初中数学竞赛:证明三点共线
初中数学中的“三等角共线”

浅谈初中数学中的“三等角共线”实例这是某次青年教师解题比赛中的一道题。
如图,直线l 1、l 2、l 3相互平行,且l 1、l 2的距离为1,l 2、l 3的距离为2,等腰△ABC 的三个顶点分别在三条平行线上,AB =AC ,∠BAC =120°,则等腰△ABC 的腰长是______________. 此题的解题方法有多种,其中一种便是构造全等三角形的方法,具体解法如下: 在直线l 1上取点D,E 使得∠ADB =∠CEA=120° 由于∠1+∠2=∠3+∠2=60°,则∠1=∠3 又AB=CA ,则△ADB 与△AEC 全等 , 因此可得AF=AD+DF=EC+DF由于∠BDF=60°,因此3= 同理可求2=,则在RT △ABF 中斜边==这种方法不仅适用于上题,改变∠BAC 的度数,同样能构造类似的全等三角形,当 ∠BAC 是一个特殊角比如30°,60°,90°,120°,150°等,还能进一步的求出腰长。
若A B ≠AC,此时的全等三角形虽然不存在了,但是仍可以借鉴这样的构造,∠1=∠2,这时由全等三角形转化成了一对相似三角形。
这便是我们熟悉的“三等角共线”模型。
下面来看一些三等角共线的实例。
如图,等腰梯形ABCD 中,AD//BC,∠B=45°,AD BC ==直角三角形含45°的顶点E 在BC 边上移动,直角边始终经过点A,斜边与CD 交于点F ,求当F 为CD中点时,点E 的位置?(2012.丽水16)如图,在直角梯形ABCD 中,∠A =90°,∠B =120°,ADAB =6.在底边AB 上取点E ,在射线DC 上取点F ,使得∠DEF =120°.⑴当点E 是AB 的中点时,线段DF 的长度是________;⑵若射线EF 经过点C ,则AE 的长是________. A B C l 1l 2l 3l1l3l2321G F E D C B A F E D C B A l1l2l3a a a 21E D C BA。
三点共线怎么证明

三点共线怎么证明
三点共线证明⽅法⼀:取两点确⽴⼀条直线,计算该直线的解析式,代⼊第三点坐标看是否满⾜该解析式。
⽅法⼆:设三点为A、B、C,利⽤向量证明:a倍AB向量=AC向量。
三点共线证明⽅法
⽅法⼀:取两点确⽴⼀条直线,计算该直线的解析式。
代⼊第三点坐标看是否满⾜该解析式(直线与⽅程)。
⽅法⼆:设三点为A、B、C。
利⽤向量证明:λAB=AC(其中λ为⾮零实数)。
⽅法三:利⽤点差法求出AB斜率和AC斜率,相等即三点共线。
⽅法四:⽤梅涅劳斯定理。
⽅法五:利⽤⼏何中的公理“如果两个不重合的平⾯有⼀个公共点,那么它们有且只有⼀条过该点的公共直线”。
可知:如果三点同属于两个相交的平⾯则三点共线。
⽅法六:运⽤公(定)理“过直线外⼀点有且只有⼀条直线与已知直线平⾏(垂直)”。
其实就是同⼀法。
全国初中数学竞赛试题汇编---几何解答题及答案

全国初中数学竞赛试题汇编---几何解答题1、如图,圆O 与圆D 相交于,A B 两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.(1)证明:点O 在圆D 的圆周上.(2)设△ABC 的面积为S ,求圆D 的的半径r 的最小值.解:(1)连,,,OA OB OC AC ,因为O 为圆心,AB BC =,所以△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为,OD AB DB BC ⊥⊥,所以9090DOB OBA OBC DBO ∠=°−∠=°−∠=∠,所以DB DO =,因此点O 在圆D 的圆周上.(2)设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,则222a x y =+,()S y a x =+,22222222()2222()aSl y a x y a ax x a ax a a x y=++=+++=+=+=.因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,所以△BDO ∽△ABC ,所以BD BO AB AC =,即2r a l y =,故2alr y=.所以22223222()4422a l a aS S a Sr y y y y ==⋅=⋅≥,即r ≥其中等号当a y =时成立,这时AC 是圆O 的直径.所以圆D 的的半径r .2、如图,给定锐角三角形ABC ,BC CA <,AD ,BE 是它的两条高,过点C 作△ABC 的外接圆的切线l ,过点D ,E 分别作l 的垂线,垂足分别为F ,G .试比较线段DF 和EG 的大小,并证明你的结论.解法1:结论是DF EG =.下面给出证明.因为FCD EAB ∠=∠,所以Rt △FCD ∽Rt △EAB .于是可得CD DF BE AB =⋅.同理可得CEEG AD AB=⋅.又因为tan AD BEACB CD CE ∠==,所以有BE CD AD CE ⋅=⋅,于是可得DF EG =.解法2:结论是DF EG =.下面给出证明连接DE ,因为90ADB AEB ∠=∠=°,所以A ,B ,D ,E 四点共圆,故CED ABC ∠=∠.又l 是⊙O 的过点C 的切线,所以ACG ABC ∠=∠.所以,CED ACG ∠=∠,于是DE ∥FG ,故DF =EG .3、是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC ?证明你的结论.解:存在满足条件的三角形.当△ABC 的三边长分别为6=a ,4=b ,5=c 时,B A ∠=∠2.………………5分如图,当B A ∠=∠2时,延长BA 至点D ,使b AC AD ==.连接CD ,则△ACD 为等腰三角形.因为BAC ∠为△ACD 的一个外角,所以2BAC D ∠=∠.由已知,2BAC B ∠=∠,所以D B ∠=∠.所以△CBD 为等腰三角形.又D ∠为△ACD 与△CBD 的一个公共角,有△ACD ∽△CBD ,于是BDCDCD AD =,即cb aa b +=,所以()c b b a +=2.而264(45)=×+,所以此三角形满足题设条件,故存在满足条件的三角形.………………15分说明:满足条件的三角形是唯一的.若B A ∠=∠2,可得()c b b a +=2.有如下三种情形:(i )当b c a >>时,设1+=n a ,n c =,1−=n b (n 为大于1的正整数),代入()c b b a +=2,得()()()21121n n n +=−−,解得5=n ,有6=a ,4=b ,5=c ;(ⅱ)当b a c >>时,设1+=n c ,n a =,1−=n b (n 为大于1的正整数),代入()c b b a +=2,得()n n n 212⋅−=,解得2=n ,有2=a ,1=b ,3=c ,此时不能构成三角形;(ⅲ)当c b a >>时,设1+=n a ,n b =,1−=n c (n 为大于1的正整数),代入()c b b a +=2,得()()1212−=+n n n ,即0132=−−n n ,此方程无整数解.所以,三边长恰为三个连续的正整数,且其中一个内角等于另一个内角的2倍的三角形存在,而且只有三边长分别为4,5,6构成的三角形满足条件.4、△ABC 的三边长,,,,,BC a AC b AB c a b c === 都是整数,且,a b 的最大公约数是2.点G和点I 分别为△ABC 的重心和内心,且90oGIC ∠=,求△ABC 的周长.解:如图,连结GA ,GB ,过G ,I 作直线交BC 、AC 于点E 、F ,作△ABC 的内切圆I ,切BC 边于点D 。
初中数学奥林匹克中的几何问题:第1章梅涅劳斯定理及应用附答案

初中数学奥林匹克中的几何问题:第1章梅涅劳斯定理及应用附答案第一章涅劳斯定理及应用[基础知识]梅涅劳斯定理设a?,b?,c?分别是△abc的三边bc,ca,ab或其延长线上的点,若a?,b?,文学士?cb?交流电?C如果三个点是共线的,那么① 1.a?bb?ac?bab′c′c′b′abca′d图1-1bcda'如图1-1所示,通过a画一条直线?A.交叉口BC的延长线是D,然后是CB?ca?交流电?爸爸因此Baa?华盛顿?文学士?工商管理学士?cb?交流电?文学士?ca?爸爸1.a?cb?交流电?文学士?ca?爸爸?注:该定理的证明还包括以下正弦定理证明和面积证明正弦定理证法设∠bc?a,∠cb?a,∠b?a?b??,在△ba?c?中,有文学士?罪类似地,C?bsin?cb?罪交流电?罪这三种形式的乘法就是证据?ca?罪ab?罪文学士?s△A.Cbcb?s△cb?Cs△ca?Bs△cb?Cs△ca?Bs△Cca?交流电?s△交流电?A.面积证书方法由以下三部分组成:?反恐精英△b?像△B交流电?s△A.ab?s△B交流电??s△A.防抱死制动系统△交流电?A.C学士学位△C文学士?形式的乘法就是证明梅涅劳斯定理的逆定理设a?,b?,c?分别是△abc的三边bc,ca,ab或其延长线上的点,若ba?cb?ac?②1,A.cb?交流电?B然后a?,BC三个点是共线的ba?cb?ac11.证明设直线a?b?交ab于c1,则由梅涅劳斯定理,得到A.cb?Ac1a由问题和答案组成ac1ac?ba?cb?ac??.1,即有c1bc?文学士?cb?交流电?bac1ac那么AC1呢?交流电?,那么C1和C呢?巧合,即a?,BC三个点是共线的吗?ABAB有时把以上两个定理写成:let a?,BC是直线上的点(包括三条边的延长线)△ ABC,然后a?,BC三点共线的充要条件是Ba?cb?交流电1. Acbacb使用上述公式① 和② 是给△ ABC,如图1-1所示(整个图中有四个三角形)。
初中数学奥林匹克几何问题-塞瓦定理及应用

初中数学奥林匹克几何问题-塞瓦定理及应用本资料为WoRD文档,请点击下载地址下载全文下载地址第二章塞瓦定理及应用【基础知识】塞瓦定理设,,分别是的三边,,或其延长线上的点,若,,三线平行或共点,则.①证明如图2-1()、(),若,,交于一点,则过作的平行线,分别交,的延长线于,,得.又由,有.从而.若,,三线平行,可类似证明(略).注(1)对于图2-1()、()也有如下面积证法:由:,即证.(2)点常称为塞瓦点.(3)共点情形的塞瓦定理与梅涅劳斯定理可以互相推证.首先,由梅涅劳斯定理推证共点情形的塞瓦定理.如图2-1()、(),分别对及截线,对及截线应用梅涅劳斯定理有,.上述两式相乘,得.其次,由共点情形的塞瓦定理推证梅涅劳斯定理.如图2-2,设,,分别为的三边,,所在直线上的点,且,,三点共线.令直线与交于点,直线与交于点,直线与交于点.分别视点,,,,,为塞瓦点,应用塞瓦定理,即对及点(直线,,的交点),有.对及点(直线,,的交点),有.对及点(直线,,的交点),有.对及点(直线,,的交点),有.对及点(直线,,的交点),有.对及点(直线,,的交点),有.上述六式相乘,有.故.塞瓦定理的逆定理设,,分别是的三边,,或其延长线上的点,若,②则,,三直线共点或三直线互相平行.证明若与交于点,设与的交点为,则由塞瓦定理,有,又已知有,由此得,即,亦即,故与重合,从而,,三线共点.若,则.代入已知条件,有,由此知,故.上述两定理可合写为:设,,分别是的,,所在直线上的点,则三直线,,平行或共点的充要条件是.③第一角元形式的塞瓦定理设,,分别是的三边,,所在直线上的点,则三直线,,平行或共点的充要条件是.④证明由,,,三式相乘,再运用塞瓦定理及其逆定理,知结论成立.第二角元形的塞瓦定理设,,分别的三边,,所在直线上的点,是不在的三边所在直线上的点,则,,平行或共点的充要条件是.⑤证明注意到塞瓦定理及其逆定理,有.由此即证得结论.注在上述各定理中,若采用有向线段或有向角,则①、②、③、④、⑤式的右端仍为1.特别要注意的是三边所在直线上的点或者两点在边的延长线上,或者没有点在边的延长线上.④、⑤式中的角也可按①式的对应线段记忆.推论设,,,分别是的外接圆三段弧,,上的点,则,,共点的充要条件是.证明如图2-3,设的外接圆半径为,交于,交于,交于.由,,,,,六点共圆及正弦定理,有.同理,,.三式相乘,并应用第一角元形式的塞瓦定理即证.为了使读者熟练地应用塞瓦定理,针对图2-4中的点、、、、、,将其作为塞瓦点,我们写出如下式子:对及点有,对及点有,对及点有,对及点有,对及点有,对及点有,对及点有,对及点有.【典型例题与基本方法】1.恰当地选择三角形及所在平面上的一点,是应用塞瓦定理的关键例1四边形两组对边延长分别相交,且交点的连线与四边形的一条对角线平行.证明:另一条对角线的延长线平分对边交点连线的线段.(1978年全国高中竞赛题)证明如图2-5,四边形的两组对边延长分别交于,,对角线,的延长线交于.对及点,应用塞瓦定理,有.由,有,代入上式,得,即.命题获证.例2如图2-6,锐角中,是边上的高,是线段内任一点,和的延长线分别交,于,.求证:.(1994年加拿大奥林匹克试题)证法1对及点,应用塞瓦定理,有.①过作,延长,分别交于,,则,且,,从而,.而由①,有,故.由此知为等腰底边上的高,故.证法2对及点应用塞瓦定理,有.即,由锐角性质知.类似地,对及截线或对及截线应用梅涅劳斯定理也可证得有.注将此例中的平角变为钝角,则有如下:例3如图2-7,在四边形中,对角线平分.在上取一点,与相交于,延长交于.求证:.(1999年全国高中联赛题)证明连交于,对及点,应用塞瓦定理,有.平分,由角平分线性质,可得,故.过点作的平行线交的延长线于,过点作的平行线交的延长线于,则.所以.从而,.又,,有.因此,,即有.故.注由此例还可变出一些题目,参见练习题第4、5及19题.例4如图2-8,是的中线,在上,分别延长,交,于,,过作交于,及为正三角形.求证:为正三角形.证明连,对及点应用塞瓦定理,有.而,则.由,由.于是,有,从而,即知四边形为平行四边形,有.又,则.而,,知,有,.于是.故为正三角形.例5如图2-9,在一个中,,为内满足及的一点.求证:是的三等分线.(1994年香港代表队选拔赛题)(其中注意),.证明用表示的度量,令,则,,,对及点,应用第一角元形式的塞瓦定理,有.亦即.于是,即.而,则.因,则.,即.从而.故,即是的三等分线.利用第一角元形式的塞瓦定理可简捷处理20XX年全国高中联赛加试第一题的第1问:例6设、分别为锐角()的外接圆上弧、的中点.过点作交圆于点,为的内心,联结并延长交圆于点.求证:.证明事实上,易知、、及、、分别三点共线,对及点应用第一角元形式的塞瓦定理,有.①由知,有.于是①式即为.故.2.注意塞瓦定理逆定理的应用以及与梅涅劳斯定理的配合应用例7如图2-10,在中,,为上给定的一点(不是线段的中点).设为直线上与,都不相同的任意一点,并且直线,交于,直线,交于,直线,交于.试证明交点与在直线上的位置无关.(1990年苏州市高中竞赛题)证明设分线段为定比,分线段为定比.下证由确定,即当,给定后,点的位置由点唯一确定.在中,由,,交于一点,应用塞瓦定理,有,即.对及截线,应用梅涅劳斯定理,得,即.上述两式相加,得.从而,即,故由唯一确定.因此,点与在直线上的位置无关.例8如图2-11,设为内任一点,在形内作射线,,,使得,,.求证:,,三线共点.证法1设交于,交于,交于,则由正弦定理有.同理,,.将上述三式相乘,并应用正弦定理,有.由塞瓦定理的逆定理,知,,共点.证法2设交于,交于,交于,直线交于,直线交于,直线交于.对及点,应用塞瓦定理,有.在和中应用正弦定理,有.同理,,.以上三式相乘,并注意到①式,有.由塞瓦定理的逆定理,知,,共点.证法3设交于,交于,交于,直线交于,直线交于,直线交于.对及点,应用角元形式的塞瓦定理,有.由题设,,,则有,,.于是,对,应用角元形式的塞瓦定理的逆定理,知,,三线共点.例9如图2-12,四边形内接于圆,其边与的延长线交于点,与的延长线交于点,过点作该圆的两条切线,切点分别为和.求证:,,三点共线.(1997年试题)证明连分别交,于,,设与交于.要证,,三点共线,只须证明,,和,,都三点共线,又只须证明,,三线共点.由塞瓦定理的逆定理知只须证明.又直线截,应用梅涅劳斯定理,有,从而只须证明.设圆心为,连交于,连,,,,则由切割线走理和射影定理,有,即知,,,四点共圆,有,此表明为的内角的外角平分线.而,则平分.于是,,结论获证.【解题思维策略分析】1.获得线段比例式的一种手段例10如图2-13,中,,分别为和同方向延长线上的点,与相交于,且.若点满足(为常数),则.证明设交于,对及其形外一点,应用塞瓦定理,有.而,则.不妨设,则,即有,于是,故.此时,点到的距离不小于到的距离,则过作必交延长线于一点,设为.又作的外接圆交于另一点,则四边形为等腰梯形.当时,由,知必在线段上,于是,(同弧上的圆外角小于同弧上的圆周角).又由,知.故结论获证.2.转化线段比例式的一座桥梁例11设为内任一点,,,分别交,,于,,.求证:.证明如图2-14,记,,.对及点,应用塞瓦定理,有.对及截线,应用梅涅劳斯定理,有,即.由合比定理得,即.同理,,.三式相加,得.例12如图2-15,设为内任意一点,,,的延长线交对边,,于点,,,交于.试证:.证明令,,,对及点,应用塞瓦定理,有.对及截线,应用梅涅劳斯定理,有.注意到,则有,即,故.又对直线截,有.而,则,故.又对及截线,有,即有,故.从而.于是,.其中等号由中等号成立时成立,即当且仅当亦即当且仅当,亦即时取等号.此时,和之间成为如图2-16的双曲线的关系.例13如图2-17,已知直线的三个定点依次为、、,为过、且圆心不在上的圆,分别过、两点且与圆相切的直线交于点,与圆交于点.证明:的平分线与的交点不依赖于圆的选取.(45预选题)证明设的平分线交于点,交圆于点,其中与是不同的两点.由于是等腰三角形,则有.同理,在中,有.在中,视为塞瓦点,由角元形式的塞瓦定理,有.注意到,.则.即,故结论获证.3.求解三角形格点问题的统一方法如果三角形的三个角的度数都是10的整数倍,三角形内一点与三角形的三个顶点分别连结后,得到的所有的角也都具有这个性质,我们称这样的点为三角形的格点.例14如图2-18,在中,,,和分别是和上的点,使得,,是直线和的交点.证明:直线和直线垂直.(1998年加拿大奥林匹克试题)证明设,则,对及点,应用第一角元形式的塞瓦定理,有.从而,即有..注意到,知,,有,故.延长交于,则.故.注此题也可这样来解:由,有.由于作为的函数在上严格递减,所以.故.因此,.或者过点作于,则,.关于有.所以,、、三线共点,因此点在上,即.例15如图2-19,在内取一点,使得,.设,,求.(1983年前南斯拉夫奥林匹克试题)解设,则.由第一角元形式的塞瓦定理,有.从而.,,.于是.注意到,知,.,故.所以为所求.注此题结果也可直接由①式有且,,求得.另外,此题也可这样来解:由,有.因为作为的函数在(,)上严格递减,所以.故.或者由,令,则.对和点应用第一角元形式的塞瓦定理,有.则.因为作为的函数在上严格递增,所以.例16如图2-20,具有下面性质:存在一个内部的点,使得,,,.证明:是等腰三角形.(1996年美国第25届奥林匹克试题)证明设,则.由第一角元形式的塞瓦定理,有.即有.,.从而且,,故,即,从而.注此题也可这样来求解:由,有.因为作为的函数在(,)上严格递减,所以,即.故.还可对及点应用第一角元形式的塞瓦定理来求.4.论证直线共点的一种工具例17如图2-21,在四边形中,,,过,的交点引,,其中交,于,,交,于,.,分别交于,,则.(1990年cmo选拔试题)证明在,上分别取,,使,,则由对称性可知有下列角相等,即若设,,,,,,则,又,故.又,故,.连交于,在中,.故由塞瓦定理的逆定理,知,,共点,即过点.由对称性知,.例18如图2-22,在锐角中,以点引出的高为直径作圆交,于,,再从作.同样可作出,.试证:三直线,,相交于一点.(第29届预选题)证明设与,分别相交于点,,由,,知,即.同理,设,边上的高,的垂足分别为,,且,分别与,交于,,则有,.由于的三条高相交于垂心,此时应用第一角元形式的塞瓦定理,得,用等角代换上式,有.故由第一角元形式的塞瓦定理,知,,三线共点,即,,相交于一点.例19如图2-23,四边形内接于圆,,的延长线交于,,的延长线交于,为圆上任一点,,分别交圆于,.若对角线与相交于,求证:,,三点共线.证明连,,,,,.由,,有,,此两式相乘,有.①又由,,有,,此两式相乘,有.由①②,得.上式两边同乘以,得.对及截线,应用梅涅劳斯定理,有.于是.此时,应用第一角元形式的塞瓦定理的推论,知,,交于一点.从而,,三点共直线.【模拟实战】习题A1.在中,是上的点,,是中点.与交于,交于,求四边形的面积与的面积的比.2.若通过各顶点的直线,,共点,并且它们在边,,所在直线上的截点,,关于所在边中点的对称点分别为,,,则直线,,也共点.3.一圆交的各边所在直线于两点,设边上的交点为,,边上的交点为,,边上的交点为,.若,,共点,则,,也共点.4.试证:过三角形顶点且平分三角形周长的三条直线共点.5.将各内角三等分,每两个角的相邻三等分线相交得,又,,分别平分,,且它们与,,交于,,.求证:,,三线共点.6.将的各外角三等分,每两个外角的相邻三等分线相交得.又,,分别平分,,且它们与,,交于,,.求证:,,三线共点.7.是的内切圆,,,上的切点各是,,.射线交于,同样可得,.试证:直线,,共点.8.在内部,且从,,各向,,所作的垂线共点,则从,,各向,,所作的垂线也共点.9.在中,,为形内一点,,,求的度数.10.在中,,,为形内一点,且,求的度数.(《数学教学》问题432题)11.在中,,,为形内一点,,求的度数.(《数学教学》问题491题)12.在中,,,为的平分线上一点,使,交于,交于.求证:.(《数学教学》问题531题)13.在中,,,为形内一点,,,求的度数.(《数学通报》问题1023题)14.在中,,,为形内一点,且,,求的度数.(《数学通报》问题1142题)15.在中,,,为形内一点,,,求的度数.(《数学通报》问题1208题)16.中,,,为形内一点,,.求证:.(《数学通报》问题1306题)17.在中,,,为形内两点,,.求证:,,三点共线.(《数学通报》问题1243题)18.中,,,为形内两点,,.求证:.(《数学通报》问题1281题)19.在中,,,为内心,为上一点,满足.试求的度数.(《数学通报》问题1073题)20.,,,,,顺次分别在的三边,,上,且,,,过,,分别作,,的平行线,,.求证:,,三线共点的充要条件是,,三线共点.21.在中,,于,过任作两射线分别交,于点,,交过点的平行线于,,且.求证:,,共点.22.在中,过三边,,边中的中点,,的三条等分三角形周长的直线,,(,,在三角形三边上)分别交,,于,,.求证:,,三线共点.23.的内切圆切,,于,,.是内一点,交内切圆于两点,其中靠近的一点为,类似定义,.试证:,,三线共点.24.在内部,的延长线分别交,于,;的延长线分别交,于,;的延长线分别交,于,,且满足.求证:,,所在直线共点.(《中学数学教学》擂台题(28))25.给定,延长边至,使.的外接圆与以为直径的圆相交于和.设与的延长线分别交和于,.求证:,,共线.(第15届伊朗奥林匹克题)26.在的边上向外作三个正方形,,,是正方形中的边,,对边的中点.求证:直线,,共点.习题B1.是的内切圆,,,,分别是,,上的切点,,,都是的直径.求证:直线,,共点.(《数学通报》问题1396题)2.四边形的内切圆分别与边,,,相切于,,,.求证:,,,四线共点.(《数学通报》问题1370题)3.锐角中,角的平分线与三角形的外接圆交于另一点,点,与此类似.直线与,两角的外角平分线交于,点,与此类似.求证:(Ⅰ)三角形的面积是六边形的二倍;(Ⅱ)三角形的面积至少是三角形面积的四倍.(-30试题)4.设为内一点,使,是线段上的点,直线,分别交边,于,.求证:.5.在凸四边形中,对角线平分,是的延长线上的一点,交于点,延长交的延长线于.试证:.6.在中,,,为内心,为上一点,满足.试求的度数.(《数学通报》问题1073题)7.设是等边三角形,是其内部一点,线段,,依次交三边,,于,,三点.证明:.(-37预选题)8.在一条直线的一侧画一个半圆,,,是上两点,上过和的切线分别交于和,半圆的圆心在线段上,是线段和的交(-35预选题)点,是上的点,.求证:平分.9.设是锐角的内接正方形的中心,其中内接正方形的两个顶点在边上,一个顶点在边上,一个顶点在边上.同样定义两个顶点分别在边和边上的内接正方形的中心分别为,.证明:,,交于一点.(-42预选题)10.以的底边为直径作半圆,分别与,交于点,,分别过点,作的垂线,垂足依次为,,线段和交于点.求证:.(1996年国家队选拔考试题)11.设,是锐角的外接圆的圆心和垂心.证明:存在,,分别在线段,,上,使得,且此时,,三线交于一点.(-41预选题)12.已知是的直径,弦于,点和分别在线段和上,且∶∶,射线,交于,.求证:,,三线共点.13.设是的内心,以为圆心的一个圆分别交于,,交于,,交于,.这六个点在圆上的顺序为,,,,,.设,,为弧,,的中点,直线,相交于,直线,相交于,直线,相交于.求证:直线,,三线共点.14.在的边和上分别向形外作和,使,且.求证:连线,与边上的高三线共点.15.过非等边三角形各顶点作其外接圆的切线,则各切线与其对边的交点共线.16.在内三点,,满足,,则,,三线共点的充要条件是.17.在任意的三边,,上各有点,,,而是内部任一点,直线,,分别交线段,,于,,.求证:直线,,共点的充分必要条件是,,共点,而与点的位置无关.18.设是平面上区域内任一点,,,的延长线交三边于,,.求证:在区域内,存在一个以的某两边为邻边的平行四边形.19.设凸四边形的两组对边所在的直线,分别交于,两点,两对角线的交点为,过点作于.求证:.(2002国家集训队选拔试题)20.在中,和均为锐角.是边上的内点,且平分,过点作垂线于,于,与相交于.求证:.。
初中数学_中考专题——动点问题之三点共线求线段最值教学课件设计

6、(2016泸州))如图,在平面直角坐标系中,已知点A(1, 0),B(1-a,0),C(1+a,0)(a>0),点P在以D(4,4) 为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最
大值是_6__. 视频教学
7、(2017贵港)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶 点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连
九年级下册
中考专题
动点问题之三点共线求线段最值
命题 背景
结合动点问题,以三 角形、特殊四边形 (菱形、矩形、正方 形)、圆、坐标轴、 抛物线等为载体,进 行综合考察。题目灵 活多变!
营地A
烽火台B
交河
P
唐朝诗人李欣《古从军行》——
“白日登山望烽火, 黄昏饮马傍交河.”
烽火台B
营地A
P
A’
折直 1、两点之间线段最短。 2、三角形任意两边之
圆心异侧——最大
已知,抛物线y=x2+bx+c过点A(3,0),B(1,0) (1)求抛物线的解析式; (2)在抛物线对称轴上是否存在点M使|MA-MC|最大? 若存在请求出点M的坐标,若不存在请说明理由.
动点问题中 如何实现三点共线? 解决什么问题? 知识点? 套路?……
初中数学竞赛第二轮专题复习(2)几何

初中数学竞赛第二轮专题复习(2)几何证明的基本方法(1)一、常用定理梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则.1''''''=⋅⋅BC AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','C B A 三点共线。
塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=⋅⋅BC AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。
角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠⋅∠∠⋅∠∠BAB CBB CBC ACC AC A BAA 广义托勒密定理 设ABCD 为任意凸四边形,则AB •CD+BC •AD ≥AC •BD,当且仅当A,B ,C ,D 四点共圆时取等号.斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有AP 2=AB 2•BC PC +AC 2•BCBP -BP •PC 。
初中数学竞赛:点共线、线共点

初中数学竞赛 点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。
1. 点共线的证明点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。
n (n ≥4)点共线可转化为三点共线。
例1 如图,设线段AB 的中点为C ,以AC 和CB 为对角线作平行四边形AECD ,BFCG 。
又作平行四边形CFHD ,CGKE 。
求证:H ,C ,K 三点共线。
证 连AK ,DG ,HB 。
由题意,AD EC KG ,知四边形AKGD 是平行四边形,于是AK DG 。
同样可证AK HB 。
四边形AHBK 是平行四边形,其对角线AB ,KH 互相平分。
而C 是AB 中点,线段KH 过C 点,故K ,C ,H 三点共线。
例2 如图所示,菱形ABCD 中,∠A =120O 为△ABC 外接圆,M 为其上一点,连接MC 交AB 于E ,AM 交CB 延长线于F 。
求证:D ,E ,F 三点共线。
证 如图,连AC ,DF ,DE 。
因为M在O 上,则∠AMC =60°=∠ABC =∠ACB有△AMC ∽△ACF ,得CDCFCA CF MA MC ==。
又因为∠AMC =BAC ,所以△AMC ∽△EAC ,得AEADAE AC MA MC ==。
所以AEADCD CF =,又∠BAD =∠BCD =120°,知△CFD ∽ △ADE 。
所以∠ADE =∠DFB 。
因为AD ∥BC ,所以∠ADF =∠DFB =∠ADE ,于是F ,E ,D 三点共线。
AB CD E FH K G例3 四边形ABCD 内接于圆,其边AB 与DC 的延长线交于点P ,AD 与BC 的延长线交于点Q 。
由Q 作该圆的两条切线QE 和QF ,切点分别为E ,F 。
求证:P ,E ,F 三点共线。
证 如图。
连接PQ ,并在PQ 上取一点M ,使得B ,C ,M ,P 四点共圆,连CM ,PF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛:证明三点共线
【内容提要】
1.要证明A,B,C三点在同一直线上,
常用方法有:①连结AB,BC证明∠ABC是平角
②连结AB,AC证明AB,AC重合
③连结AB,BC,AC证明AB+BC=AC
④连结并延长AB证明延长线经过点C
2.证明三点共线常用的定理有:
①过直线外一点有且只有一条直线和已知直线平行
②经过一点有且只有一条直线和已知直线垂直
③三角形中位线平行于第三边并且等于第三边的一半
④梯形中位线平行于两底并且等于两底和的一半
⑤两圆相切,切点在连心线上
⑥轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上
【例题】
例1.已知:梯形ABCD中,AB∥CD,点P是形内的任一点,PM⊥AB,
PN⊥CD
求证:M,N,P三点在同一直线上
∵AB∥CD,∴EF∥CD
∠1+∠2=180 ,∠3+∠4=180
∵PM⊥AB,PN⊥CD
∴∠1=90 ,∠3=90 ∴∠1+∠3=180
∴M,N,P三点在同一直线上
例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直线上
已知:平行四边形ABCD中,M,N分别是AD和BC的中点,O是AC和BD的交点
求证:M ,O ,N 三点在同一直线上 证明一:连结MO ,NO
∵MO ,NO 分别是△DAB 和△CAB 的中位线 ∴MO ∥AB ,NO ∥AB
根据过直线外一点有且只有一条直线和已知直线平行 ∴ M ,O ,N 三点在同一直线上 证明二:连结MO 并延长交BC 于N
,
∵MO 是△DAB 的中位线
∴MO ∥AB
在△CAB 中 ∵AO =OC ,ON ,
∥AB
∴BN ,
=N ,
C ,即N ,
是BC 的中点 ∵N 也是BC 的中点, ∴点N ,和点N 重合 ∴ M ,O ,N 三点在同一直线上
例3.已知:梯形ABCD 中,AB ∥CD ,∠A +∠B =90
,M ,N 分别是AB 和CD 的中点,BC ,AD 的延长线相交于P
求证:M ,N ,P 三点在同一直线上 证明:∵∠A +∠B =90
,
∠APB =Rt ∠ 连结PM ,PN 根据直角三角形斜边中线性质
PM =MA =MB ,PN =DN =DC ∴∠MPB =∠B ,∠NPC =∠B
∴PM 和PN 重合 ∴M ,N ,P 三点在同一直线上
,
例4.在平面直角坐标系中,点A 关于横轴的对称点为B ,关于纵轴的对称点是C ,求证B 和C 是关于原点O 的对称点
解:连结OA ,OB ,OC
∵A ,B 关于X 轴对称, ∴OA =OB ,∠AOX =∠BOX 同理OC =OA ,∠AOY =∠COY
∴∠COY +∠BOX =90
∴B ,O ,C 三点在同一直线上 ∵OB =OC ∴ B 和C 是关于原点O 的对称点
例5.已知:⊙O 1和⊙O 2相交于A ,B 两点,过点B 的直线EF 分别交⊙O 1和⊙O 2于E ,F 。
求证:AE ,AF 和⊙O 1和⊙O 2的直径成比例
证明:作⊙O 1和⊙O 2的直径AM ,AN ,连结AB ,BM ,BN
∵AM ,AN 分别是⊙O 1和⊙O 2的直径
∴∠ABM =Rt ∠,∠ABN =Rt ∠
∴M ,B ,N 在同一直线上
∴∠M =∠E ,∠N =∠F
∴△AMN ∽△AEF
∴
AF
AN
AE AM
【练习】
1. 已知:梯形ABCD 中,AB ∥CD ,M ,N ,P 分别是AD ,BC ,AC 的中点 求证:M ,N ,P 三点
在同一直线上
2. 已知:△ABC 中,BE ,CF 是中线,延长BE 到G ,使EG =BE ,延长CF 到H ,使FH =CF ,
求证:G ,A ,H 三点共线
3.已知:正方形ABCD中,M,N分别是BC,CD的中点,DE⊥AN于E,
求证:点M在DE的延长线上(同33第5)
4.求证:梯形两腰中点和两条对角线的中点,四点在同一直线上
5.已知:梯形ABCD中,AB∥CD,∠A和∠D的平分线相交于O,
求证:点O在梯形的中位线上
6.已知:△ABC中,∠ABM,∠ACN分别是∠B,∠C的邻补角,从点A作∠B,∠C,∠ABM,∠
CAN四个角平分线的垂线段AD,AE,AF,AG,垂足是D,E,F,G
求证:D,E,F,G四点在同一直线上
7.已知:点P在等边△ABC外,PA=PB+PC,以PA为一边作等边△APQ使点Q和点C在PA的同
一侧
求证:PQ必过点C
8.已知:△ABC中,AB=AC,直线AP∥BC,点D和点C是关于直线AP的对称点
求证:点D和点B是关于点A的对称点
【答案】
1.连结MP,NP证明都与AB平行
2.连结AG,AH证明都与BC平行
3.连结DM证明DM⊥AN
5.证明MP平行于底边
6.根据中位线性质,垂足连线平行于底边
7.连结CQ,证明∠AQC=60
8.证明∠DAP+∠PAC+∠CAB=180。