直线与圆的位置关系、圆于圆位置关系基础训练
直线与圆的位置关系经典例题

直线与圆的位置关系经典例题一、点与圆的位置关系结合图形认识直线与圆的位置关系,比较OA 与r 的大小关系若点A 在⊙O 内OA r 若点A 在⊙O 上OA r 若点A 在⊙O 外OA r小练习:1.在△ABC 中,90C ∠=︒,AC=2,BC=4,如果以点A 为圆心,AC 为半径作⊙A,那么斜边中点D 与⊙A 的位置关系是()(A)D 在圆外(B)D 在圆上(C)D 在圆内(D)无法确定二、直线与圆的位置关系(1)实验创境:用移动的观点认识如果我们把太阳看作一个圆,那么太阳在升起的过程中,太阳和海平面就有图中的几种位置关系。
(可让学生用硬币自己操作演示)根据直线与圆公共点的个数可以得到三种位置关系:、、。
(2)用数量关系判断从以上的一个例子,可以看到,直线与圆的位置关系只有以下三种,如下图所示:若要判断圆与直线的位置关系,可以将______与_____进行比较大小,由比较的结果得出结论。
典型例题:例1、已知圆的半径等于5厘米,圆心到直线MN 的距离是:(1)4厘米;(2)5厘米;(3)6厘米。
分别说出直线MN 与圆的位置关系以及直线MN 和圆分别有几个公共点?例2.Rt △ABC 中,∠C=90°,AC=3,BC=4,若以C 为圆心,r 为半径作圆,当3,4.2,2===r r r 时,⊙C 与直线AB 分别是怎样的位置关系?★①直线l 和⊙O 相交d r ②直线l 和⊙O 相切d r ③直线l 和⊙O 相离d r1、如果⊙O 的直径为10厘米,圆心O 到直线AB 的距离为10厘米,那么⊙O 与直线AB有怎样的位置关系是2、已知:⊙A 的直径为6,点A 的坐标为)4,3(--,则⊙A 与x 轴的位置关系是;⊙A 与y 轴的位置关系是。
三、切线的判定实验探究:在练习纸上画⊙O ,在⊙O 上任取一点A ,连结OA ,过A 点作直线l ⊥OA ,判断直线l 是否与⊙O 相切?为什么?当直线和圆有唯一公共点时,直线是圆的切线;当直线和圆的距离等于该圆半径时,直线是圆的切线;那么,直接从直线和圆的位置上观察,具备什么条件的直线也是圆的切线呢?两个条件缺一不可(1)经过半径外端(2)垂直于这条半径切线判定定理:经过直径外端并且于这条直径的直线是圆的切线。
24.2点、直线、圆与圆的位置关系 知识点+例题+练习(精品)

1.点和圆的位置关系(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r②点P在圆上⇔d=r①点P在圆内⇔d<r(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)概念说明:①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(3)切线性质的运用由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(2)在应用判定定理时注意:①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)切线长定理包含着一些隐含结论:①垂直关系三处;②全等关系三对;③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.注意:在习题中常常通过公共弦在两圆之间建立联系.(2)两圆的公切线性质:两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB的延长线上,且有∠BAP=∠BDA.求证:AP是半圆O的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足O O2O1为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 604. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.O D C B A第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长.【中考连接】一、选择题1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.32.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335B. 635 C. 10 D. 5 4. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 26 5.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.B P A OC 第3题图 第6题图 第7题图 第8题图7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________. 8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x=图象上,则阴影部分面积等于 . 14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______. 15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由.19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=.(1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的第10题图 第11题图 第12题图 第13题图 第18题图长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S △△时,求动点M 所经过的弧长.。
直线与圆的位置关系(基础篇)-2022-2023学年九年级数学下册基础知识专项讲练

专题2.2 直线与圆的位置关系(基础篇)(专项练习)一、单选题1.已知⊙O 半径为5,点O 到直线l 的距离为3,则直线l 与⊙O 有公共点( ). A .0个B .1个C .2个D .无法确定2.在平面直角坐标系中,以点(2,3)为圆心,3为半径的圆,一定( ) A .与x 轴相切,与y 轴相切 B .与x 轴相切,与y 轴相交 C .与x 轴相交,与y 轴相切D .与x 轴相交,与y 轴相交3.如图,在平面直角坐标系中,以1.5为半径的圆的圆心P 的坐标为(0,2),将P 沿y 轴负方向平移1.5个单位长度,则x 轴与P 的位置关系是( )A .相交B .相切C .相离D .无法确定4.如图,已知Rt ABC ∆中,90C ∠=,3AC =,4BC =,如果以点C 为圆心的圆与斜边AB 有公共点,那么⊙C 的半径r 的取值范围是( )A .1205r ≤≤B .1235r ≤≤ C .1245r ≤≤ D .34r ≤≤5.如图,OA 是⊙О的一条半径,点P 是OA 延长线上一点,过点P 作⊙O 的切线PB ,点B 为切点. 若P A =1,PB =2,则半径OA 的长为( )A.43B.32C.85D.36.已知O的半径为5,直线AB与O有交点,则圆心O到直线AB的距离可能为().A.4.5B.5.5C.6D.77.O的圆心到直线a的距离为3cm,O的半径为1cm,将直线a向垂直于a的方向平移,使a与O相切,则平移的距离是()A.1cm B.2cm C.4cm D.2cm或4cm8.如图,点A的坐标为(-3,-2),⊙A的半径为1,P为坐标轴上一动点,PQ切⊙A 于点Q,在所有P点中,使得PQ长最小时,点P的坐标为()A.(0,-2)B.(0,-3)C.(-3,0)或(0,-2)D.(-3,0)9.如图,在半径为5cm的⊙O中,直线l交⊙O于A、B两点,且弦AB=8cm,要使直线l与⊙O相切,则需要将直线l向下平移()A.1cm B.2cm C.3cm D.4cm10.如图,直线a⊙b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,以O为圆心1cm为半径作圆,当O从点P出发以2 cm/s速度向右作匀速运动,经过t s与直线a 相切,则t 为( )A .2sB .32s 或2sC .2s 或52sD .32s 或52s二、填空题11.如图,⊙O 的半径OC =10cm ,直线l ⊙OC ,垂足为H ,且l 交⊙O 于A ,B 两点,AB =16cm ,则l 沿OC 所在直线向下平移_________cm 时与⊙O 相切.12.如图,直线AB ,CD 相交于点O ,30AOC ∠=︒,圆P 的半径为1cm ,动点P 在直线AB 上从点O 左侧且距离O 点6cm 处,以1cm/s 的速度向右运动,当圆P 与直线CD 相切时,圆心P 的运动时间为 _____s .13.已知Rt △ABC 中,AC =3,BC =4,以C 为圆心,以r 为半径作圆.若此圆与线段AB 只有一个交点,则r 的取值范围为_____.14.在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,若以点C 为圆心,r 为半径的圆与边AB 所在直线相离,则r 的取值范围为 _____;若⊙C 与AB 边只有一个有公共点,则r 的取值范围为 _____.15.如图,半径为5个单位的⊙A 与x 轴、y 轴都相切;现将⊙A 沿y 轴向下平移 ___个单位后圆与x 轴交于点(2,0).16.已知O 的半径为10,直线AB 与O 相交,则圆心O 到直线AB 距离d 的取值范围是______.17.如图,在直线l 上有相距7cm 的两点A 和O (点A 在点O 的右侧),以O 为圆心作半径为1cm 的圆,过点A 作直线AB ⊙l .将⊙O 以2cm/s 的速度向右移动(点O 始终在直线l 上),则⊙O 与直线AB 在_____秒时相切.18.如图,已知在平面直角坐标系中,半径为2的圆的圆心坐标为(3,-3),当该圆向上平移________个单位时,它与x 轴相切.三、解答题19.在Rt ABC 中,90C ∠=︒,4BC =,3AC =, (1)斜边AB 上的高为________; (2)以点C 为圆心,r 为半径作⊙C⊙若直线AB 与⊙C 没有公共点,直接写出r 的取值范围; ⊙若边AB 与⊙C 有两个公共点,直接写出r 的取值范围; ⊙若边AB 与⊙C 只有一个公共点,直接写出r 的取值范围.20.如图,O的半径是5,点A在O上.P是O所在平面内一点,且2AP=,过⊥.点P作直线l,使l PA(1)点O到直线l距离的最大值为;(2)若M,N是直线l与O的公共点,则当线段MN的长度最大时,OP的长为.21.如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:⊙以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;⊙根据图形提供的信息,在图中标出该圆弧所在圆的圆心D.(2)请在(1)的基础上,完成下列填空:⊙写出点的坐标:D();⊙⊙D的半径= (结果保留根号);⊙利用网格试在图中找出格点E ,使得直线EC与⊙D相切(写出所有可能的结果).22.如图,已知⊙O的半径为5cm,点O到直线l的距离OP为7cm.(1)怎样平移直线l,才能使l与⊙O相切?(2)要使直线l与⊙O相交,设把直线l向上平移xcm,求x的取值范围23.如图,在平面直角坐标系中,O的半径为1,则直线25=-O的位置关y x系怎样?24.如图,30OM=,以M为圆心,r为半径作圆.AOB︒∠=,点M在OB上,且5cm(1)讨论射线OA 与M 公共点个数,并写出r 对应的取值范围;(2)若C 是OA 上一点,53cm OC =,当5cm r >时,求线段OC 与M 的公共点个数.参考答案1.C【分析】根据⊙O半径为5,点O到直线l的距离为3得到直线l与⊙O相交,即可判断出直线l 与⊙O有两个公共点.解:⊙⊙O半径为5,点O到直线l的距离为3,⊙d<r,⊙直线l与⊙O相交,⊙直线l与⊙O有两个公共点.故选:C【点拨】本题考查了直线与圆的位置关系,能根据圆心到直线的距离d与圆的半径r关系判断位置关系是解题关键.当d>r时,直线与圆相离,没有公共点,当d=r时,直线与圆相切,有一个公共点,当d<r时,直线与圆相交,有两个公共点.2.B【分析】由已知点(2,3)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.解:⊙点(2,3)到x轴的距离是3,等于半径,到y轴的距离是2,小于半径,⊙圆与y轴相交,与x轴相切.故选B.【点拨】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.3.A【分析】根据题意,将圆心点向下平移1.5个单位,即可判断圆与x轴的位置关系.解:如图,圆心P的坐标为(0,2),将P沿y轴负方向平移1.5个单位长度,∴平移后的点P 的坐标为(0,0.5),0.5OP ∴=,半径为1.5,PO r ∴<,∴圆P 与x 轴相交,故选.A【点拨】本题主要考查圆与直线的位置关系,结合题意判断圆与x 轴的位置关系是解题的关键.4.C 【分析】作CD⊙AB 于D ,根据勾股定理计算出AB=13,再利用面积法计算出125CD =然后根据直线与圆的位置关系得到当1254≤≤r 时,以C 为圆心、r 为半径作的圆与斜边AB 有公共点.解:作CD⊙AB 于D ,如图,⊙⊙C=90°,AC=3,BC=4, ⊙22AB 5AC BC + 1122⋅=⋅CD AB BC AC ⊙CD 125=⊙以C 为圆心、r 为半径作的圆与斜边AB 有公共点时,r 的取值范围为1254≤≤r 故选:C【点拨】本题考查了直线与圆的位置关系:设⊙O 的半径为r ,圆心O 到直线l 的距离为d :直线l 和⊙O 相交⇔d <r ;直线l 和⊙O 相切⇔d=r ;直线l 和⊙O 相离⇔d >r .5.B 【分析】由题意得, PBO 是直角三角形,设OA =x ,则OB =x ,在Rt PBO 中,1PO x =+,根据勾股定理得,2222(1)x x +=+,解得32x =,即可得. 解:由题意得,1PA =,2PB =,90PBO ∠=︒,⊙PBO 是直角三角形, 设OA =x ,则OB =x ,在Rt PBO 中,1PO x =+,根据勾股定理得,2222(1)x x +=+22421x x x +=++解得32x =, 则半径OA 的长为32,故选B .【点拨】本题考查了圆,勾股定理,解题的关键是掌握这些知识点. 6.A 【分析】根据直线AB 和⊙O 有公共点可知:d ≤r 进行判断. 解:⊙⊙O 的半径为5,直线AB 与⊙O 有公共点,⊙圆心O 到直线AB 的距离0<d ≤5. 故选:A .【点拨】本题考查了直线和圆的位置关系:设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,则直线l 和⊙O 相交⊙d <r ;直线l 和⊙O 相切⊙d =r ;直线l 和⊙O 相离⊙d >r .7.D 【分析】根据直线与圆的位置关系,平移使直线a与O相切,有两种情况,一种是移动3-1=2厘米,第二种是移动3+1=4厘米.解:如图,当直线a向上平移至a'位置时,平移距离为3-1=2厘米;当直线a向上平移至a''位置时,平移距离为3+1=4厘米.故答案选:D.【点拨】本题考查了平移,直线与圆的位置关系,熟练掌握知识点并结合图形是解答关键.8.D【分析】连结AQ、AP,由切线的性质可知AQ⊙QP,由勾股定理可知22-AP AQ当AP有最小值时,PQ最短,根据垂线段最短可得到点P的坐标.解:连接AQ,AP.根据切线的性质定理,得AQ⊙PQ;要使PQ最小,只需AP最小,根据垂线段最短,可知当AP⊙x轴时,AP最短,⊙P点的坐标是(−3,0).故选D.【点拨】此题主要考查垂线段的性质,解题的关键是熟知圆的位置关系.9.B【分析】作出OC⊙AB,利用垂径定理求出BC=4,再利用勾股定理求出OC=3,即可求出要使直线l 与⊙O 相切,则需要将直线l 向下平移的长度.解:作OC ⊙AB ,又⊙⊙O 的半径为5cm ,直线l 交⊙O 于A 、B 两点,且弦AB =8cm⊙BO =5,BC =4,⊙由勾股定理得OC =3cm ,⊙要使直线l 与⊙O 相切,则需要将直线l 向下平移2cm .故选:B .【点拨】此题主要考查了切线的性质定理与垂径定理,根据图形求出OC 的长度是解决问题的关键.10.D【分析】利用圆心到直线的距离等于半径即可.解:设圆与直线b 交于A 、B 两点,当O 从点P 出发以2 cm/s 速度向右作匀速运动,OP=2t ,PB=2t+1,PA=2t -1, 当PB=PH 时即2t+1=4,t=1.5与直线a 相切,当PA=PH 时即2t -1=4,t=2.5与直线a 相切.故选:D .【点拨】本题考查圆与直线相切问题,关键掌握圆与直线相切的条件,会利用此条件确定动点圆心的位置,列出等式解方程解决问题.11.4【分析】根据垂径定理可求出182AH AB cm ==,再利用勾股定理可得6OH cm =,从而4CH cm =,再由l 与⊙O 相切,则点O 到直线l 的距离等于OC =10cm ,从而得到l 沿OC所在直线向下平移的距离等于4CH cm =,即可求解.解:⊙直线l ⊙OC ,AB =16cm ,⊙182AH AB cm == ,90AHO ∠=︒ , ⊙10OA OC cm == ,在Rt AOH 中,由勾股定理得22221086OH AO AH cm =-=-= ,⊙4CH OC OH cm =-= ,若l 与⊙O 相切,则点O 到直线l 的距离等于OC =10cm ,⊙l 沿OC 所在直线向下平移的距离等于4CH cm =即l 沿OC 所在直线向下平移4cm 时与⊙O 相切.故答案为:4 .【点拨】本题主要考查了垂径定理,直线与圆的位置关系,勾股定理,熟练掌握相关知识点是解题的关键.12.4或8##8或4【分析】求得当⊙P 位于点O 的左边与CD 相切时t 的值和⊙P 位于点O 的右边与CD 相切时t 的值即可.解:当点P 在射线OA 时⊙P 与CD 相切,如图1,过P 作PE ⊥CD 于E∴PE =1cm ,∵∠AOC =30°∴OP =2PE =2cm∴⊙P 的圆心在直线AB 上向右移动了(6﹣2)cm 后与CD 相切∴⊙P 移动所用的时间=621-=4(秒); 当点P 在射线OB 时⊙P 与CD 相切,如图2,过P 作PE ⊥CD 于E∴PF=1cm∵∠AOC=∠DOB=30°∴OP=2PF=2cm∴⊙P的圆心在直线AB上向右移动了(6+2)cm后与CD相切,⊙⊙P移动所用的时间=621=8(秒)∴当⊙P的运动时间为4或8秒时,⊙P与直线CD相切.故答案为:4或8.【点拨】本题考查了直线与圆的位置关系,含30°的直角三角形,解题的关键在于分点P在射线OA和点P在射线OB两种情况进行计算.13.3<r≤4或r=125.【分析】根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案.解:过点C作CD⊙AB于点D,⊙AC=3,BC=4.⊙AB=5,如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,当直线与圆相切时,d=r,圆与斜边AB只有一个公共点,⊙CD×AB=AC×BC,⊙CD=r=125,当直线与圆如图所示也可以有一个交点,⊙3<r≤4,故答案为3<r≤4或r=125.【点拨】此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案,此题比较容易漏解.14.0<r<245r=245【分析】根据d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内,可得答案;根据圆心到直线的距离等于半径时直线与圆只有一个公共点.解:如图,作CH⊙AB于H.在Rt⊙ABC中,⊙⊙ACB=90°,AC=6,BC=8,⊙AB222268AC BC++,⊙S△ABC=12•AC•BC=12•AB•CH,⊙CH=245,⊙以点C为圆心,r为半径的圆与边AB所在直线相离,⊙0<r<245;⊙以点C为圆心,r为半径的圆与边AB所在直线只有一个公共点,⊙r=245.故答案为:0<r <245;r =245. 【点拨】本题考查了点与圆的位置关系,d >r 时,点在圆外;当d =r 时,点在圆上;当d <r 时,点在圆内.15.1或9【分析】结合勾股定理和平移的性质进行计算.解:设将A 沿y 轴向下平移x 个单位后,根据题意作图,(2,0),(5,0),'(5,5)C B A x ∴-,由勾股定理:22''CB A B A C +=,222(52)(5)5x -+-=,解得1x =或9,∴应将A 沿y 轴向下平移1或9个单位后圆与x 轴交于点(2,0).故答案为:1或9.【点拨】考查了直线与圆的位置关系及平移的性质,解题的关键是运用方程的思想解决更简单.16.010d ≤<【分析】根据直线AB 和圆相交,则圆心到直线的距离小于圆的半径即可得问题答案.解:⊙⊙O 的半径为10,直线AB 与⊙O 相交,⊙圆心到直线AB 的距离小于圆的半径,即0≤d <10;故答案为:0≤d <10.【点拨】本题考查了直线与圆的位置关系;熟记直线和圆的位置关系与数量之间的联系是解决问题的关键.同时注意圆心到直线的距离应是非负数.17.3或4##4或3【分析】根据切线的判定方法,当点O 到AB 的距离为1cm 时,⊙O 与直线AB 相切,然后分两种情况:⊙O 在直线AB 左侧和在直线AB 右侧,进行计算即可.解:⊙直线AB ⊙l ,⊙当⊙O 在直线AB 左侧距AB 的距离为1cm 时,⊙O 与直线AB 相切,此时⊙O 移动了7-1=6cm ,所需时间为6÷2=3s ;当⊙O 在直线AB 右侧距AB 的距离为1cm 时,⊙O 与直线AB 相切,此时⊙O 移动了7+1=8cm ,所需时间为8÷2=4s .故答案为:3或4.【点拨】本题考查了圆与直线的位置关系,切线的判定,明确判定定理是解题的关键.18.1或5欲求直线和圆有几个公共点,关键是求出圆心到直线的距离d ,再与半径r 进行比较.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离. 解:设圆的半径为r ,圆心到直线的距离d ,要使圆与x 轴相切,必须d=r ;⊙此时d=3,⊙圆向上平移1或5个单位时,它与x 轴相切.19.(1)2.4;(2)⊙1205r <<;⊙1235r <≤;⊙125r =或34r <≤ 【分析】(1)勾股定理求得斜边AB ,进而根据等面积法求得斜边上的高;(2)根据圆心到直线的距离与半径比较,根据直线与圆的位置关系以及点与圆的位置关系,即可求得r 的取值范围.解:(1)Rt ABC 中,90C ∠=︒,4BC =,3AC =, 225AB AC BC ∴=+= 设斜边AB 上的高为h ,1122AB h AC BC ⋅⋅=⋅, 341255AC BC h AB ⋅⨯∴===, 故答案为:125(2)⊙若直线AB与⊙C没有公共点,则AB⊙C相离,则r的取值范围是125r<<;⊙若边AB与⊙C有两个公共点,A点在圆外或者圆上,则r的取值范围是1235r<≤;⊙若边AB与⊙C只有一个公共点,则AB⊙C相切,或者A点在圆内,则r的取值范围是125r=-或34r<≤【点拨】本题考查了勾股定理,直线与圆的位置关系以及点与圆的位置关系,理解直线与圆的位置关系以及点与圆的位置关系是解题的关键.20.(1)7;(221【分析】(1)当点P在圆外且,,O A P三点共线时,点O到直线l距离的最大,由此即可得;(2)先确定线段MN是O的直径,画出图形,再在Rt AOP△中,利用勾股定理即可得.解:(1)如图1,l PA⊥,∴当点P在圆外且,,O A P三点共线时,点O到直线l距离的最大,此时最大值为527AO AP+=+=,故答案为:7;(2)如图2,,M N是直线l与O的公共点,当线段MN的长度最大时,线段MN是O的直径,⊥,l PA∴∠=︒,90APOOA=,2AP=,52221∴=-=OP OA PA21【点拨】本题考查了直线与圆的位置关系、勾股定理,正确的作出图形是解题的关键.21.(1)见分析;(2)①(2,0);②5⊙(7,0).【分析】(1)根据题意建立平面直角坐标系,然后作出弦AB的垂直平分线,以及BC的垂直平分线,两直线的交点即为圆心D,连接AD,CD;(2)⊙根据第一问画出的图形即可得出D的坐标;⊙在直角三角形AOD中,由OA及OD的长,利用勾股定理求出AD的长,即为圆D 的半径;⊙根据半径相等得出5EF=x,在Rt△CDE和Rt△CEF中,根据勾股定理列出两个式子即可求出x的值,从而求出E点坐标解:(1)根据题意画出相应的图形,如图所示:(2)⊙根据图形得:D(2,0);⊙在Rt△AOD中,OA=4,OD=2,根据勾股定理得:AD225OA OD则D的半径为5⊙⊙EC与⊙D相切⊙CE⊙DC⊙△CDE为直角三角形即⊙DCE=90°⊙AD和CD都是圆D的半径,⊙由⊙知,5设EF=x在Rt△CDE中,(52+CE2=(4+x)2在Rt△CEF中,22+x2=CE2⊙(52+(22+x2)=(4+x)2解得,x=1,即EF=1⊙OE=2+4+1=7⊙E点坐标为(7,0)【点拨】此题考查了直线与圆的位置关系,涉及的知识有:坐标与图形性质,垂径定理,勾股定理及逆定理,切线的判定,利用了数形结合的思想,根据题意画出相应的图形是解本题的关键.22.(1)将直线l向上平移2cm或12cm;(2)2cm<x<12cm.【分析】(1)由切线的判定与性质和平移的性质即可得出结果;(2)由(1)的结果即可得出答案.解:(1)⊙⊙O的半径为5cm,点O到直线l的距离OP为7cm,⊙将直线l向上平移7-5=2(cm)或7+5=12(cm),才能使l与⊙O相切;(2)由(1)知,要使直线l与⊙O相交,直线l向上平移的距离大于2cm且小于12cm,⊙2cm<x<12cm,x的取值范围为:2cm<x<12cm.【点拨】本题考查了切线的判定与性质、平移的性质、直线与圆的位置关系等知识;熟练掌握切线的判定与性质是解题的关键.23.相切,理由见详解【分析】首先画出直线25y x =-+O 作OC AB ⊥,垂足为C ,再根据函数关系式求得5A ⎫⎪⎪⎝⎭,(5B ,进而利用勾股定理得到5AB =1OC =,从而得到结论圆心点O 到直线25y x =-O 的半径,可见直线25y x =-+O 的位置关系是:相切.解:结论:直线25y x =-+O 的位置关系是:相切理由:画出直线25y x =-O 作OC AB ⊥,垂足为C ,如图:⊙直线AB 的解析式为25y x =-⊙令0x =,解得5y =0y =,解得5x =⊙5A ⎫⎪⎪⎝⎭,(5B ⊙5OA =5OB =⊙在Rt AOB 中,根据勾股定理得2252AB OA OB =+ ⊙1122AOB S AB OC OA OB =⋅=⋅⊙552152OC ABOA OB ⋅=== ⊙O 的半径为1 ⊙圆心点O 到直线25y x =-O 的半径,即d r =⊙直线25y x =-O 的位置关系是相切.【点拨】本题考查了直线与圆的位置关系、一次函数图像上点的坐标特征、勾股定理、利用三角形的面积求线段长等知识点,熟练掌握相关知识是解题的关键.24.(1)见分析 (2)0个【分析】(1) 作MN OA ⊥于点N ,由30,5cm AOB OM ︒∠==,可得点M 到射线OA 的距离1 2.5cm 2d MN OM ===,根据直线与圆的位置关系的定义即可判断射线OA 与圆M 的公共点个数;(2) 连接CM .可得53ON =,由53cm,OC =可得ON CN =,得到5cm CM OM ==,故当5cm r >时,可判断线段OC 与M 的公共点个数.解:(1)如图,作MN OA ⊥于点N .30,5cm AOB OM ︒∠==,⊙点M 到射线OA 的距离1 2.5cm 2d MN OM ===. ⊙当 2.5cm r =时,M 与射线OA 只有一个公共点; 当0cm 2.5cm r <<时,M 与射线OA 没有公共点; 当2.5cm 5cm r <时,M 与射线OA 有两个公共点;当5cm r >时,M 与射线OA 只有一个公共点.(2)如图,连接CM . 1 2.5cm,2MN OM == 53ON ∴=. 53cm,OC =ON CN∴=,CM OM∴==.5cmr>时,线段OC与M的公共点个数为0.⊙当5cm【点拨】本题主要考查了直线与圆的位置关系,根据圆心到直线的距离判断位置关系是解题的关键.。
直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案一、选择题1. 在平面上,已知点A(4,-2),圆心O(1,3),半径R=5. 则点A与圆的位置关系是:A. A在圆内B. A在圆上C. A在圆外答案: A. A在圆内2. 已知直线L的方程为2x - 3y = 6,圆C的方程为x^2 + y^2 = 25.则直线L与圆C的位置关系是:A. 直线L与圆C相切B. 直线L与圆C相交于两点C. 直线L与圆C不相交答案: B. 直线L与圆C相交于两点3. 在平面上,已知两个圆C1与C2,圆C1的半径为3,圆心坐标为(1,1),圆C2的半径为2,圆心坐标为(-2,-3). 则两个圆的位置关系是:A. 两个圆相交于两点B. 两个圆内切C. 两个圆相离答案: C. 两个圆相离二、填空题1. 已知圆C的半径为2,圆心坐标为(3,5). 则圆心到原点的距离是______.答案: sqrt(3^2 + 5^2) = sqrt(34)2. 在平面上,已知直线L的方程为y = 2x + 1,圆C的半径为4,圆心坐标为(-1,2). 则直线L与圆C的位置关系可以表示为______.答案: (x+1)^2 + (y-2)^2 = 16三、解答题1. 如图所示,在平面上有一个圆C,其圆心坐标为(2,3),半径为4. 请写出圆C的方程,并确定点A(-3,4)与圆C的位置关系。
解答:圆C的方程为:(x-2)^2 + (y-3)^2 = 16点A(-3,4)与圆C的位置关系可以通过计算点A到圆心的距离来判断。
点A到圆心的距离为:distance = sqrt((-3-2)^2 + (4-3)^2) = sqrt(25) = 5比较点A到圆C的距离与圆的半径的关系:若 distance < 4,则点A在圆内;若 distance = 4,则点A在圆上;若 distance > 4,则点A在圆外。
因为 distance = 5 > 4,所以点A在圆外。
高考数学复习知识点专题强化训练47 直线与圆、圆与圆的位置关系

高考数学复习知识点专题强化训练专题(四十七) 直线与圆、圆与圆的位置关系A级——夯基保分练1.圆x2+y2-2x+4y=0与直线2tx-y-2-2t=0(t∈R)的位置关系为( )A.相离B.相切C.相交D.以上都有可能解析:选C 直线2tx-y-2-2t=0恒过点(1,-2),∵12+(-2)2-2×1+4×(-2)=-5<0,∴点(1,-2)在圆x2+y2-2x+4y=0内部,直线2tx-y-2-2t=0与圆x2+y2-2x+4y=0相交.2.过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( ) A.2x+y-5=0 B.2x+y-7=0C.x-2y-5=0 D.x-2y-7=0解析:选B 由题意,过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则点(3,1)在圆上,代入可得r2=5,圆的方程为(x-1)2+y2=5,则过点(3,1)的切线方程为(x-1)·(3-1)+y(1-0)=5,即2x+y-7=0.3.已知圆C:(x-3)2+(y-1)2=1和两点A(-t,0),B(t,0)(t>0),若圆C上存在点P,使得∠APB=90°,则实数t的最小值为( )A.4 B.3C.2 D.1解析:选D 由∠APB=90°得,点P在圆x2+y2=t2上,因此由两圆有交点得|t-1|≤|OC|≤t+1⇒|t-1|≤2≤t+1⇒1≤t≤3,即t的最小值为1.4.若圆O1:x2+y2=5与圆O2:(x+m)2+y2=20相交于A,B两点,且两圆在点A 处的切线互相垂直,则线段AB的长度是( )A.3 B.4C.2 3 D.8解析:选B 连接O1A,O2A,由于⊙O1与⊙O2在点A处的切线互相垂直,因此O1A⊥O2A,所以|O1O2|2=|O1A|2+|O2A|2,即m2=5+20=25,设AB交x轴于点C.在Rt△O1AO2中,sin∠AO2O1=55,∴在Rt△ACO2中,|AC|=|AO2|·sin∠AO2O1=25×55=2,∴|AB|=2|AC|=4.故选B.5.(多选)已知直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O为坐标原点),且△AOB为等腰直角三角形,则实数a的值为( )A. 6B.5C.- 6 D.-5解析:选BD 因为直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O为坐标原点),且△AOB 为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a |12+-22=1,所以a =±5,故选B 、D.6.(多选)已知圆C :(x -3)2+(y -3)2=72,若直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点,则m =( )A .2B .4C .6D .10解析:选AD 圆C :(x -3)2+(y -3)2=72的圆心C 的坐标为(3,3),半径r =62, 因为直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点,所以圆心到直线的距离为22, 则有d =|6-m |1+1=22,解得m =2或10,故选A 、D.7.(2020·湖南长沙月考)设直线l :(m -1)x +(2m +1)y +3m =0(m ∈R )与圆(x -1)2+y 2=8相交于A ,B 两点,C 为圆心,且△ABC 的面积等于4,则实数m =________.解析:设CA ,CB 的夹角为θ,圆的半径为r .所以S △ABC =12r 2sin θ=4sin θ=4,得θ=π2.易知圆心C 到直线l 的距离为2,所以|4m -1|m -12+2m +12=2,解得m=-12或-72.答案:-12或-728.若直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短,则直线l 的方程是__________________.解析:依题意,直线l :y =kx +1过定点P (0,1).圆C :x 2+y 2-2x -3=0化为标准方程为(x -1)2+y 2=4.故圆心为C (1,0),半径为r =2.则易知定点P (0,1)在圆内.由圆的性质可知当PC ⊥l 时,直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短.因为k PC =1-00-1=-1,所以直线l 的斜率k =1,即直线l 的方程是x -y +1=0.答案:x -y +1=09.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为________________.解析:由题意,设所求的直线方程为x +y +m =0,圆心坐标为(a,0)(a >0), 则由题意知⎝⎛⎭⎪⎫|a -1|22+2=(a -1)2, 解得a =3或-1(舍去), 故圆心坐标为(3,0),因为圆心(3,0)在所求的直线上, 所以3+0+m =0, 解得m =-3,故所求的直线方程为x +y -3=0. 答案:x +y -3=010.(一题两空)已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,则此时切线l 的方程为____________; (2)满足条件|PM |=|PO |的点P 的轨迹方程为____________. 解析:把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4, ∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1,C 到l 的距离d =2=r ,满足条件. 当l 的斜率存在时,设斜率为k , 当l 的方程为y -3=k (x -1), 即kx -y +3-k =0,则|-k -2+3-k |1+k 2=2,解得k =-34. ∴l 的方程为y -3=-34(x -1),即3x +4y -15=0.综上,满足条件的切线l 的方程为x =1或3x +4y -15=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2 =(x +1)2+(y -2)2-4, |PO |2=x 2+y 2,∵|PM |=|PO |, ∴(x +1)2+(y -2)2-4=x 2+y 2, 整理,得2x -4y +1=0,∴点P 的轨迹方程为2x -4y +1=0. 答案:(1)x =1或3x +4y -15=0 (2)2x -4y +1=011.已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM ―→·ON ―→=12,其中O 为坐标原点,求|MN |. 解:(1)由题设可知直线l 的方程为y =kx +1. 因为直线l 与圆C 交于两点, 所以|2k -3+1|1+k 2<1.解得4-73<k <4+73.所以k 的取值范围为⎝ ⎛⎭⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0.所以x 1+x 2=41+k1+k 2,x 1x 2=71+k 2. OM ―→·ON ―→=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k 1+k 1+k 2+8.由题设可得4k 1+k 1+k 2+8=12,解得k =1,所以直线l 的方程为y =x +1. 故圆心C 在直线l 上,所以|MN |=2.12.已知以点C ⎝⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为坐标原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程. 解:(1)证明:由题意知圆C 过原点O ,∴半径r =|OC |.∵|OC |2=t 2+4t2,∴设圆C 的方程为(x -t )2+⎝⎛⎭⎪⎫y -2t 2=t 2+4t 2.令y =0,得x 1=0,x 2=2t ,则A (2t,0). 令x =0,得y 1=0,y 2=4t ,则B ⎝ ⎛⎭⎪⎫0,4t .∴S △OAB =12|OA |·|OB |=12×⎪⎪⎪⎪⎪⎪4t ×|2t |=4,即△OAB 的面积为定值.(2)∵|OM |=|ON |,|CM |=|CN |, ∴OC 垂直平分线段MN .∵k MN =-2,∴k OC =12,∴直线OC 的方程为y =12x .∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),r =|OC |=5,此时圆心C 到直线y =-2x +4的距离d =15<5, 圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),r =|OC |=5,此时圆心C 到直线y =-2x +4的距离d =95>5,圆C 与直线y =-2x +4不相交. ∴圆C 的方程为(x -2)2+(y -1)2=5.B 级——提能综合练13.(多选)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-4x =0.若直线y =k (x +1)上存在一点P ,使过P 所作的圆的两条切线相互垂直,则实数k 的取值可以是( )A .1B .2C .3D .4解析:选AB 圆C 的方程为x 2+y 2-4x =0,则圆心为C (2,0),半径R =2.设两个切点分别为A ,B ,则由题意可得四边形PACB 为正方形,故有PC =2R =22,∴圆心到直线y =k (x +1)的距离小于或等于PC =22, 即|2k -0+k |k 2+1≤22,解得k 2≤8,可得-22≤k ≤22, ∴实数k 的取值可以是1,2.故选A 、B.14.(2020·河南洛阳二模)已知直线x +y -2=0与圆O :x 2+y 2=r 2(r >0)相交于A ,B 两点,C 为圆周上一点,线段OC 的中点D 在线段AB 上,且3AD ―→=5DB ―→,则r =________.解析:如图,过O 作OE ⊥AB 于E ,连接OA ,则|OE |=|0+0-2|12+12=2,易知|AE |=|EB |, 不妨令|AD |=5m (m >0), 由3AD ―→=5DB ―→可得 |BD |=3 m ,|AB |=8m , 则|DE |=4m -3m =m ,在Rt △ODE 中,有⎝ ⎛⎭⎪⎫12r 2=(2)2+m 2,①在Rt △OAE 中,有r 2=(2)2+(4m )2,②联立①②,解得r =10.答案:1015.已知圆C 经过点A ⎝ ⎛⎭⎪⎫74,174,B ⎝⎛⎭⎪⎫-318,338,直线x =0平分圆C ,直线l 与圆C 相切,与圆C 1:x 2+y 2=1相交于P ,Q 两点,且满足OP ⊥OQ .(1)求圆C 的方程; (2)求直线l 的方程.解:(1)依题意知圆心C 在y 轴上,可设圆心C 的坐标为(0,b ),圆C 的方程为x 2+(y -b )2=r 2(r >0).因为圆C 经过A ,B 两点,所以⎝ ⎛⎭⎪⎫742+⎝ ⎛⎭⎪⎫174-b 2=⎝ ⎛⎭⎪⎫-3182+⎝ ⎛⎭⎪⎫338-b 2, 即716+28916-172b +b 2=3164+1 08964-334b +b 2,解得b =4. 则r 2=⎝ ⎛⎭⎪⎫742+⎝ ⎛⎭⎪⎫174-42=12,所以圆C 的方程为x 2+(y -4)2=12.(2)当直线l 的斜率不存在时,由l 与C 相切得l 的方程为x =±22,此时直线l 与C 1交于P ,Q 两点,不妨设P 点在Q 点的上方,则P ⎝ ⎛⎭⎪⎫22,22,Q ⎝ ⎛⎭⎪⎫22,-22或P ⎝ ⎛⎭⎪⎫-22,22,Q ⎝ ⎛⎭⎪⎫-22,-22,则OP ―→·OQ ―→=0,所以OP ⊥OQ ,满足题意.当直线l 的斜率存在时,易知其斜率不为0,设直线l 的方程为y =kx +m (k ≠0,m ≠0),P (x 1,y 1),Q (x 2,y 2),将直线l 的方程与圆C 1的方程联立,得⎩⎨⎧y =kx +m ,x 2+y 2=1,消去y ,整理得(1+k 2)x 2+2kmx +m 2-1=0, 则Δ=4k 2m 2-4(1+k 2)(m 2-1)=4(k 2-m 2+1)>0, 即1+k 2>m 2,则x 1+x 2=-2km 1+k 2,x 1x 2=m 2-11+k 2,所以y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 2m 2-11+k 2-2k 2m 21+k2+m 2=m 2-k 21+k 2, 又OP ⊥OQ ,所以OP ―→·OQ ―→=0,即x 1x 2+y 1y 2=m 2-11+k 2+m 2-k 21+k 2=0,故2m 2=1+k 2,满足Δ>0,符合题意.因为直线l :y =kx +m 与圆C :x 2+(y -4)2=12相切,所以圆心C (0,4)到直线l 的距离d =|m -4|1+k 2=22,即m 2-8m +16=1+k22,故m 2-8m +16=m 2,得m =2,故1+k 2=8,得k =±7.故直线l 的方程为y =±7x +2.综上,直线l 的方程为x =±22或y =±7x +2. C 级——拔高创新练16.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.解:(1)设圆心C (a,0)⎝⎛⎭⎪⎫a >-52.则|4a +10|5=2,解得a =0或a =-5(舍).所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x 2+y 2=4,y =k x -1得(k 2+1)x 2-2k 2x +k 2-4=0,所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ,即y 1x 1-t +y 2x 2-t=0,则k x 1-1x 1-t +k x 2-1x 2-t=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0,亦即2k 2-4k 2+1-2k 2t +1k 2+1+2t =0,解得t =4,所以当点N 坐标为(4,0)时,能使得∠ANM =∠BNM 总成立.。
第二十三节、圆的方程、直线与圆、圆和圆的位置关系

第二十三节、圆的方程、直线与圆、圆和圆的位置关系【基础知识】1、圆的方程(1)圆的标准方程:_______________________。
圆心为_________,半径为________(2)圆的一般方程________________________,圆心为点_______,半径_________________。
注:二元二次方程022=+++++F Ey Dx Cy Bxy Ax ,表示圆的方程的充要条件是:__________。
注:求圆的方程常用的方法:待定系数法(标准方程或一般方程);数形结合求圆心、半径2、直线0=++C By Ax 与圆222)()(rb y a x =-+-的位置关系有三种(22B A CBb Aa d +++=):(1)若相离⇔>r d ;(2)相切⇔=r d ;(3)相交⇔<r d 。
注:还可以利用直线方程与圆的方程联立方程组⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 求解,通过解的个数来判断.直线与圆相交的弦长公式: ①几何方法:222d r AB -=; ②代数方法:]4))[(1(22B A B A x x x x k AB -++= 3、两圆位置关系的判定方法:设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21。
外离⇔+>21r r d ; 外切⇔+=21r r d ;相交⇔+<<-2121r r d r r ; 内切⇔-=21r r d ;内含⇔-<<210r r d ;判断两个圆的位置关系也可以通过联立方程组判断公共解的个数来解决。
4、点和圆的位置关系的判别转化为点到圆心的距离与半径的大小关系。
点,圆的方程: 如果 _____点在圆外;如果______点在圆内;如果______点在圆上。
),(00y x P ()()222r b -y a x =+-()()22b -y a x +-2r ⇔),(00y x P ()()22b -y a x +-2r ⇔),(00y x P ()()22b -y a x +-2r ⇔),(00y x P【基础训练】1、圆的圆心坐标和半径分别为()A. , 6B. , 6C. , 36 D , 362、斜率为1,与圆相切的直线的方程为 ( )A. B. C.或 D. 或3、过圆上一点作圆的切线,则切线方程为A. B. C. D.4、圆和圆的位置关系是 ( )相离 相交 外切 内切5、直线被圆截得的弦长为( )A. B.2C.3D.46、已知点在圆外,则( )A. B. C. 或 D.不能确定7、方程表示一个圆,则的取值范围是( )A B C D 8、过三点, , 的圆的方程为( )A. B. C. D.9、过坐标原点且与圆相切的直线的方程为_________________ 10、直线截圆得的劣弧所对的圆心角为_______________ 11、设直线与圆相交于、两点,且弦的长为,则 .12、直线与圆没有公共点,则的取值范围是2286110x y x y +-+-=(4,3)(4,3)-(4,3)(4,3)-221x y +=0x y -=0x y -=0x y -=0x y -=20x y --=20x y -+=22(1)(2)2x y -+-=(2,3)50x y +-=10x y +-=50x y --=10x y --=221:20O x y x +-=222:40O x y y +-=.A .B .C .D 40x y -+=22(2)(2)2x y ++-=2222(1,)m 22(3)(1)8x y -++=1m >3m <-1m >3m <-220x y x y m +-++=m 2m ≤2m <12m <12m ≤(0,0)O (1,1)A (4,2)B 2210x y +=22860x y x y ++-=22860x y x y +-+=22970x y x y +-+=0252422=++-+y x y x 0323=-+y x 422=+y x 03=+-y ax 4)2()1(22=-+-y x A B AB 32=a 1=+y x )0(0222>=-+a ay y x a__________13、若直线与圆有两个不同的交点,则的取值范围是 .14、圆和圆的位置关系是______________________15、圆上的点到直线的最大距离与最小距离的差是___________【高考真题】1、圆与圆的位置关系为(A)内切(B)相交(C)外切 (D)相离2、过点作圆的两条切线,切点分别为,,则直线的方程为(A)(B)(C)(D)3、一条光线从点(-2,-3)射出,经y轴反射后与圆相切,则反射光线所在直线的斜率为()(A)或(B)或(C)或(D)或4、过点(3,1)作圆的弦,其中最短的弦长为__________5、与直线和曲线都相切的半径最小的圆的标准方程是.6、已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:被该圆所截得的弦长为C的标准方程为 .7、过点作圆的两条切线,切点分别为A,B,则 .2+=kxy1)3()2(22=-+-yx k222=-+xyx0422=++yyx104422=---+yxyx014=-+yx22(2)4x y++=22(2)(1)9x y-+-=(3,1)22(1)1x y-+=A B AB 230x y+-=230x y--=430x y--=430x y+-=22(3)(2)1x y++-=53-35-32-23-54-45-43-34-22(2)(2)4x y-+-=20x y+-=221212540x y x y+---=1y x=-(P221x y+=PA PB⋅=。
中考数学复习之与圆有关的位置关系,考点过关与基础练习题

34.与圆有关的位置关系➢知识过关1.点和圆的位置关系2.直线与圆的位置关系3.切线的判定与性质切线的定义:直线与圆有_____公共点时,这条直线是圆的切线.切线的性质:圆的切线垂直于过切点的______切线的判定:经过半径的外端并且______这条半径的直线是圆的切线.到圆心距离等于______的直线是圆的切线.➢考点分类考点1直线与圆的位置关系的判定例1如图所示,在Rt△ABC中,△C=90°,AC=3cm,BC=3cm,若OA=x cm,△O的半径为1cm,请问当x在什么范围内取值时,AC与△O相交、相切、相离?D考点2切线的判定例2 如图所示,AB是△O的直径,C是O上一点,直线MN经过点C,过点A作直线MN 的垂线,垂足为点D,且△BAC=△CAD.(1)求证:直线MN是△O的切线;(2)若CD=3,△CAD=30°,求△O的半径.考点3 切线的性质 例3 如图所示,在△O 中,点C 是直径AB 延长线上一点,过点C 作△O 的切线,切点为D ,连接BD.(1)求证:△A=△BDC(2)若CM 平分△ACD ,且分别交AD 、BD 于点M 、N ,当DM=1时,求MN 的长.➢ 真题演练1.如图,A 、P 、B 、C 是⊙O 上的四点,∠APC =∠BPC =60°,P A =2,PC =4,则△ABC 的面积为( )A .43√3B .32√3C .2√3D .3√32.如图,四边形ABCD 是⊙O 的内接四边形,∠B =90°,∠BCD =120°,AB =4,BC =2,则AD 的长为( )A .2√3B .4−√3C .√3+1D .2+√33.如图,P A 、PB 、CE 分别与⊙O 相切于点A 、B 、D 点,若圆O 的半径为6,OP =10,则△PCE 的周长为( )A .10B .12C .16D .204.如图所示,点P 是⊙O 的半径OC 延长线上的一点,过点P 作⊙O 的切线,切点为A ,AB 是⊙O 的弦,连接AC ,BC ,若∠P AB =70°,则∠ACB 的大小为( )A .70°B .110°C .120°D .140°5.如图,在△ABC 中,∠A =60°,BC =12,若⊙O 与△ABC 的三边分别相切于点D ,E ,F ,且△ABC 的周长为32,则DF 的长为( )A .2B .3C .4D .66.如图,已知DC 是⊙O 的直径,点B 为CD 延长线上一点,AB 是⊙O 的切线,点A 为切点,且∠BAD =35°,则∠ADC =( )A .75°B .65°C .55°D .50°7.如图,PC 、PB 是⊙O 的切线,AB 是⊙O 的直径,延长PC ,与BA 的延长线交于点E ,过C 点作弦CD ,且CD ∥AB ,连接DO 并延长与圆交于点F ,连接CF ,若AE =2,CE =4,则CD 的长度为( )A .3B .4C .185D .2458.如图,四边形ABCD 内接于⊙O ,AE ⊥CB ,交CB 的延长线于点E .若BA 平分∠DBE ,AD =7,CE =√13,则AE 的长度为 .9.如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E ,连接AC 交DE 于点F .若sin ∠CAB =35,DF =5,则AB 的长为 .10.如图,P A、PB分别与⊙O相切于A、B两点,C为⊙O上一点连接AC、BC,若∠C=55°,则∠P的度数是°.11.如图,AB为圆O直径,∠DAB=∠ABC=90°,CD与圆O相切于点E,EF⊥AB于点F,EF交BD于点G,若AD=2,BC=6.(1)求CD的长度.(2)求EG的长度.(3)求FB的长度.12.如图,P A、PB、CD是⊙O的切线,点A、B、E为切点.(1)如果△PCD的周长为10,求P A的长;(2)如果∠P=40°,①求∠COD;②连AE,BE,求∠AEB.13.如图,P A、PB分别与⊙O相切于点A、B,PO的延长线交⊙O于点C,连接BC,OA.(1)求证:∠POA=2∠PCB;(2)若OA=3,P A=4,求tan∠PCB的值.➢ 课后练习1.如图,P A ,PB 是⊙O 的两条切线,A ,B 是切点,过半径OB 的中点C 作CD ⊥OB 交P A 于点D ,若PD =3,AD =5,则⊙O 的半径长为( )A .2√7B .4√2C .3√3D .2√52.如图,等边三角形ABC 的边长为4,⊙C 的半径为√3,P 为AB 边上一动点,过点P 作⊙C 的切线PQ ,切点为Q ,则PQ 的最小值为( )A .12B .√3C .2√3D .33.如图,点O 是矩形ABCD 对角线BD 上的一点,⊙O 经过点C ,且与AB 边相切于点E ,若AB =4,BC =5,则⊙O 的半径长为( )A .165B .258C .5√419D .44.如图,在△ABC 中,∠ACB =90°,AC =BC =√2,点D 是AB 边上一个动点,以点D 为圆心r 为半径作⊙D ,直线BC 与⊙D 切于点E ,若点E 关于CD 的对称点F 恰好落在AB 边上,则r 的值是( )A .√2−1B .1C .√2D .√2+15.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,如果∠D=30°,AB=4,那么线段CD的长是.6.如图,△ABD内接于⊙O,AD为直径,CD为⊙O的切线,连接BC,若CD=AD,AB =2,BC=2√13,则BD=.7.已知菱形ABCD的边长为4,∠BAD=60°,M是线段AD的中点,点P是对角线AC 上的动点,连接PM,以P为圆心,PM长为半径作⊙P,当⊙P与菱形ABCD的边相切时,AP的长为.8.如图,已知△ABC,以AB为直径的⊙O交AC于点E,交BC于点D,且BD=CD,DF ⊥AC于点F.给出以下四个结论:̂=DÊ;④∠A=2∠FDC.①DF是⊙O的切线;②CF=EF;③AE其中正确结论的序号是.9.如图,在Rt△ABC中,AC=BC=6,点O为边BC上一动点,连接OA.以O为圆心,OB为半径作圆,交OA于D,过D作⊙O的切线,交AC于点E.当⊙O与边AC相切时,CE的长为.10.如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交AB于点D,点Q为CA延长线上一点,延长QD交BC于点P,连接OD,∠ADQ=12∠DOQ.若AQ=AC,AD=4时,写出BP的长为.11.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆交于点D.(1)如图1,连接DB,求证:DB=DE;(2)如图2,若∠BAC=60°,求证:AB+AC=√3AD.12.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F.(1)若∠ABC=50°,∠ACB=75°,求∠BOC的度数;(2)若AB=13,BC=11,AC=10,求AF的长.➢冲击A+。
高中数学-直线与圆的位置关系、圆与圆的位置关系精讲精练

高中数学-直线与圆的位置关系、圆与圆的位置关系精讲精练典题精讲例1如图2-3-(3,4)-3已知圆x 2+y 2+x-6y+c=0与直线x+2y-3=0的两交点为P 、Q ,且OP⊥OQ(O 为原点),求圆的方程.图2-3-(3,4)-3思路分析:涉及到直线与圆的交点问题,可以联立方程求解. 解法一:设P(x 1,y 1)、Q(x 2,y 2). 由⎩⎨⎧=+-++=-+,06,03222c y x y x y x消去x,得(3-2y)2+y 2+(3-2y)-6y+c=0,即5y 2-20y+12+c=0.由韦达定理,得y 1+y 2=4,y 1y 2=512c+. 如图2.3(3.4)3所示, ∵OP⊥OQ, ∴2211x y x y •=-1, 即123232211-=-•-y y y y .解得9-6(y 1+y 2)+5y 1y 2=0. ∴9-6×4+5×512c+=0,解得c=3. 从而所求圆的方程为x 2+y 2+x-6y+3=0.解法二:设过圆x 2+y 2+x-6y+c=0与直线x+2y-3=0的交点P 、Q 的圆的方程为x 2+y 2+x-6y+c+λ(x+2y-3)=0,即x 2+y 2+(1+λ)x-(2λ-6)y+c-3λ=0. ∵OP⊥OQ,故该圆过原点,c-3λ=0,① 且圆心(21λ+-,262--λ)在直线x+2y-3=0上, 21λ+-+2·(262--λ)-3=0.②由①②求得λ=1,c=3.故所求圆的方程为x 2+y 2+x-6y+3=0.绿色通道:在解析几何中,更多的是把垂直转化为斜率问题,而较少利用勾股定理.在判定直线与圆的位置关系时,应选择能体现圆的几何性质的方法,即用圆心到直线距离与半径作比较,这样更简捷.变式训练1若半径为1的圆分别与y 轴的正半轴和射线y=33x(x≥0)相切,则这个圆的方程为_________________.思路解析:若半径为1的圆分别与y 轴的正半轴和射线y=33x(x≥0)相切,则圆心在直线y=3x 上,且圆心的横坐标为1,所以纵坐标为3,这个圆的方程为(x-1)2+(y-3)2=1. 答案:1变式训练2(2006重庆高考,文3)以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程为 ( )A.(x-2)2+(y+1)2=3B.(x+2)2+(y-1)2=3C.(x-2)2+(y+1)2=9D.(x+2)2+(y-1)2=3 思路解析:根据题意,圆心到切线的距离即为圆的半径r=22435)1(423++-⨯-⨯=3,故选C.答案:C例2已知动直线l:(m+3)x-(m+2)y+m=0与圆C:(x-3)2+(y-4)2=9. (1)求证:无论m 为何值,直线l 与圆C 总相交.(2)m 为何值时,直线l 被圆C 所截得的弦长最小?并求出该最小值.思路分析:分析已知条件:圆是定圆,直线不确定(方程中含有未知数m),解题关键在于发现直线的特征:过定点.(1)证法一:设圆心C(3,4)到动直线l 的距离为d ,则 d=21)25(21)2()3(|4)2(3)3(|222++=++++•+-•+m m m m m m ≤2.∴当m=25-时,d max =2<3(半径). 故动直线l 总与圆C 相交.证法二:直线l 变形为m(x-y+1)+(3x-2y)=0. 令⎩⎨⎧=-=+-,023,01y x y x 解得⎩⎨⎧==.3,2y x如图2-3-(3,4)-4所示,故动直线l 恒过定点A(2,3).图2-3-(3,4)-4而|AC|=32)43()32(22<=-+-,∴点A 在圆内,故无论m 取何值,直线l 与圆C 总相交. (2)解法一:由平面几何知识知,弦心距越大,弦长越小. 由(1)知,当m=25-时,弦长最小. ∴最小值为72)2(3222=-.解法二:由平面几何知识知,弦心距越大,弦长越小, ∴过点A 且垂直AC 的直线被圆C 所截弦长最小. ∴k l =11-=-ACk .∴,123-=++m m 解得m=25-.此时弦长为72)2(92||32222=-=-AC . 故当m=25-时,直线被圆C 所截弦长最小,最小值为72. 绿色通道:解法一使用圆心到直线的距离判断直线与圆的位置关系,解法简便,运算量小. 解法二从所要证的结论分析,总与定圆相交的动直线可能是过定点的直线系,且定点必在圆内.于是抓住动直线与定圆的几何特征,数形结合,生动直观,迅速解决问题.变式训练3设直线过点(0,a),其斜率为1,且与圆x 2+y 2=2相切,则a 的值为( ) A.±2 B.±2 C.±22 D.±4 思路分析:设直线过点(0,a),其斜率为1,且与圆x 2+y 2=2相切,设直线方程为y=x+a ,圆心(0,0)到直线的距离等于半径2, ∴22||=a .∴a 的值为±2,选B. 答案:B例3已知P(x,y)在圆C:x 2+y 2-6x-4y+12=0上, (1)求x-y 的最大及最小值;(2)求x 2+y 2的最大及最小值;(3)求|PA|2+|PB|2的范围,其中A(-1,0)、B(1,0).思路分析:利用直线与圆的位置关系还可以求最值;另外数形结合的方法也需注意. (1)解:设x-y=m ,则P(x,y)在l:x-y-m=0上.又在⊙C 上,⊙C 的圆心坐标为(3,2), ∴l 与⊙C 有公共点. ⊙C 的圆心坐标为(3,2),∴圆心到直线l 的距离d=11|23|+--m ≤1,|1-m|≤2,得1-2≤m≤2+1.∴x -y 的最大值为2+1,最小值为1-2.(2)解法一:x 2+y 2=(x-0)2+(y-0)2=(22)0()0(-+-y x =|OP|2.由平面几何知识,连结直线OC 交⊙C 于A 、B. 当P 与A 重合时,|OP|min =|OA|=|OC|-1=13-1; 当P 与B 重合时,|OP|max =|OB|=|OC|+1=13+1. 从而,14-213≤x 2+y 2≤14+213.解法二:设x 2+y 2=r 2(r >0),因此P 在⊙O 上,又在⊙C 上,图2-3-(3,4)-5即⊙O 与⊙C 有公共点,由图2-3-(3,4)-5可知,当⊙O 与⊙C 外切时,r 最小. 此时|OC|=r+1=13, ∴r min =13-1.当⊙O 与⊙C 内切时,r 最大. 此时,|OC|=|r-1|=13, ∴r max =13+1.∴14-213≤x 2+y 2≤14+213.(3)解:可化归为(2),|PA|2+|PB|2=222222))1(())1((y x y x +-+++ =x 2+2x+1+y 2+x 2-2x+1+y 2=2(x 2+y 2)+2.由(2)14-132≤x 2+y 2≤14+132, ∴30-134≤|PA|2+|PB|2≤30+134.绿色通道:本题是坐标法的逆向应用,即用几何法研究代数问题——最值.变式训练4圆x 2+y 2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( )A.36B.18C.26D.25思路解析:圆x 2+y 2-4x-4y-10=0的圆心为(2,2),半径为23,圆心到直线x+y-14=0的距离为23522|1422|>=-+,所以直线与圆的位置关系是相离.因此圆上的点到直线的最大距离与最小距离的差是2R=26,选C.答案:C例4已知圆C:x 2+y 2-2x-4y-20=0及直线l:(2m+1)x+(m+1)y=7m+4(m∈R ). (1)求证:不论m 取什么实数,直线l 与圆C 总相交;(2)求直线l 被圆C 截得的弦长最短长度及此时的直线方程. 思路分析:(1)直线l 是过一个定点的直线,若此定点在圆内,则此直线l 必与圆C 相交.(2)当过定点的直线与圆心的距离最短,即此直线垂直于定点与圆心的连线时,被圆截得的弦最短.(1)证明:把直线l 的方程改写成(x+y-4)+m(2x+y-7)=0.由方程组⎩⎨⎧=-+=-+,072,04y x y x解得⎩⎨⎧==.1,3y x∴直线l 总过定点(3,1).圆C 的方程可写成(x-1)2+(y-2)2=25.∴圆C 的圆心为(1,2),半径为5,定点(3,1)到圆心(1,2)的距离为5)21()13(22=-+-<5.∴点(3,1)在圆C 内.∴过点(3,1)的直线l 总与圆C 相交,即不论m 为何实数,直线l 与圆C 总相交.图2-3-(3,4)-6(2)解:当直线l 过定点M(3,1)且垂直于过点M 的圆心的半径时,l 被圆截得的弦长|AB|最短.(如图2-3-(3,4)-6) |AB|=254202])21()13[(2522222==-+--=-CM BC .此时,k AB =CMk 1-=2.∴直线AB 的方程为y-1=2(x-3),即2x-y-5=0.故直线l 被圆C 截得的弦长的最短长度为54,此时直线l 的方程为2x-y-5=0. 绿色通道:充分考虑圆的几何性质,数形结合,如果对于第(2)问用纯代数的方法来解决,会很复杂.变式训练5(2006高考全国卷Ⅰ,文7)从圆x 2-2x+y 2-2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为( ) A.21B.53C.23D.0思路解析:圆x 2-2x+y 2-2y+1=0的圆心为M(1,1),半径为1,从圆外一点P(3,2)向这个圆作两条切线,则点P 到圆心M 的距离等于5,每条切线与PM 的夹角的正切值等于21,所以两切线夹角的正切值为tanθ=34411212=-•,该角的余弦值等于53,选B. 答案:B 问题探究问题1过一点作圆的切线,求切线方程.现利用点斜式,求出斜率值只有一个,那么该点在圆上吗?利用点斜式求直线方程,会产生漏解吗?如果漏解,会漏掉什么样的解? 导思:根据不同条件求圆的切线,主要有以下题型:(1)已知切点,求切线方程.可根据切线垂直于过切点的半径直接写出切线的方程.注意只有一条.(2)已知圆外一点,求圆的切线方程.切记有两条. (3)已知切线的斜率求圆的切线方程. 求圆的切线方程常用的三种方法: (1)设切点用切线公式法; (2)设切线斜率用判别式法;(3)设切线斜率,用圆心到切线的距离等于半径法.探究:利用点斜式求直线方程时,很重要的一点就是注意点斜式不能表示斜率不存在的直线的方程,即倾斜角为2π的直线的方程.如果没有考虑到这一点就贸然运用点斜式方程就有可能产生漏解,忽略倾斜角为2π的直线的方程而造成错误.对于题中所给问题,先要判断此点与圆的位置关系,如果点在圆外,则过此点应该有两条圆的切线,现在只解出一个斜率,则说明遗漏了倾斜角为2π的切线方程;如果点在圆上,则应该有一条切线,现解出一个斜率,则正是所求切线的斜率;如果点在圆内,则不应该有切线,不可能解出正确的斜率值.问题2将两个相交的非同心圆的方程x 2+y 2+D i x+E i y+F i =0(i=1,2)相减,可得一直线方程,这条直线方程具有什么样的特殊性呢?导思:可以通过设出两圆的交点(x 1,y 1)、(x 2,y 2),将(x 1,y 1)代入两圆方程相减得到 (D 1-D 2)x 1+(E 1-E 2)y 1+F 1-F 2=0,将(x 2,y 2)代入两圆方程相减得到(D 1-D 2)x 2+(E 1-E 2)y 2+F 1-F 2=0,点(x1,y1)、(x2,y2)满足(D1-D2)x+(E1-E2)y+F1-F2=0,故该方程为公共弦所在直线的方程.探究:两圆相减得一直线方程,它当然经过两圆的公共点.经过相交两圆的公共交点的直线是两圆的公共弦所在的直线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 已知圆的方程是x 2+y 2=2,直线y=x+b ,当b 为何值时,圆与直
线相交、相切、相离?
2、 直线y=x+1与圆x 2+y 2=1的位置关系是。
3、 求过点A (2,4)的圆x 2+y 2=4切线方程。
3x-4y+10=0或x=2
4、 已知圆C 与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0
上,则圆C 的方程为。
(x-1)2+(y+1)2=2
5、 已知圆同时满足下列三个条件:①与y 轴相切:②在直线y=x
上截得弦长为x-3y=0上,求圆的方程。
(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9
6、 已知过点M (-3,-3)的直线l 被圆x 2+y 2+4y-21=0说截得的弦
长为
l 的方程。
y+3=2(x+3)或7、 若过点A(4,0)的直线l 与曲线(x-2)+y 有公共点,则直线l 的
斜率的取值范围为。
【。
8、 若圆x+y-4x-4y-10=0上至少有三个不同点到直线l :ax+by=0
的距离为l 的倾斜角的取值范围是。
【12π,512
π】 9、 过原点且倾斜角为60°的直线被圆x 2+y 2-4y=0所截得的弦长
为。
(
10、 过点P (2,3)引圆x 2+y 2-2x+4y+4=0d 的切线,其方程是。
X=2
或12x-5y-9=0
11、 已知圆C 的圆心是直线x-y+1=0与x 轴的交点,且圆C 与直线
x+y+3=0相切,则圆C 的方程。
(x+1)2+y 2=2
12、 若直线3x+4y+m=0与圆x+y-2x+4y+4=0没有公共点,则实数m
的取值范围。
(-∞,0)U(10,+∞)
13、求实数m的取值范围,使直线x-my+3=0 与圆x2+y2-6x+5=0分
别满足:(1)相交;(2)相切:±3)相离
14、设m﹥0
x+y)+1+m=0与圆x2+y2=m的位置关
15、过坐标原点且与圆x2+y2-4x+2y+5/2=0相切的直线方程。
Y=-3x
或y=x/3
16、直线y=x2+y2=2相交与A、B两点,P是优弧上
的一点,则∠APB等于。
30°
17、直线y=kx+3与圆(x-3)2+(y-2)2=4相交与M.N两点,若
k的取值范围【-3/4,0】
|MN|≧
18、直线x-2y+5=0与x2+y2=8相交与A.B两点,则|AB|=2
19、已知直线l:x-y+4=0或与圆C:(x-1)2+(y-1)2=2,则C
上各点到l
20、在平面直角坐标系xoy中,已知圆x2+y2=4上有且只有四个点
到直线12x-5y+c=0的距离为1,则实数c的取值范围(-13,13)
21、已知圆C:x2+(y-1)=5,直线l:mx-y+1-m=0(1)判断直线
l与圆C的位置关系。
相交(2)设直线l与圆C交于A.B两
点,若直线l的倾斜角为120°,求弦AB
22、在平面直角坐标系x0y中已知圆C1:(x+3)2+(y-1)2=4和圆
C2:(x-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆
C1截得的弦长为
y=0或7x+24y-28=0(2)设p为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l和l,他们分别与圆C和圆C相交,且直线l被圆C截得的弦长想等,试求所满足条件的点P的坐标.(5/2,-1/2)或(-3/2,13/2)
23、A为何值时,两圆C1:x2+y2-2ax+4y+a2-5=0和C2:
x2+y2+2x-2ay+a2-3=0(1)外切;(2)相交;(3)相离
24、已知两圆(x-3)2+(y-4)2=25和(x-1)2+(y-2)2=r2相切,
则半径r的值是。
R=5±
25、若两圆x2+(y+1)2=1和(x+1)2+y2=r2相交,则正数r的取值
范围
﹤r
26、求两圆x2+y2-2x+10-24=0和x2+y2+2x+2y-8=0的公共弦说在直线
的方程及公共弦长。
27、圆A:x2+y2-2x-2y-7=0与圆B:x2+y2+2x+2y-2=0,判断两圆位置
关系,若相交,求过交点的直线方程及两交点的距离。
28、已知一个圆形的公园,其半径长为2km,有两个村庄A在公园
的正东方向4km处,村庄B在公园的西北方向
处(AB 相对与公园的位置都是指相对于公园
的中心位置)。
现要修一条连接村庄A
和B的公路,但公路不能穿过公园,现
有两种方案可供选择:方案一:分别从
A,B沿与公园相切的方向修路,直至两
公路相交;方案二:分别从A,B沿与公园相切的方向修路,至
切点处,再环绕公园修路,直至连接两个切点,试问两种方案
哪种更好。
方案二
29、一艘轮船沿直线反回港口的途中,接到
正西70km处,受影响的范围是半径为
30km的圆形区域,已知港口位于台风中
心正北40km处,如果这艘轮船不改变航
线,那么它是否会受台风的影响?不会
30、点P在圆0:x2+y2=1上运动,点Q在圆C:(x-3)2+y2=1上运动,
则|PQ|的最小值为。
31、求两圆x2+y2-x+y-2=0和x2+y2=5的公共弦长。
32、两圆方程分别为x2+y2-8x-4y+11=0及x2+y2+2y-3=0,两圆公切
线的条数。
3
33、已知半径为1的动圆于圆(x-5)2+(y+7)2=16相切,则动圆
圆心的轨迹方程是。
(x-5)2+(y+7)2=25或(x-5)2+(y+7)
2=9
34、M={(x,y)| x2+y2≦4},N={(x,y)| (x-1)2+(y-1)2≦
r2},且M-N=N,则r的取值范围是。
0﹤r≦
35、已知圆C1:x2+y2=4和圆C2:x2+y2+4x-4y+4=0关于直线l对称,
则直线l的方程。
x-y+2=0
36、已知两圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,
求经过圆C1和C2的交点且和直线l相切的圆的方程. (x-1/2)2+(y-1)2=5/4
37、已知圆C:x2+y2+4x-4y-5=0和圆C:x2+y2-8x+4y+7=0.(1)证
明两圆相切:(2)求过点(2,3)且于两圆相切于上述切点的圆
的方程。
3x2+3y2+24x-20y-27=0。