机排汽焓升高,汽轮机做功能力下降,效率降低,发电机输出功率下降。这就是真空低影响发电负荷的原因。 但真空度也不是越高越好,有一个控制范围,如一线余热电站真空度控制范围为-92.0kPa~-98.0kPa。从汽轮机末级叶片出口截面来分析,在每台汽轮机末级叶片出口截面处,都有一个确定的极限背压,若汽轮机背压降至低于其极限背压时,则蒸汽在汽轮机中的可用焓降增值再也不会提高,因此,凝汽器内的真空是根据汽轮机设备和当地的气候条件来选定的,称为最有利真空,如一线电站最有利真空为-95.6kPa。 三、凝汽器射水、射汽抽气器的工作原理 抽气器的任务是将漏入凝汽器的空气和不凝结的气体连续不断地抽出,保持凝汽器始终在较高真空下运行。抽气器可分为射水、射汽抽气器两种,区别主要是工作介质的不同。 抽气器的工作原理:抽气器是由喷嘴、混合室、扩压管等组成,见附图。工作介质通过喷嘴,由压力能转变为速度能,在混合室中形成了高于凝汽器内的真空,达到把气、汽混合物从凝汽器内抽出的目的。在扩压管内,工质的速度能再转变为压力能,以略高于大气压力将混合物排入大气。 射汽抽气器的工作原理: 射汽抽气器所使用的工质是过热蒸汽,故称之为射汽抽气器。新线热力设计将射汽抽气器用于汽封蒸汽凝汽器,减少了汽轮机轴封漏汽损失,并利用漏汽的热量加热凝结水,回收热量和工质,提高了机组热经济性,防止了由于轴封漏汽过大时漏汽进入轴承润滑油,导致油中进水和轴承高温事故。工作原理:工作蒸汽进入喷嘴,膨胀加速进入混合室,在混合室内形成了高度真空,从而把凝汽器内的气、汽混合物抽了出来,混合后进入扩压管,升压至比大气压略高,经冷却器冷凝后,大部分蒸汽冷凝成疏水回到凝汽器,少量汽、气混合物排入大气。 尽管射汽式抽气器抽气效率较低,但其结构简单,能回收工作蒸汽的热量和凝结水,仍被广泛应用。 射水抽气器的工作原理: 射水抽气器工作原理基本与射汽抽气器相同,不同的是它以水代替蒸汽作为工作介质。 工作水压保持在0.2~0.4MPa,由专用的射水泵供给,压力水由水室进入喷嘴,喷嘴将压力水的压力能转变为速度能以高速射出,在混合室内形成高度真空,使凝汽器内的气、汽混合物被吸入混合室进入扩压管,流速逐渐下降,最后在扩压管出口其压力升至略高于大气压力而排出进入冷却池。

真空系统抽气时间的计算

真空系统抽气时间的计算 1.真空系统的抽气方程 真空系统的任务就是抽除被抽容器中的各种气体。 我们可以把被抽容器中所产生的各种气体的流量称为真空系统的气体负荷。那么真空系统的气体负荷究竟来自哪些方面呢?或者说真空室内究竟有哪些气源呢?总起来说,可以归纳为下述几个方面: (1)被抽容器内原有的空间大气,若容器的容积为Vm 3,抽气初始压强为P o Pa ,则容器内原有的大气量为VP 0Pa·m 3; (2)被抽容器内一旦被抽空,暴露于真空下的各种材料构件的表面就将把原来在大气压下所吸收和吸附的气体解析出来,这部分气体来源我们称之为放气,单位时间内的放气流量可以用Q f Pa·m 3/s 来示; 实验表明,材料表面单位时间内单位表面积的放气率q 可以用式(27)的经验公式来计算。 真空室内暴露于真空下的构件表面,可能有多种材料。所以总的表面放气流量Q f 为式 (49)。 (3)大气通过容器壁结构材料向真空室内渗透的气体流量,以Q s Pa·m 3/s 表示。渗透的气流量即是大气通过容器壁结构材料扩散到容器中的气体流量。气体的这种渗透是有选择性的,例如:氢只有分离为原子才能透过钯、铁、镍和铝;氢对钢的渗透将随钢中含碳量的增加而增加。氦分子能透过玻璃。氢、氮、氧和氩、氖、氦能透过透明的石英。一切气体都能透过有机聚合物,如橡胶、塑料等。但是所有的隋性气体都不能透过金属。除了有选择性之外,渗透气流量Q s 还与温度、气体的分压强有关。在材料种类、温度和气体分压强确定时,渗透气流量Q s 是个微小的定值。 (4)液体或固体蒸发的气体流量Q Z Pa·m 3/s 。空气中水分或工艺中的液体在真空状态下蒸发出来,这是在低真空范围内常常发生的现象。在高真空条件下,特别是在高温装置中,固体和液体都有一定的饱和蒸气压。当温度一定时,材料的饱和蒸气压是一定的,因而蒸发的气流量也是个常量。 (5)大气通过各种真空密封的连接处,通过各种漏隙通道泄漏进入真空室的漏气流量Q L Pa·m 3/s 。对于确定的真空装置,漏气流量Q L 是个常数。漏气流量通常可通过所说的压升率,即单位时间内容器中的压强增长率P x 来计算式(28)。 当真空泵启动之后,真空系统即对被抽容器抽气。此时,真空系统对容器的有效抽速若以S e 表示,容器中的压力以P 表示,则单位时间内系统所排出的气体流量即是S e P 。容器中的压强变化率为dP/dt ,容器内的气体减少量即是V dP/dt 。根据动态平衡,可列出如下方程 (29)。 这个方程称为真空系统抽气方程。 式中V 是被抽容器的容积,由于随着抽气时间t 的增长,容器内的压力P 降低,所以容器内的压强变化率dP/dt 是个负值。因而V dP/dt 是个负值,这表示容器内的气体减少量。放气流量Q f ,渗透气流量Q s ,蒸发的气流量Q z 和漏气流量Q L 都是使容器内气体量增多的气流量。S e P 则是真空系统将容器内气体抽出的气流量,所以方程中记为一S e P 。

相关文档
最新文档