简易水塔水位控制电路电子课程设计

简易水塔水位控制电路电子课程设计
简易水塔水位控制电路电子课程设计

目录

1 概述 (1)

2 系统总体方案设计 (2)

3 主要单元电路设计 (3)

3.1 电源电路 (3)

3.2 水位检测电路和水位范围测量电路 (3)

3.3 水泵开关电路及显示电路 (5)

4 元器件选型 (8)

4.1 水压传感器 (8)

4.2 比较器 (8)

4.3 稳压管 (9)

4.4 稳压芯片 (10)

4.5 普通二极管 (10)

4.6 发光二极管 (11)

4.7 三极管 (11)

4.8 电磁继电器 (12)

4.9 变压器 (14)

4.10 桥式整流电路 (14)

4.11 CD4011 (15)

4.12 迟滞比较器 (16)

结论及展望 (17)

参考文献 (18)

附录 (19)

摘要

该方案电源电路采用电网供电,通过变压器电路、整流电路、滤波电路和稳压电路将电网中的220V交流电转换成直流12V电压。稳压电路由三端稳压器实现,用它来组成稳压电源只需很少的外围元件,电路非常简单,且安全可靠。水位测量和水位监测电路主要由电阻型水压传感器和迟滞比较器组成。电阻型水压传感器是最典型也是最简单的一种压力传感器。迟滞比较器不仅可以测量水位的范围,还可以防止跳闸现象的出现。水泵开关电路和显示电路主要由电流放大电路和继电器组成。继电器可以提供水泵所需要的交流电,而电流放大电路是由三极管组成,是一种比较典型的和简单的电路。用发光二极管的显示来检测水位状态和水泵的状态。

关键词水压传感器继电器比较器

1 概述

本次设计的是一个水塔水位控制电路,电路能够通过控制两个水泵实现对水位的控制。水位范围在S1~S2(S1<S2)之间,S为实际水位。当S<S1时,两个水泵都放水;当S1<S<S2时,仅一个水泵放水;当S>S2时,两个水泵都关闭。同时本电路设计了水位检测电路,通过发光二极管的显示来检测水位状态。

我们都知道,在日常生活和工业生产中,水位控制装置有着广泛的应用。如水塔、楼房水箱、锅炉等。水位控制装置的形式有很多种,浮子开关式,电节点式,压力式,电子式,微机式等。这些装置或多或少的存在着一些缺点:浮子开关式采用机械结构,维护起来不方便;微机式控制装置,虽然操作方便,但造价较贵。本文从实用型和经济型出发,设计了一种水位控制装置,该装置结构简单,维护方便,工作可靠性能价格比优良,而且在不同程度上克服了其他方法的一些缺点。可以在经济上节约资金,降低损耗,节约资源,有很多场合下均可采用。

2 系统总体方案设计

简易水塔水位控制电路的总体框图如图2-1所示。它是由水位检测电路、水位范围测量电路、水泵开关电路、显示电路和电源电路5部分组成。

图2-1简易水塔水位控制电路的总体框图

每部分电路都有其相应功能:首先有水位检测电路产生整个电路的输入信号,该信号传至水位范围测量电路,输出其他电路的控制信号,控制其他电路工作。电机控制电路部分接收到有信号处理电路输出的有效控制信号后正常工作驱动电机转动抽水,使水位上升,而水位的变化有直接关系到信号的产生,因此有个循环的过程,即使水位保持在一定范围内:水位显示电路接收到有效信号后驱动显示器工作,使其显示该时刻的水位;由“信号产生→信号处理→电机控制→电机→信号产生”这个循环就能使水塔具有自动控制水位的能力。

3 主要单元电路设计

3.1 电源电路

电源电路的原理图如图3-1所示。电路直接从电网供电,通过变压器、整流电路、滤波电路和稳压电路将电网中的220V交流电转换成+12V的直流电压。电路中变压器采用常规的铁心变压器,电源变压器将交流电网电压220V变为合适的交流电压12V。整流电路采用二极管桥式整流电路,整流电路将交流电压12V变为脉动的直流电压12V。C1、C2、C3和C4完成滤波功能,稳压电路采用三端稳压集成电路来实现。稳压电路清除电网波动及负载变化的影响,保持输出电压12V的稳定。

图3-1电源电路

3.2 水位检测电路和水位范围测量电路

如图3-2所示,水位检测电路由可变电阻R1和一个电阻型水压传感器构成。电阻型水压传感器是最简单也最典型的一种水压传感器,它的工作原理是通过阻抗的变化来表示水压的变化,同时将水压信号转化为电信号Vs,即Vs代表了实际水位S。本电路采用的电阻型水压传感器型号为PT500-501,是水压传感器,即传感器的阻抗随水压的增加而增加。可变电阻R1的作用是通过调节可变电阻的阻值,就可以调节VS的范围,也就可以调节水位控制范围。

水位范围测量电路由两部分构成:

1 由电阻R2、R4和稳压管D1、D2构成的参考电压产生电路;

2 由迟滞比较器构成的水位范围测量电路。

参考电压产生电路产生两个稳定的电压,分别代表水位范围的上限值S2和下限值S1。由于参考电源产生电路输出端接入比较器的输入,为了防止出现输出电流不

稳导致参考电源不稳定的情况,电路采用电阻和稳压管相结合的方式构成。其中稳压管的稳定电压均为+8V,而输出VREF1=+8V VREF2=12V-8V=4V

水位范围测量电路的功能有两个:

1 确定实际水位和水位控制范围的大小关系;

2 防止出现跳闸现象。

首先,VREF输入到两个运算放大器的同相输入端,而Vs1和Vs2则同时分别输入到这两个运算放大器的正相输入端。这样,当VsVREF2时,V1输出为低电平;当VsVREF2时,V2输出为低电平。由于Vs1、Vs1、VREF分别代表S1、S2和S,实际水位和水位控制范围的大小关系就确定了。

其次,本电路通过迟滞比较器代替单门限比较器来实现跳闸现象的出现。迟滞比较器AR1的特性表达式为

(2-1)

(2-2)由式(2-1)和式(2-2)可得到回差范围△VT = V1T+ - V1T- =8.4V-7.3V=1.1V,即V1从高电平转换为低电平和从低电平转换为高电平的分界点电压值有了1.1V的差别,从而就可以防止跳闸现象的出像。

同理,迟滞比较器AR2的特性表达式为

( 2-3)

(2-4)

由式(2-3)和(2-4)可求得迟滞比较器AR2的V2T+ -V2T-之差(4.7V~3.6V)同样具有1.1V的回差范围,由此可以防止跳闸现象的出现。

图3-2水位检测电路和水位范围测量电路

3.3 水泵开关电路及显示电路

水泵开关及显示电路如图3-3所示,水泵开关电路是由三极管电路和继电器电路构成的。电路的输入即为图3-2电路中的输出,即当Vs< VREF1且Vs< VREF2时,V

1

和V

2输出都为高电平;当Vs> VREF2而Vs< VREF2时,V

1

输出为高电平,而V

2

输出

为低电平;当Vs1> VREF且Vs2> VREF时,V

1和V

2

输出都为低电平。

由于水泵中通过的都是大电流,产生大功率,而直流电源无法提供大电流和大功率,因此水泵需要交流供电,这样一来,电路中的开关必须采用继电器电路。

图3-3水泵开关电路及显示电路

而一般运算放大器的输出电流无法驱动继电器,因此需要加入电流放大电路。由三极管电路构成的电流放大电路是一种比较典型的和简单的电路。其中R9和R10为限流电阻,防止输入电流过大烧毁三极管。三极管接为共集电极电路,当输入电压为高电平时,三极管导通饱和,可以将输入电流放大β倍;当输入电压为低电平时,三极管截止,无电流通过。继电器连接三极管的集电极,当有电流驱动时,开关吸合,对应的水泵通电;当无电流启动时,开关断开,对应的水泵不通电,同时在继电器两端并联入二极管进行保护。

显示电路分两部分,由发光二极管构成。

一部分通过发光二极管亮灭来表示水泵是否通电,同时由于继电器的驱动电流过大,需要加入限流电阻保护发光二极管。

另一部分用三个发光二极管表示水位的状态。

可知当水位是低水位,即水位在范围之下时(ss2),都输出低电平(0 0)。

本原理图用三个发光二极管表示水位的状态。由电路输出可列出二极管驱动真值

表如表3-1:A为U1控制电机的逻辑值,为1则电机转动;B为U2控制电机的逻辑值,为1则电机转动;LED灯逻辑值为1则点亮。本电路采用不同的红黄绿三个发光二极管来显示。

表3-1 二极管驱动真值表

水位A B

绿

Q3黄

Q2

Q1

S

S1

S2

当水位SS2),两个水泵都关闭,此时水位为水满状态,发光二极管绿灯亮。当水位在范围之内时(S1

由图可知,三个输出驱动电压分别得由三个与非门实现。此电路选用CD4011,其中由四个两输入与非门组成,完全能实现所需要功能。逻辑电平与所需相反时,只需在电路中加一个反相器就行了。

注:

4 元器件选型

4.1 水压传感器

本电路采用的电阻型水压传感器型号为PT500-501,是水压传感器,即传感器的阻抗随水压的增加而增加。如图4-1:

图4-1 PT500-501传感器

产品基本特性:

PT500-500系列压力变送器采用高精度高稳定性电阻应变计/扩散硅晶体/陶瓷晶体等做为变送器的感压芯片,选进的贴片工艺,配套带有零点、满量程补偿,温度补偿的高精度和高稳定性放大集成电路,将被测量介质的压力转换成4~20mA、0~5VDC、0~10VDC、0.5~4.5VDC等标准电信号。产品结构采用全封焊结构,使之产品的抗冲击能力、过载能力、产品密封性等性能有了较大提高,产品最高压力可达150MPa。产品过程连接部分和电气连接部分有多种方式,能够最大限度的满足用户的需求。

4.2 比较器

集成电路运算放大器是一种高电压增益、高输入电阻和低输入电阻的多级直接耦合放大电路,它的种类很多,电路也不一样,但结构具有共同之处,如图4-2表示集成运放的内部电路组成的原理框图。

图4-2 集成运放的内部电路组成的原理框图

如图4-2集成运放的输入级一般是由BIT、JFET或MOSFET组成的差分式放大电路,利用它的对称特性可以提高整个电路的共模抑制比和其他方面的性能。它的两个输入端构成整个电路的反相输入端和同相输入端。电压放大级的主要作用是提高电压增益,它可由一级或多级放大电路组成。输出级一般由电压跟随器或互补电压跟随器所组成,以降低输出电阻,提高带负载能力。偏置电路是为个级提供合适的工作电流。其代表符号和输入输出传输特性如图4-3所示。

图4-3

4.3 稳压管

稳压器二极管也叫齐纳二极管,稳压原理:给稳压二极管施加反向电压并使其值

增大,当反向电压之值达到稳压二极管的稳定电压时,其正常雪崩击穿,若在此情况下,一定范围内改变电源电压的波动或改变负载电流的大小,齐纳电流IZ和动态电阻随之而改变,然而,齐纳电压UZ却稳定不变。稳压二极管串联一个电阻来提供一个稳定的参考电压VREF,其中稳压二极管选用1N4735,其稳定电压为,限流电阻选用1K。稳压二极管1N4735的重要参数:最大工作电流 IZM 146mA 稳定电压 UZ 6.2V 最大耗散功率 P 1W 。

4.4 稳压芯片

该电路中使用的是MC7812CP芯片,该芯片内部设有电流过流﹑过热和调整管安全区保护电路,以防止过载而损坏,用它来组成稳压电源只需很少的外围元件,电路简单,且安全可靠

4.5 普通二极管

二极管又称晶体二极管,简称二极管,另外,还有早期的真空电子二极管;它是一种具有单向传导电流的电子器件。在半导体二极管内部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的转导性。一般来讲,晶体二极管是一个由p型半导体和n型半导体烧结形成的p-n结界面。在其界面的两侧形成空间电荷层,构成自建电场。当外加电压等于零时,由于p-n 结两边载流子的浓度差引起扩散电流和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的二极管特性。二极管有正向特性和反向特性,其中正向特性是指外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN结内电场的阻挡作用,正向电流几乎为零,这一段称为死区。这个不能使二极管导通的正向电压称为死区电压。当正向电压大于死区电压以后,PN结内电场被克服,二极管正向导通,电流随电压增大而迅速上升。在正常使用的电流范围内,导通时二极管的端电压几乎维持不变,这个电压称为二极管的正向电压;反向特性是指外加反向电压不超过一定范围时,通过二极管的电流是少数载流子漂移运动所形成反向电流。由于反向电流很小,二极管处于截止状态。这个反向电流又称为反向饱和电流或漏电流,二极管的反向饱和电流受温度影响很大。在本电路中利用的是二极管的反向特性。

4.6 发光二极管

发光二极管简称为LED。由镓(Ga)与砷(AS)、磷(P)的化合物制成的二极管,当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管。在电路及仪器中作为指示灯,或者组成文字或数字显示。磷砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光如图4-4所示为二极管实物图:

图4-4发光二极管

发光二极管原理:发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N 结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,假设发光是在P 区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。

4.7 三极管

三极管的工作原理::三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

一、电流放大

下面的分析仅对于NPN型硅三极管。我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方

向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib 的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

二、偏置电路

三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V 时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。

4.8 电磁继电器

如图4-5。继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。

电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。

图4-5电磁继电器

电磁继电器一般由电磁铁、险贴、弹簧片、触点等组成的,其工作电路由低压控制电路工作电路两部分构成。电磁继电器还可以实现远距离控制和自动化控制。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)释放。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常闭触点”;处于接通状态的静触点称为“常开触点”。

4.9 变压器

如图4-6。变压器是电子电路,用来升压降压的电力变压器,变压器的原理是电磁感应技术,变压器有两个分别独立的共用一个铁芯的线圈。分别叫作变压器的次级线圈和初级线圈。

电流的方向和大小随时间变化的,变压器初级通上交流电时,变压器的铁芯中产生了交变的磁场(其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈),在次级就感应出频率相同的交流电压.变压器的初次级线圈的匝数比等于电压比。变压器只能改变交流电压,不能改变直流电压,因为直流电流是不会变化的,电流通过变压器不会产生交变的磁场,所以次级线圈只能在直接接通的一瞬间产生一个瞬间电流和电压。

变压器的主要参数:电压比 n=U1/U2=N1/N2 效率η=P2/P1*100%额定功率 P

图4-6变压器图4-7桥式整流电路

4.10 桥式整流电路

桥式整流电路由四个二极管组成,如图3-6所示。

工作原理:U2正半周时:D1、D3导通,D2、D4截止;U2负半周时:D2、D4导通,D1、D3截止

主要参数:

输出电压平均值:U

L

=0.9U2

输出电流平均值:I

L =U

L

/R

L

=0.9U2/ R

L

流过二极管的平均电流:I

D =I

L

/2

二极管承受的最大反向电压:25V–1000V

4.11 CD4011

CD4011是常用的2输入四与非门集成电路。CD4011电气特性:

VDD电压范围:-0.5V to 18V

功耗:

双列普通封装 700mW 小型封装 500mW

工作温度范围:

CD4011BM -55℃ - +125℃

CD4011BC -40℃ - +85℃

CD4011内部结构框图如图4-8,CD4011功能表如图4-9,引脚图如图4-10。管脚功能:

1A 数据输入端 2A 数据输入端 3A 数据输入端 4A 数据输入端

1B 数据输入端 2B 数据输入端 3B 数据输入端 4B 数据输入端

1Y 数据输出端 2Y 数据输出端 3Y 数据输出端4Y 数据输出端

VDD 电源正 VSS 地

4-8 CD4011内部结构框图

4-9 CD4011功能表 4-10CD4011引脚图

4.12 迟滞比较器

迟滞比较器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的迟滞比较器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的迟滞比较器如图所示。一个迟滞比较器模组一般包括正输入端(OP_P)、一个负输入端(OP_N)和一个输出(OP_O)。

图4-11 迟滞比较器符号

迟滞比较器是一个具有迟滞回环传输特性的比较器。在反相输入单门限电压比较器的基础上引入正反馈网络,就组成了具有双门限值的反相输入迟滞比较器。由于反馈的作用这种比较器的门限电压是随输出电压的变化而变化的。它的灵敏度低一些,但抗干扰能力却大大提高。

结论及展望

通过本周的课程设计,我掌握了有关水位控制电路方面的知识,我认识到课本上的知识的实际应用,激发了学习兴趣,培养了我认真思考的能力。在这次课程设计的撰写过程中,遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了在前期学习中我这方面的知识欠缺和经验不足。实践出真知,通过亲自动手制作,使我们掌握的知识不再是纸上谈兵。在此过程中,我得到了许多人的帮助。

首先,我要感谢我的老师在课程设计上给予我的指导、提供给我的支持和帮助。还有,我要感谢帮助过我的同学,他们帮我解决了很多我不太清楚的问题。使我的记忆力更加深刻,认识问题清晰,这次课程设计让我认识到了知识和实践的重要性。只有牢固掌握了所学的知识,才能有清晰的思路,知道每一步该怎样走。才能顺利的解决每一个问题。

刚开始听到这个课题的时候,感觉心里很没有底气,因为我们没有接触到过这样的东西,但真正深入了解的时候。其实并没有那么难,并且它会使得你激发出你的好奇心,使你一步一步地喜欢上它,在实际生活中你会发现它的影子,这会更加激发我们的热情,让我们深入探索,逐步了解。所以我要努力学好基础知识,牢固掌握了所学知识,把自己所学的知识充分发挥出来。

不知不觉地一周的课程设计结束了,但是在这期间所学的知识和老师的指导却让我难以忘记。同时,让我感受到了集体的力量,同学的帮助,集体的温暖,深深印在了我的心里。此次设计也让我明白了思路即出路,有什么不懂不明白的地方要及时请教或上网查询,只要认真钻研,动脑思考,动手实践,就没有弄不懂的知识,受益良多。

参考文献

[1] 石磊,张国强.Altium Designer8.0电路设计[M].北京:清华大学出版社,2009.11.

[2] 康华光,电子技术基础(数电部分)[M].北京:高等教育出版社,2000.7.

[3] 康华光,电子技术基础(模拟部分)[M].北京:高等教育出版社,1999.6.

[4] 门宏,555时基实用电路解读[M].北京:化学工业出版社,2012.3.

[5] 陈友卿,555时基实用电路原理、设计与应用[M].北京:电子工业出版社,2007.9.

[6] 姚福安,电子电路设计与实践[M].山东:山东科学技术出版社,2001.10.

[7] 何小艇,电子系统设计[M].浙江:浙江大学出版社,2001.6

[8] 李银华,电子线路设计指导[M].北京:北京航空航天大学出版社,2005.6.

[9] 王澄非,电路与数学逻辑设计实践[M],东南:东南大学出版社,1999.10

[10] 户川治郎,使用电源电路设计[M].北京:科学出版社,2005.6.

附录

水塔水位控制系统课程设计报告

北京理工大学珠海学院 课程设计 课程设计(C) 学院:信息学院 专业班级: 学号: 学生姓名: 指导教师: 201 年月日 北京理工大学珠海学院

北京理工大学珠海学院 课程设计任务书 2011 ~2012 学年第 1 学期 学生姓名:专业班级:自动化 指导教师:工作部门:信息学院 一、课程设计题目水塔水位控制系统 二、课程设计内容: 1、硬件设计 (1)用80C51设计一个单片机最小控制系统。其中P1.0接水位下限传感器,P1.1接水位上限传感器,P1.2输出经反相器后接光电耦合器,通过继电器控制水泵工作,P1.3输出经反相器后接LED,当出现故障时LED闪烁;P1.4输出经反相器后接蜂鸣器,当出现故障时报警。 (2)用塑料尺、导线等设计一个水塔水位传感器。其中A电级置于水位10CM处,接5V电源的正极,B级置于水位15CM处,经4.7K下拉电阻接单片机的P1.0口,C 电级置于水位的20CM处,经4.7K下拉电阻接单片机的P1.1口。 (3)设计一个单片机至水泵的控制电路。要求单片机与水泵之间用反相器、光电耦合器和继电器控制,计算出LED限流电阻,接好继电器的续流二极管。 2、软件设计 (1)根据功能要求画出控制程序流程图。 (2)根据控制程序流程图编写80C51汇编语言或C51程序。 三、功能要求: 1、水塔水位下降至下限水位时,启动水泵,水塔水位上升至上限水位则关闭水泵。 2、水塔水位在上、下限水位之间时,水泵保持原状态。 3、供水系统出现故障时,自动报警。 四、调试 1、在Kerl-uvision上单步调试,观察累加器寄存器存储器的运行之间是否正常。 2、将程序下载到仿真仪上,进行模拟仿真,检查程序工作是否正常。 3、将模拟水塔、传感器、控制电路和水泵联成一个完整的系统,进行整机调试,观察系统工作是否正常。 撰搞人教研室主任院长 签名 日期2010.10.6

水塔水位 PLC课程设计

综合成绩优秀()良好()中等()及格() 不及格() 教师(签名) 批改日期年月日PLC 课程设计报告 院系电子与电气工程学院 专业电气工程及其自动化 班级电气1102学号 ******** 姓名 ****** 年月

水塔水位的PLC控制 一.控制要求 自来水供水系统中,修建了一些水塔,要求保证水塔水位在一定范围内变化,由5台水泵供水,当谁为低于下限(有一水位监测点,用开关模拟)时,增加供水水泵,当水位高于上限(有一水位监测点,用开关模拟)时,减少供水水泵。 1)起动按1-5号顺序起动,停止逆序,每台电动机采用Y/Δ起动,若增加一台水泵后,水位不够,在完全起动5秒后,下一台水泵起动,直至水位满足下限要求。 2)正常供水量最大时,只需4台水泵供水,第5台为备用泵。 3)为防止备用泵长期闲置而锈蚀,1、2号泵固定,3、4、5号泵固定时间更替编号(以3号泵的每次起动作更改)。 4)当某台电动机发生故障时,在工作顺序忠剔除此电机并重新为其他电机设定编号。 二.控制系统设计分析 (一)设计思路与步骤 1)顺序起动逆序停止、Y/Δ起动设计较为简单,凭经验设计 2)下上限的控制,可理解为下限控制顺序起动,上限控制逆序停止3)备用水泵的转换,可理解为345号水泵只用两个,有一个不用。可通过计数2号水泵打开次数来轮换备用水泵 4)水泵出现故障的切除,不能干扰其他水泵的正常运行,其实就是考虑下级水泵的依然能够运行的问题

(二)统计输入输出点数 序号元器件用途 1 SB1 控制电路供电 2 SB2 控制电路失电 3 SB3-SB7 上下限模拟开关 4 QS1-QS 5 1-5号水泵故障切除开关 5 KM1-KM15 1-5号水泵星三角起动 三.PLC系统硬件配置 槽号 1 2 3 4 5 6 模块选择PS307 5A CPU314- 2DP SM321 DI16*D C24V SM322 DO16*DC 24V/0.5A SM322 DO16*DC 24V/0.5A I/O 点 范围 I0.0~I1.7 Q4.0~Q7.7 Q8.0-Q9.7 四.主电路设计及说明 见附录1 五.输入输出点分配与接线图 元器件I/O口用途 SB1 I0.0 控制电路电源供电 SB2 I0.6 控制电路电源失电 SA1 I1.0 下限模拟开关 SA2 I1.1 上限模拟开关 SB3 I0.1 1号水泵故障切除 SB4 I0.2 2号水泵故障切除 SB5 I0.3 3号水泵故障切除 SB6 I0.4 4号水泵故障切除 SB7 I0.5 5号水泵故障切除

基于三菱PLC的水塔水位自动控制设计

电气工程学院 设计题目:水塔水位PLC自动控制系统 系别: 年级专业: 学号: 学生姓名: 指导教师:

电气工程学院《课程设计》任务书课程名称:电气控制与PLC课程设计 基层教学单位:电气工程及自动化系指导教师:

摘要 目前,大量的高位生活用水和工作用水逐渐增多。因此,不少单位自建水塔储水来解决高层楼房的用水问题。最初,大多用人工进行控制,由于人工无法每时每刻对水位进行准确的定位监测,很难准确控制水泵的起停。要么水泵关停过早,造成水塔缺水;要么关停过晚,造成水塔溢出,浪费水资源,给用户造成不便。利用人工控制水位会造成供水时有时无的不稳定供水情况。后来,使用水位控制装置使供水状况有了改变,但常使用浮标或机械水位控制装置,由于机械装置的故障多,可靠性差,给维修带来很大的麻烦。因此为更好的保证供水的稳定性和可靠性,传统的供水控制方法已难以满足现在的要求。 本文采用的是三菱FXZN型PLC可编程控制器作为水塔水位自动控制系统核心,对水塔水位自动控制系统的功能性进行了需求分析。主要实现方法是通过传感器检测水塔的实际水位,将水位具体信息传至PLC 构成的控制模块,来控制水泵电机的动作,同时显示水位具体信息,若水位低于或高于某个设定值时,就会发出危险报警的信号,最终实现对水塔水位的自动。 关键词:水位自动控制、三菱FX2N、水泵、传感器

目录 摘要 ............................................................................................................................................................................ I 目录 ........................................................................................................................................................................... I I 第一章绪论 (1) 1.1本课题的选题背景与意义 (1) 1.2可编程逻辑控制器简述 (1) 第二章水塔水位控制系统硬件设计 (2) 2.1基于PLC的水塔水位控制系统基本原理 (2) 2.2水塔水位控制系统要求 (3) 2.3水塔水位控制系统主电路设计 (4) 2.4 系统硬件元器件选择 (5) 2.5 I/O口的分配及PLC外围接线 (6) 第三章水塔水位系统的PLC软件设计 (10) 3.1 水位控制系统的流程图 (11) 3.2 PLC 控制梯形图 (12) 3.3 水位控制系统的具体工作过程 (20) 第四章总结 (21) 参考文献 (22)

水塔水位自动控制

实训三、水塔水位自动控制 一、实训目的 1、了解水塔水位自动控制工作原理。 2、掌握梯形图的编程方法和指令程序的编法。 3、掌握编程器的基本操作以及编程器的输入、检查、修改和运行操作。 二、实训器材 1、亚龙PLC主机单元一台。 2、亚龙PLC水塔水位自动控制单元一台。 3、计算机或编程器一台。 4、安全连线若干条。 5、PLC串口通讯线一条。 三、工作原理 水塔水位的工作方式: 当水池液面低于下限水位(S4为ON表示),电磁阀Y打开注水,S4为OFF,表示水位高于下限水位。当水池液面高于上限水位(S3为ON表示),电磁阀Y关闭。 当水塔水位低于下限水位(S2为ON表示),水泵M工作,向水塔供水,S2为OFF,表示水位高于下限水位。当水塔液面高于上限水位(S1为ON表示),水泵M停。 当水塔水位低于下限水位,同时水池水位也低于下限水位时,水泵M不启动。 四、I/O分配表 表3-1水塔水位自动控制的I/O分配表

水塔上限位S1 水塔下限位S2 水池上限位S3 水池下限位S4 电磁阀Y 水泵M I0.1 24V 12V FU I0.2 I0.3 I0.4 1M 2M Q0.1 Q0.2 1L CPU 226 CN 五、I/O接线 图3-1 水塔水位自动控制的I/O 接线 六、实训步骤 1、先将PLC 主机上的电源开关拨到关状态,严格按图3-2 所示接线,注意12V 和24V 电 源的正负不要短接,电路不要短路,否则会损坏PLC 触点。 2、将电源线插进PLC 主机表面的电源孔中,再将另一端插到220V 电源插板。 3、将PLC 主机上的电源开关拨到开状态,并且必须将PLC 串口置于STOP 状态,然后通 过计算机或编程器将程序下载到PLC 中,下载完后,再将PLC 串口置于RUN 状态。 4、接通2. 5、2. 6、2.7(2.4 不接通),否则无法正确运行演示程序。 5、按下列步骤进行实训操作: (1)拨下限开关S4,电磁阀Y 亮,下限开关S4 复位。 (2)拨上限开关S3,电磁阀Y 灭,上限开关S3 复位。 (3)拨下限开关S2,水泵M 亮,下限开关S2 复位。 (4)拨上限开关S1,水泵M 灭,上限开关S1 复位。 各种限位开关初始状态都是朝下。 七、实物接线图 图3-2 所示水塔水位自动控制接线图。 八、思考题 当水池水位低于下限水位(S4 为 ON),电磁阀 Y 应打开注水,若 3 秒内开关 S4 仍未由闭合转为分断,表明电磁阀 Y 未打开,出现故障,则指示灯 Y 闪烁报警。

水塔水位PLC自动控制系统

电气工程学院课程设计说明书 设计题目:水塔水位PLC自动控制系统系别:电气工程及其自动化 年级专业: 13级应电2班 组员:贾猛、孟令军、修圣虎、李晶指导教师:郭忠南

随着现代社会生产的发展和技术进步,现代工业自动化生产水平的日益提高,微电子技术的飞速发展,在继电器控制系统的基础上产生了一种新型的工 业控制装置——可编程控制器(PLC)。随着科技的发展和现实暴露的一些问题,以便能更快捷更方便的完成一些任务,在工农业生产过程中,经常需要对水位 进行测量和控制。水位控制在日常生活中应用也相当广泛,比如水塔、地下水、水电站等情况下的水位控制。而水位检测可以有多种实现方法,如机械控制、 逻辑电路控制、机电控制等。 本文采用PLC进行主控制,在水箱上安装一个自动测水位装置。利用水的 导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电 信号,主控台对接收到的信号进行数据处理,完成相应的水位显示、故障报警 信息显示、实时曲线和历史曲线的显示,使水位保持在适当的位置。 关键词:PLC(Programmable Logic Controller) 自动化水塔水位三菱PLC

第一章研究背景 (1) 1.1可编程控制器的产生及发展 (1) 1.2PLC的基本结构 (2) 1.3PLC的特点 (5) 1.4PLC的工作原理 (6) 1.5梯形图程序设计及工作过程分析 (8) 第二章水塔水位自动控制系统方案设计 (10) 第三章水塔水位自动控制系统硬件设计 (12) 3.1水塔水位控制系统设计要求 (12) 3.2水塔水位控制系统主电路 (12) 3.3水泵电机的选择 (13) 3.4水位传感器的选择 (13) 3.5可编程序控制器的选择 (14) 3.6PLC I/O口分配 (14) 3.7PLC控制电路原理图 (15) 第四章水塔水位自动控制系统软件设计 (17) 4.1程序流程图 (17) 4.2梯形图 (18) 第五章设计总结 (23)

单片机水位控制系统课程设计

课程设计(论文) 题目名称: 课程名称: 学生姓名: 学号: 学院: 指导教师:

课程设计任务书

目录 摘要 (4) 引言 (5) 1几种方案的比较 (6) 1.1 简单的机械式控制方式 (6) 1.2 复杂控制器控制方案 (6) 1.3通过水位变化上下限的控制方式 (6) 2水塔水位控制原理 (8) 3电路设计 (9) 3.1原件的介绍 (9) 3.2引脚功能 (10) 3.3 水位检测接口电路 (13) 3.4报警接口电路 (14) 3.5 存储器扩展接口电路.................. .. (14) 4系统软件设计 (15) 4.1 流程图 (15) 4.2程序 (16) 5实验仿真 (18) 6结语 (19)

7参考文献 (19) 摘要 随着微电子工业的迅速发展,单片机控制的智能型控制器广泛应用于电子产品中,为了使学生对单片机控制的智能型控制器有较深的了解。经过综合分析选择了由单片机控制的智能型液位控制器作为研究项目,通过训练充分激发学生分析问题、解决问题和综合应用所学知识的潜能。另外,水位控制在高层小区水塔水位控制,污水处理设备和有毒,腐蚀性液体液位控制中也被广泛应用。通过对模型的设计可很好的延伸到具体应用案例中。设计一种基于单片机水塔水位检测控制系统。该系统能实现水位检测、电机故障检测、处理和报警等功能,实现超高、低警戒水位报警,超高警戒水位处理。介绍电路接口原理图,给出相应的软件设计流程图和汇编程序,并用Proteus软件仿真。实验结果表明,该系统具有良好的检测控制功能,可移植性和扩展性强。 关键词:单片机;水位检测;控制系统;仿真

水塔水位课程设计

吉林建筑大学城建学院电气信息工程系课程设计 目录 第1章绪论 (1) 第2章水塔水位控制系统的组态设计 (2) 2.1 组态软件概述 (2) 2.2 组态软件在我国的发展 (2) 2.3 组态软件的功能特点发展方向 (3) 第3章水塔水位控制系统方案设计 (4) 3.1 传统水塔水位控制 (4) 3.1.1 工作原理 (4) 3.1.2 外部接线与控制列表 (4) 3.2 PID水塔水位控制系统的工作原理 (6) 3.2.1 设计分析 (6) 3.2.2 可行性试验 (7) 3.2.3 可行性分析 (7) 3.3 水位闭环控制系统 (8) 第4章组态王水塔水位控制系统建模与分析 (10) 第5章系统硬件开发设计 (12) 5.1 可编程控制器的选型 (12) 5.2 EM235模拟量模块 (13) 5.3 硬件连接图 (15) 5.4 控制系统I/O地址分配 (15) 总结 (16) 致谢 (16) 参考文献 (18)

吉林建筑大学城建学院电气信息工程系课程设计 第一章绪论 组态”的概念是伴随着集散型控制系(简称DCS)的出现才开始被广大的生产过程自动化技术人员所熟知的。在工业控制技术的不断发展和应用过程中,PC(包括工控机)相比以前的专用系统具有的优势日趋明显。这些优势主要体现在:PC技术保持了较快的发展速度,各种相关技术已臻成熟;由PC构建的工业控制系统具有相对较低的拥有成本;PC的软件资源和硬件资丰富,软件之间的互操作性强;基于PC的控制系统易于学习和使用,可以容易地得到技术方面的支持。在PC技术向工业控制领域的渗透中,组态软件占据着非常特殊而且重要的地位。 组态软件是指一些数据采集与过程控制的专用软件,它们是在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能的、通用层次的软件工具。组态软件应该能支持各种工控设备和常见的通信协议,并且通常应提供分布式数据管理和网络功能。对应于原有的HMI(人机接口软件,HumanMachineInterface)的概念,组态软件应该是一个使用户能快速建立自己的HMI的软件工具,或开发环境。在组态软件出现之前,工控领域的用户通过手工或委托第三方编写HMI应用,开发时间长,效率低,可靠性差;或者购买专用的工控系统,通常是封闭的系统,选择余地小,往往不能满足需求,很难与外界进行数据交互,升级和增加功能都受到严重的限制。组态软件的出现,把用户从这些困境中解脱出来,可以利用组态软件的功能,构建一套最适合自己的应用系统。随着它的快速发展,实时数据库、实时控制、SCADA、通讯及联网、开放数据接口、对I/O设备的广泛支持已经成为它的主要内容,随着技术的发展,监控组态软件将会不断被赋予新的内容。

西门子S7-200系列PLC控制水塔水位(含程序)

一、水塔水位 1、系统描述及控制要求 1.1 国内外发展现状调查 1.1.1 PLC及西门子S7-200系列PLC介绍 20世纪70年代初出现了微处理器。人们很快将其引入可编程逻辑控制器,使可编程逻辑控制器增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。此时的可编程逻辑控制器为微机技术和继电器常规控制概念相结合的产物。个人计算机发展起来后,为了方便和反映可编程控制器的功能特点,可编程逻辑控制器定名为Programmable Logic Controller(PLC)。 20世纪70年代中末期,可编程逻辑控制器进入实用化发展阶段,计算机技术已全面引入可编程控制器中,使其功能发生了飞跃。更高的运算速度、超小型体积、更可靠的工业抗干扰设计、模拟量运算、PID功能及极高的性价比奠定了它在现代工业中的地位。 20世纪80年代初,可编程逻辑控制器在先进工业国家中已获得广泛应用。世界上生产可编程控制器的国家日益增多,产量日益上升。这标志着可编程控制器已步入成熟阶段。 20世纪80年代至90年代中期,是可编程逻辑控制器发展最快的时期,年增长率一直保持为30~40%。在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,可编程逻辑控制器逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。 20世纪末期,可编程逻辑控制器的发展特点是更加适应于现代工业的需要。这个时期发展了大型机和超小型机、诞生了各种各样的特殊功能单元、生产了各种人机界面单元、通信单元,使应用可编程逻辑控制器的工业控制设备的配套更加容易。 西门子S7-200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测及控制的自动化。S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。因此S7-200系列具有极高的性能/价格比。 西门子S7-200系列在集散自动化系统中充分发挥其强大功能。使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制。应用领域极为广泛,覆盖所有与自动检测,自动化控制有关的工业及民用领域,包括各种机床、机械、电力设施、民用设施、环境保护设备等等。如:冲压机床,磨床,印刷机械,橡胶化工机械,中央空调,电梯控制,运动系统。

电子课程设计-水位测量电路设计要点

郑州轻工业学院 课程设计说明书题目:水位检测电路设计 姓名: 院(系): 专业班级: 学号: 指导教师: 成绩: 时间:2013年06 月03 日至2013 年06 月17 日

郑州轻工业学院 课程设计任务书 题目:水位检测电路设计 专业班级:电子科学与技术10-1班姓名: 学号: 主要内容、基本要求、主要参考资料等: 报警电路在人们的生产生活中有着重要作用。水位检测是自然界和一般工业界不可缺少的一种检测系统。本设计主要实现以下功能。 1.利用LED指示灯显示水位(最低水位、1/4、1/2、3/4、最高水位)。 2.达到最高水位时,自动报警。 参考文献: [1] 张毅.自动检测技术及仪表控制系统. 北京: 化学工业出 社,2004.11 [2] 金伟. 现代检测技术. 北京: 北京邮电大学出版社, 2006.2 [3] 王兆安. 电力电子技术.北京: 机械工业出版社, 2006.5 完成期限:2013.06.03-2013.06.17_ 指导教师签名:张晓冬 课程负责人签名:杨坤 2013年06月01日

目录 1概述 (2) 1.1检测技术 (2) 1.2水位检测技术的应用与发展 (2) 1.3水位检测系统设计的意义 (3) 2系统方案设计 (3) 2.1设计方案 (3) 2.1.1硬件电路图 (3) 2.1.2硬件设计原理 (4) 2.2整流电路的设计 (4) 3元器件的介绍与参数计算 (5) 3.1发光二极管 (5) 3.2电阻 (7) 3.3三极管 (7) 3.4蜂鸣报警器 (7) 3.5整流二极管 (8) 3.6变压器 (8) 4 硬件焊接 (9) 5 AltiumDesigner电路设计 (12) 6结论 (13) 参考文献 (14) 附录元器件清单 (15)

plc课程设计(水塔水位控制模拟)

成绩: 可编程控制器原理及应用课程设计报告 设计题目:水塔水位控制模拟 学生姓名:黄博新 班级:机械电子工程082 学号:200810834209 指导老师:刘芹 设计时间:2011.01

目录 1. 系统描述及控制要求 (3) 1.1 系统描述 (3) 1.2 控制要求 (3) 2. 控制系统分析与实现 (4) 2.1 I/O分配表 (4) 2.2 I/O接线图 (4) 2.3 流程图 (5) 2.4 梯形图和指令表 (6) 2.5 程序仿真........................................ 错误!未定义书签。 2.6 程序调试 (8) 2.7时序图 (12) 3. 心得体会 ............................. 错误!未定义书签。 4. 参考文献 ............................. 错误!未定义书签。

1系统描述及控制要求 1.1系统功能描述 在水塔水位控制实验区完成本课程设计,当水池水位低于水池低水位界(S4为ON 表示),阀Y打开进水(Y为ON)定时器开始定时,4秒后,如果S4还不为OFF,那么阀Y指示灯闪烁,表示阀Y没有进水,出现故障,S3为ON后,阀Y关闭(Y为OFF)。当S4为OFF时,且水塔水位低于水塔低水位界时S2为ON,电机M运转抽水。当水塔水位高于水塔高水位界时电机M停止。 面板中S1表示水塔的水位上限,S2表示水塔水位下限,S3表示水池水位上限,S4表示水池水位下限,M1为抽水电机,Y为水阀。 图1 S1表示水塔的水位上限,S2表示水塔水位下限,S3表示水池水位上限,S4表示水池水位下限,M为抽水电机,Y为水阀。 1.2控制要求 (1) S4为ON时,Y灯亮,四秒后,Y灯闪烁,闪烁频率为0.5秒,其中:四秒延时用定时器T2控制,0.5秒闪烁用定时器T1控制 (2) S3为ON时,Y灯熄灭 (3) S4为OFF且S2为ON时,M灯亮 (4) S1为ON时,M灯熄灭

基于单片机的水位控制系统设计

单片机原理及系统课程设计 专业:自动化 班级:自动化1201 姓名: 王文玉 学号:201209005 指导教师:苟军年 兰州交通大学自动化与电气工程学院 2014年12月12日

基于单片机的水位控制系统设计 1 引言 单片机课程的学习,不仅要在课本上学到知识,更要在实际中得到锻炼。我认为要学好单片机这门课程,更重要的是要学会通过实践巩固学到的知识,只有把学到的知识通过实践不断体会理解,才能更好的掌握这门课程。本次课程设计我选择制作的题目是基于单片机的水位控制系统的设计,在此次课程设计中主要以水塔供水为例,进行设计介绍。该系统能实现水位检测、电机故障检测、处理和报警等功能,实现超高、低警戒水位报警,超高警戒水位处理。介绍电路接口原理图,给出相应的软件设计流程图和C语言程序,并用Proteus软件仿真。 1.1 设计背景 水位控制系统是现今生活和工业一种比较实用的系统,其应用范围广泛,主要涉及水塔、水库和锅炉水位的控制等领域。以水塔供水为例,供水的主要问题是塔内水位应始终保持在一定范围,避免“空塔”、“溢塔”现象发生。目前,控制水塔水位方法较多,其中较为常用的是由单片机控制实现自动运行,使水塔内水位保持恒定,以保证连续正常地供水。实际供水过程中要确保水位在允许的范围内浮动,应采用电压控制水位,通过实时检测电压,测量水位变化,从而控制电动机工作状态,保证水位在正常范围内。 2 设计方案及原理 2.1通过水位变化上下限的控制方式 这种控制方式通过在水塔的不同高度固定不动的3根金属棒ABC,以感知水位的变化情况。A棒接+5V电源,B棒﹑C棒各通过一个电阻与地相连。利用51单片机为控制核心,设计成一个对供水箱水位能自动进行检测控制的系统。如果水塔水位处于警界低水位状态时,启动水泵,水泵开始正转,开始向水塔供水;如果水塔水位处于正常水位状态时,水泵停止工作,水泵停转;如果水塔水位处于警界高水位状态时,启动水泵,水泵开始反转,开始从水塔排水;供水系统出现故障时,自动报警;故障解除时,水泵恢复正常工作。 2.2水塔水位控制原理 在水塔内的不同高度处,安装固定不变的3根金属棒A、B、C,用以反映水

课程设计-单片机水塔水位控制[1]讲解

目录 第一章系统整体设计说明 (1) 第二章整体设计方案 (2) 第三章设计系统方框图与工作原理 (3) 3.1工作原理: (3) 3.2系统结构框图: (4) 第四章硬件设计及说明 (5) 4.1硬件设计说明: (5) 4.2水位控制硬件设计: (5) 4.3故障及水质监测硬件设计: (6) 4.4 水位显示硬件设计原理图: (7) 第五章软件设计与说明(包括流程图) (8) 5.1 软件设计: (8) 5.2 软件设计流程图: (10) 第六章调试步骤、使用说明 (12) 第七章设计总结 (13) 参考文献 (14) 附录 (14)

第一章系统整体设计说明 现代传感技术、电子技术、计算机技术、自动控制技术、信息处理技术和新工艺、新材料的发展为智能检测系统的发展带来了前所未有的奇迹。在工业、国防、科研等许多应用领域,智能检测系统正发挥着越来越大的作用。检测设备就像神经和感官,源源不断地向人类提供宏观与微观世界的种种信息,成为人们认识自然、改造自然的有力工具。现代的广义智能检测系统应包括一切以计算机(单片机、PC机、工控机、系统机)为信息处理核心的检测设备。因此,智能检测系统包括了信息获取、信息传送、信息处理和信息输出等多个硬、软件环节。从某种程度上来说,智能检测系统的发展水平表现了一个国家的科技和设计水平。 本课题研究的内容是“水塔水位控制系统”。水位控制在日常生活及工业领域中应用相当广泛,而以往水位的检测是由人工完成的,值班人员全天候地对水位的变化进行监测,用有线电话及时把水位变化情况报知主控室。然后主控室再开动电机进行给排水。很显然上述重复性的工作无论从人员、时间和资金上都将造成很大的浪费。同时也容易出差错。因此急需一种能自动检测水位,并根据水位变化的情况自动调节的自动控制系统,我所设计的就是这方面的课题。 水位检测可以有多种实现方法,如机械控制、逻辑电路控制、机电控制等。本设计采用单片机进行主控制,在水水塔上安装一个自动测水位装置。利用水的导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电信号,主控台应用单片微机对接收到的信号进行数据处理,完成相应的水位显示、控制及故障报警及显示水位等功能。

PLC水塔水位控制实验报告

中国矿业大学机电学院 机电综合实验中心实验报告 课程名称机电综合实验 实验名称水塔水位控制模拟系统 实验日期2016、11、20 实验成绩 指导教师 第一章绪论 1、1实验目得 学会使用组态软件(推荐选用组态王软件)与PLC(推荐选用SIMEINS S7-2 00)控制系统连接,采用下位机执行,上位机监视控制得方法,构建完成水塔水位 自动控制系统。 1、2实验要求 (1)阅读本实验参考资料及有关图样,了解一般控制装置得设计原则、方法与步 骤。 (2)调研当今电气控制领域得新技术、新产品、新动向,用于指导设计过程,使设 计成果具有先进与创造性。 (3)认真阅读实验要求,分析并进行流程分析,画出流程图。 (4)应用PLC设计控制装置得控制程序。 (5)设计电气控制装置得照明、指示及报警等辅助电路。 (6)绘制正式图样,要求用计算机绘图软件绘制电气控制电路图,用STEP

7-Micro/Win32编程软件编写梯形图。 1、3 实验内容 (1)当水池水位低于水池低水位界(S4为ON表示),阀Y打开进水(Y为ON)定时器开始定时; (2)阀Y打开4秒后,如果S4还不为OFF,那么阀Y指示灯闪烁,表示阀Y没有进水,出现故障; (3)S3为ON后,阀Y关闭(Y为OFF)。当S4为OFF时,且水塔水位低于水塔低水位界时S2为ON,电机M运转抽水。当水塔水位高于水塔高水位界时电机M停止。 1、4课程设计器材: (1)TKPLC-1型实验装置一台 (2)安装了STEP7-Micro/WIN32编程软件与组态软件得计算机一台。 (3)PC/PPI编程电缆一根。 (4)连接导线若干。 1、5 PLC得介绍 可编程逻辑控制器(ProgrammableLogic Controller,PLC),它采用一类可编程得存储器,用于其内部存储程序,执行逻辑运算、顺序控制、定时、计数与算术操作等面向用户得指令,并通过数字或模拟式输入/输出控制各种类型得机械或生产过程。 1、5、1基本结构 PLC实质就是一种专用于工业控制得计算机,其硬件结构基本上与微型计算机相同,如图所示: 1、5、2 PLC得特点

毕业设计 水塔水位自动控制系统 -(DOC)

摘要 供水是一个关系国计民生的重要产业。随着社会的发展和人民生活水平的提高,对城市供水提出了更高的要求,要满足及时、准确、安全保证充足供水,如果仍然沿用人工方式,劳动强度大,工作效率低,安全性难以保障,为此必须进行水塔水位控制自动化系统的改造。可编程控制器( PLC) 因其高可靠性和较高的性价比在工业控制中得到广泛的应用。本文针对目前比较流行的控制技术,利用PLC和传感器构成了水塔水位恒的控制系统。改造后的水塔水位自控系统,实现水塔水位自动控制系统,远程监控,实现无人值守。 关键词: 可编程逻辑控制器(PLC)水塔水位自动控制

Abstract Water supply is a major industry involving the interests of the state and the people. With development of society and the improvement of the people's livelihood, city water supply has been brought forward a higher request. It needed to be timely , accurate and safely to plentifully conduct water supply. If we still continue to use a way of the man-power, the intensity of labor are high , availability is low and the security is difficult to ensure .We must carry out water tower water level under the control of automatic system reforming for this purpose . Programmable Logic Controller (PLC) is applied broadly in industrial control because of high reliability and higher nature price. The main body of this paper on the control technology is aimed at being popular for at present comparatively, which makes the using of PLC and the sensor to compose water tower control system of permanent water level. Water tower control system after being reformed have realized water tower water level auto-controlling system , long-range supervisory control, and nobody's value guards realization. Key wards:Programmable Logic Controller. water pool water lever. automatically controls

水塔自动上水课程设计

目录 一、设计目的 (1) 二、设计要求 (1) 三、设计方案 (1) 四、设计组成及原理分析 (4) 五、元器件的选用及其参数 (12) 六、设计总结 (12) 七、参考文献 (14)

一、设计目的 本课程设计是在前导验证性认知实验基础上,进行更高层次的命题设计实验,要求学生在教师指导下独立查阅资料、设计、安装和调试特定功能的电子电路。培养学生利用模拟、数字电路知识,解决电子线路中常见实际问题的能力,使学生积累实际电子制作经验,目的在于巩固基础、注重设计、培养技能、追求创新、走向实用。 二、设计要求 1)设计制作一个带保护装置的水塔自动进水逻辑电路。 2)要求有水满、进水、水量不足指示,当水位低时要自动进水,满时要及时断电停水,水位过低时能停止出水。 三、设计方案 1.设计方案分析 每部分电路都有其相应功能:首先有信号产生部分产生整个电路的输入信号,该信号经过信号处理之后,输出其他电路的控制信号,控制其他电路工作,电机控制电路部分接收到有信号处理电路输出的有效控制信号后正常工作驱动电机转动抽水,使水位上升,而水位的变化又直接关系到信号的产生,因此有个循环的过程,即使水位保持在一定范围内,水位显示电路接收到有效信号后驱动显示器工作,使其显示该时刻的水位;水位超限时输出为电机停止的有效控制信号使

上水电路停止工作。由“信号产生→信号处理→电机控制→水位变化→信号产生”这个循环就能使水塔具有自动控制水位的能力。 方案一、 通过NE555接成施密特触发电路,利用v1-v0电压传输特性就可以达到水塔自动进水,不会产生水满而溢出的目的。 自动进水:当水位下降低于A点时,A点悬空。IC的2脚低于1/3Vcc,其3脚输出高电平,水塔被启动,水位逐渐上升。 中间保持:当水位上升到A点到B点之间时,此时P点电位控制在1/2Vcc左右,触发器保持原来的状态不变。因为此时电路不工作,所以水位一直保持在A点与C点之间,不再上升。 停止进水:当水位达到C时,此时输出信号V0变为低电平,致使后续电机上水电路不工作。 以上过程形成循环,在正常情况下一直保持水塔水位大于下限水位。

(完整版)新基于51单片机的水塔水位检测课程设计

目录 第1章绪论.................................................3 1.1 概述...................................................3 1.2设计要求及意义...........................................3第2章总体方案论证与设计...................................5 2.1总体设计方案............................................5 2.2设计要求及意义...........................................5第3章系统硬件设计.........................................6 3.1总体设计方案............................................6 3.2系统组成................................................6 3.3 ADC0808的简要介绍.......................................7 3.4水位监测电路.............................................8第4章系统的软件设计.......................................11 4.1水位控制程序............................................11 4.2水质检测程序............................................12 4.3 使用说明与注意事项.......................................14第5章系统调试与测试结果分析...............................16 5.1 软件测试.......................................................16 5.2 硬件测试.......................................................16结论........................................................17 参考文献....................................................18 附录1 程序..................................................19 附录2 仿真效果图............................................23

水位自动控制电路

**大学信息学院 数字电路课程设计报告 题目:水位自动控制电路 专业、班级:电子信息科学与技术 学生姓名: 学号: 指导教师:

指导教师评语: 成绩: 教师签名:

一.任务书 二.目录 目录 1 设计目的 (4) 2 设计目的要求 (4) 3 设计方案选取与论证 (4) 4 仿真过程及结果 (5) 1 设计思路 (6) 2 现有设计方案 (6) 3 总体设计框图 (7) 5 结论故障分析及解决 (14) 6 参考文献 (15) 附录 (16)

三.内容 1. 设计目的 通过这次设计熟练对电子设计的动手技能,,提高电子设计的能力,同时也培养学生收集、整理、分析和刷选利用资料及各类信息的能力,也使得学生通过这次的设计对所学的数电和模电知识及各种电路、电路元件的功能更好的理解和运用。 2. 设计任务要求 功能:1、当水位低于最低点时,电路能自动加水。 2、当高于最高点时,电路能自动停水。 3、该电路的直流电源自行设计。(可采用W78××系列) 要求:1、选择适当的元器件,设计该电路。以实现上述功能。 2、利用Proteus绘制其电路原理图并进行仿真。 3. 设计方案选取与论证 3.1设计方案的选取: (1)继电器式自动上水控制装置 继电器式水位控制装置工作原理是通过接入220V继电器控制电路的3个探测电极来检测水位高低,使继电器闭合或开启,控制水泵电动机的开停,达到控制水位的目的,控制电路较简单,但要注意以下几点: 1)在维修水塔中的水位探测电极时,须断开主回路和控制回路电源开 来使N线带电,造成维修人员的触电危险。 2)在水塔的低水位探测电极C的引线端,必须进行N线的重复接地。接地电阻要求小于4Ω,使C点水位探测电极保持良好的零电位,以利于继电器的可靠吸合,使自控电路运行稳定。 3)在水泵向水塔供水时,由于水流的冲击,使水塔内的水位波动起伏,容易导致继电器吸合、断开的频繁跳动,影响自控电路的正常稳定运行。

水塔液位控制系统课程设计

水塔液位控制系统课程设计

集美大学 机制专业课程设计论文 (机电方向) 基于FX1N– 60MR可编程控制器的水塔液位控制系统 专业:机械设计制造及其自动化(09级) 姓名:陈剑民 班级:机械0995(机电方向) 学号:2009934139 指导教师:弓清忠雷慧

集美大学机械专业(机电方向)课程设计任务书 姓名:陈剑民院(系):集美大学诚毅学院 专业:机械工程及其自动化班级学号:机械0995班2009934151 任务起至日期:2012 年12 月 3 日至2012 年12 月21 日 课程设计题目: 基于FX1N– 60MR可编程控制器的自动售货机控制系统 立题的目的和意义: 现代制造业要求生产设备和自动化生产线的控制系统必须具备极高的可靠性和灵活性,可编程控制器正是顺应这一要求出现的。它已经成为当代工业自动化的三大支柱之一。《可编程控制器原理及其应用》课程是培养学生具有机电一体化设计能力的技术基础课,其专业课程设计是本课程的重要实践环节,是本专业方向第一次较全面的设计训练。专业课程设计要达到的如下主要目的: 1)培养学生综合运用本课程及其它有关先修课程的知识,去分析、解决实际工程问题的能力,深化、扩展本课程的理论知识; 2)能够对原有的继电器接触控制系统进行改造和设计新的控制系统; 3)使学生掌握可编程控制器系统设计的一般方法和步骤,培养学生独立的工程设计能力,树立正确的设计思想,为今后工作打下良好的本专业工程基础。 通过绘制完整的电器原理图,端子接线图,控制流程图,编制相应程序,进行系统调试等环节,掌握PLC系统软、硬件设计方法,了解这项技术的最新发展动态,熟悉国家标准,培养学生的基本技能,从而为接下来的毕业设计打下良好的

水塔水位控制报告

水塔水位控制报告 班级: 姓名: 学号: 指导教师: 评语:平时(40)修改(30)报告(30)总成绩兰州交通大学自动化与电气工程学院xx年7月1日1引言该设计是针对水塔水位控制系统的要求所做。随着社会的发展,科技的进步以及人们生活水平的逐步提高,各种方便与生活的自动控制系统开始进入了我们的生活,单片机作为微型计算机发展的一个重要分支,具有高可靠性、高性能价格比、低电压、低功耗等优势,以其为核心的自动控制系统赢得了广泛的应用。该课程设计的题目是基于单片机的水塔水位控制,其目的重在于单片机技术的应用,由单片机实现自动运行,使水塔内水位始终保持在一定范围,以保证连续正常地供水。该课程设计给出以AT89C51单片机为核心器件的水塔水位检测控制系统仿真设计,实现水位的检测控制、处理和报警等功能,并在Proteus软件环境下实际仿真。实验结果表明,该系统具有良好的检测控制功能,可移植性和扩展性好。在此水塔水位控制系统中,单片机充当着主要的角色。它控制整个系统的运行,可以完成水位高低的控制。检测信号来自插入水中的3个金属棒,以感知水位变化情况。工作正常情况下,应保

持水位在某一范围内,当水位变化发生故障的时候,及时关断电机电源,发出声、光报警信号。2设计方案及原理2、1设计原理单片机水塔水位控制原理如图2、1所示,图中虚线表示容许水位变化的上下线,在正常情况下,应保持水位在虚线范围之内。其中A棒处于下限水位,C棒处于上限水位,B棒在上下水位之间。A棒接+5V电源,B棒、C棒各通过一个电阻与地相连。水塔由电机带动水泵供水,单片机控制电机转动以达到对水位控制之目的。供水时,水位上升,当达到上限时,由于水的导电作用, B、C棒连通+5V。因此,b、c两端均为1状态,这时应停止电机和水泵的工作,不再给水塔供水。 当水位处于上下限之间时,B棒与A棒导通。因C棒不能与A 棒导通,b端为1状态,c端为0状态。这时,无论是电机已在带动水泵给水塔加水,水位在不断上升;或者是电机没有工作,用水使水位在不断下降。都应继续维持原有的工作状态。 当水位降到下限时,B,C棒都不能与A棒导电,因此,b,c 两端均为0状态。这时应启动电机,带动水泵工作,给水塔供水。 图2、1 水塔水位控制原理图3设计方案本设计为一个实际应用系统的水塔水位控制部分。在此水塔水位控制系统中,检测信号来自插入水中的3个金属棒,以感知水位变化情况。工作正常情况下,应保持水位在某一范围内,当水位变化发生故障的时候,及时关断电机电源,发出声、光报警信号。

相关文档
最新文档