关于输出变压器的绕制

合集下载

输出变压器的绕制(单端)

输出变压器的绕制(单端)
电子管音响输出变压器设计要点 一:电感量计算: 电感量=负载阻抗/7F 低;这里的 7 为系数,F 低=为最低音频,通常取最小 30HZ.不要期望 20HZ 以下.
2
二:初级绕组匝数:600*初级电感量开平方值; 三:绕组漆包线直径:按照电流密度计算,通常取值 2.5A;或电流值开平方后*0.7;而电流值 取之屏极工作电流值. 四:次级匝数计算:
先计算初级与次级之间的匝数比值:公式 初级阻抗*0.85 系数/次级阻抗)开平方得数即为
匝数比. 将初级绕制匝数/匝数比=次级匝数. 先计算出阻抗比.然后通过阻抗比,才能计算出初级与 次级的匝数比
关于输出变压器的绕制(单端)摘至中国音响论坛 一般业余绕制输出变压器不必过多注重理论参数和公式计算,但有三项指标必须重视:1. 输出变压器阻抗。2.尽量大的电感量。3 尽量小的分布电容。 对于输出变压器阻抗,理论上讲即变压器阻抗必须和功放管内阻一致,这样才能达到该功放 管的最大设计功率,但实际制作胆机时,往往为了最佳音质而舍弃最佳功率,因而一般都取 变压器阻抗远大于胆管内阻。以 805 管为例,本人一般设计变压器时都取其胆内阻的 3-5 倍,因为有如此大的余量,所以只要按原设计者提供的数据绕制,一般都不会有什么问题。 尽量大的电感量和尽量小的分布电容,电感量大则低频好,分布电容小则高频好,但这本身 就是一对矛盾,因为要电感量大则分布电容必然也大,要分布电容小则电感量也必然会小, 如何解决这一对矛盾,既要电感量大,以保持低频好,又要分布电容小以保持好的高频,这 就是我们绕制输出变压器以保证音质的关键所在。如何解决好这一对矛盾呢?下面详细谈谈 个人的制作体会,不对之处请大家讨论。 1.为保证有尽量大的电感量,一定要选择大规格的铁芯,只有大规格铁芯才是大电感量的重 要保证,市售成品机往往低频下潜不深、缺乏弹性、没有冲击力,速度慢的重要因素都在其 为节约成本选用铁芯太小所致,尤其是单端机,因为要流气缝,铁芯规格小了肯定是不行的, 本人用于 10-20W 的小功率单端机的输出牛铁芯决不会小于舌宽 35mm,叠厚不得小于 65mm, 即 35×65 以上。而大功率单端机的输出牛一般都用舌宽 41mm,叠厚 75mm,也就是 41×75 以上,以保证该输出牛有足够的电感量,从而保证低频有很好的下潜,弹性和速度。

35w12v高频变压器绕制

35w12v高频变压器绕制

35w12v高频变压器绕制
35W12V高频变压器绕制通常指的是需要制作一个输出功率为35W、输入电压为12V的高频变压器。

高频变压器通常用于电子设备中,将一个电压级别转换为另一个电压级别,或者用于实现电气隔离等功能。

要绕制一个35W12V的高频变压器,需要考虑以下几个关键因素:
1.铁芯材料和尺寸:选择适当的铁芯材料和尺寸是关键,因为它们将决定变
压器的性能和效率。

2.线圈匝数:根据输入和输出电压的要求,确定适当的线圈匝数。

3.线材规格:选择适当线材规格以承载所需的电流,并保持适当的绝缘。

4.绕制方式:确定合适的绕制方式,如层绕、分布式绕制等,以提高变压器
的效率。

5.绝缘处理:确保线圈之间的绝缘和线圈与铁芯之间的绝缘,以确保电气性
能和安全。

6.磁芯选择:选择合适的磁芯材料和尺寸,以确保变压器的性能和稳定性。

总之,35W12V高频变压器绕制是指根据特定的要求和规格,设计和制造一个能够实现特定功能的高频变压器。

这个过程需要充分了解变压器的原理和设计方法,并考虑到各种因素,以确保最终的变压器性能达到要求。

业余绕制输出变压器参数和公式计算

业余绕制输出变压器参数和公式计算

一般业余绕制输出变压器不必过多注重理论参数和公式计算,但有三项指标必须重视:1.输出变压器阻抗。

2.尽量大的电感量。

3尽量小的分布电容。

对于输出变压器阻抗,理论上讲即变压器阻抗必须和功放管内阻一致,这样才能达到该功放管的最大设计功率,但实际制作胆机时,往往为了最佳音质而舍弃最佳功率,因而一般都取变压器阻抗远大于胆管内阻。

以805管为例,本人一般设计变压器时都取其胆内阻的3-5倍,因为有如此大的余量,所以只要按原设计者提供的数据绕制,一般都不会有什么问题。

尽量大的电感量和尽量小的分布电容,电感量大则低频好,分布电容小则高频好,但这本身就是一对矛盾,因为要电感量大则分布电容必然也大,要分布电容小则电感量也必然会小,如何解决这一对矛盾,既要电感量大,以保持低频好,又要分布电容小以保持好的高频,这就是我们绕制输出变压器以保证音质的关键所在。

如何解决好这一对矛盾呢?下面详细谈谈个人的制作体会,不对之处请大家讨论。

1.为保证有尽量大的电感量,一定要选择大规格的铁芯,只有大规格铁芯才是大电感量的重要保证,市售成品机往往低频下潜不深、缺乏弹性、没有冲击力,速度慢的重要因素都在其为节约成本选用铁芯太小所致,尤其是单端机,因为要流气缝,铁芯规格小了肯定是不行的,本人用于10-20W的小功率单端机的输出牛铁芯决不会小于舌宽35mm,叠厚不得小于65mm,即35×65以上。

而大功率单端机的输出牛一般都用舌宽41mm,叠厚75mm,也就是41×75以上,以保证该输出牛有足够的电感量,从而保证低频有很好的下潜,弹性和速度。

2.为保证有尽量小的分布电容:a.各绕组尽量分多层绕制,一般来讲初级绕组不得小于5-7层,次级绕组也必须分5-7层,夹在初级绕组当中,因为这样即有很好的藕合,且各绕组的分布电容呈串联结构,而电容是越串联越小的。

b.注意绕制工艺,手法也是减少分布电容的重要措施。

第一,绕制时线圈一定要拉紧,越紧越好,这也是高级输出牛只能手工绕制,不能机器绕制的原因所在,但不一定要排列十分整齐,有少量乱层对分布电容相反有好处。

图文并茂解析变压器各种绕线工艺!(包含各种拓扑)

图文并茂解析变压器各种绕线工艺!(包含各种拓扑)

图⽂并茂解析变压器各种绕线⼯艺!(包含各种拓扑)⼀、传统变压器篇单路输出 Flyback 及常见的变压器绕组结构红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组特点:辅助绕组位夹在初级、次级中间缺点:1, 临近效应很强,绕组交流损耗⼤2, 初、次级间的漏感较⼤,吸收回路损耗较⼤,效率较低优点:1,⼯艺结构⼗分简单,易于制造2,初级外层接电位静⽌的V+端,易于实现⽆Y改进的 Flyback 变压器绕组结构(简易型)红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组特点:辅助绕组位于线包最⾥层,初级在中间、次级在最外边缺点:临近效应很强,绕组交流损耗⼤优点:1,⼯艺结构⼗分简单,易于制造2,初级外层接电位静⽌的V+端,易于实现⽆Y3,初次级间漏感较⼩,吸收回路损耗较⼩,效率较⾼改进的 Flyback 变压器绕组结构(三明治型)红⾊:初级绕组红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组特点:辅助绕组位于线包最⾥层,然后分别是初级的⼀半,次级全部,初级的另⼀半;缺点:1, 次级临近效应很强,绕组交流损耗⼤2,初级的⼀半绕组没有任何的静电位层供屏蔽⽤,⽆法实现⽆Y优点:1, ⼯艺结构复杂,不利于制造;2, 初次级间漏感较⼩,吸收回路损耗较⼩,效率较⾼3, 初级临近效应较⼩,绕组交流损耗⼩Flyback 多路输出L3 与L4 之间的漏感,引起交叉调整。

实⽤的多路输出型⾼压输出绕组叠在低压绕组之上,双线并绕降低交叉调整功率传输变压器(含正激、推挽、半桥、全桥)合理的绕组结构, 层厚⼩于2Δ红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组实际变压器的模型虚线内为理想变压器脉冲变压器信号传输失真由于原边及幅边漏感,电阻分量的存在,脉冲在经过变压器后,产⽣延迟、斜率变缓、振铃、顶降脉冲电流的分解脉冲电流的分解脉冲电流由基波电流及各⾼次谐波电流组成占空⽐越⼩,基波分量越⼩,⾼次谐波分量越⼤,因此线径的选择(穿透深度*2)不能只考虑基波电流的频率输出功率与频率的关系(EE25 单端变换器为例)理论上,对于指定的磁芯,在相同的磁密下,输出功率与频率呈正⽐,但实际上并⾮如此,原因有:1,频率升⾼,穿透深度下降,需要⽤较⼩的线径,窗⼝利⽤率下降,且绕组层厚与穿透深度的⽐值增⼤,交流电阻⼤增,有效输出功率下降;2,频率增加,绝缘材料的耐压下降,为保证同样的绝缘强度,需要加⼤绝缘层厚度,进⼀步降低窗⼝利⽤率;3,频率到达某⼀程度后,磁芯损耗⼤增,需要适当降底磁通密度(具体请参考磁损表)LLC 变压器LLC 电路结构LLC 集成磁件漏感由原边与副边之间的档墙宽度、磁芯的磁导率、以及中柱长度与窗⼝⾼度的⽐值决定红⾊:初级绕组黄⾊:次级绕组⼩漏感的 LLC 集成磁件个别应⽤中,需要⽤到较⼩的漏感,挡墙的宽度较⼩,安全间距可利⽤下⾯的结构来满⾜。

变压器线圈绕法介绍与计算

变压器线圈绕法介绍与计算

变压器线圈绕法介绍与计算 升压变压器的低压线圈应该⽐⾼压线圈粗。

才能承载相对应电流。

输出电压的线圈数⽐输⼊的线圈数多。

才能实现升压。

升压⽐按俩线圈数⽐的倍率算。

⼀台合格的变压器要经过科学的计算。

升压⽐要精确计算。

多⼤的硅钢⽚铁芯配多粗的主副线圈。

都是定的。

根据不同的升压⽐使⽤线圈粗细也不⼀样的。

它的步骤主要有变压器的组装、线圈的制造、油箱及附件,给⼤家简单讲⼀下线圈制造中⾼频变压器的绕线⽅法: 1、先准备材料:⾻架、铜⽪、漆包线、⾼温带、磁环 变压器线圈绕制同名端⽰意图 L1 - K1 为同名端: 例⼦解读升压变压器的制作⽅法 求怎么计算出变压器的⼀次绕组和⼆次绕组的铜线匝数!⽐如220V变成12V怎么计算呢!怎么选择硅钢⽚的⼤⼩呢!怎么计算使⽤直径为多⼤的铜线呢给你个参考希望对你有帮助: ⼩型变压器的简易计算: 1,求每伏匝数每伏匝数=55/铁⼼截⾯例如,你的铁⼼截⾯=3.5╳1.6=5.6平⽅厘⽶故,每伏匝数=55/5.6=9.8匝 2,求线圈匝数初级线圈 n1=220╳9.8=2156匝次级线圈 n2=8╳9.8╳1.05=82.32 可取为82匝次级线圈匝数计算中的1.05是考虑有负荷时的压降 3,求导线直径你未说明你要求输出多少伏的电流是多少安?这⾥我假定为8V.电流为2安。

变压器的输出容量=8╳2=16伏安变压器的输⼊容量=变压器的输出容量/0.8=20伏安初级线圈电流I1=20/220=0.09安导线直径 d=0.8√I 初级线圈导线直径 d1=0.8√I1=0.8√0.09=0.24毫⽶次级线圈导线直径 d2=0.8√I2=0.8√2=1.13毫⽶ ⼀般⼩型电源变压器的初级都是接在220伏上。

那么: 1、圈数⽐:初级电压/次级电压*105%100,即220伏/次级电压*105%100; 2、初级圈圈数的确定:40⾄50除以铁芯截⾯积(经验公式),视铁芯质量的好坏⽽定,好铁芯可以取40,较差的铁芯可以取50; 3、铁芯截⾯积:S=1.2乘以根号下的功率/效率(效率:100VA以下的变压器的效率为60⾄95%); 4、铜线截⾯积:根据电流计算,⼀般取每平⽅毫⽶2.5A。

(整理)输出变压器的基本设计

(整理)输出变压器的基本设计

输出变压器的基本设计在这里介绍一个相对来说比较简单的输出变压器(OPT)的设计方法。

将此例进行稍许的变化,则可以演变出各种各样的版本。

这里要列举的是HiFi规格的三明治绕线构造例。

若是真空管收音机用的小型输出变压器,次级只要绕一组即相当实用。

【1】关于基本规格基本规格例(表―1)∙用途真空管单端输出变压器(OPT)。

∙以初级阻抗3500欧来设计。

∙次级阻抗根据所使用喇叭单元的8欧阻抗来定。

通过改变绕线匝数,可对初级和次级的绕组阻抗进行变更。

一般情况下,在8欧以外再增加4欧和16欧的抽头,对于变压器的效率来说并没有什么好处,因此,为了不损失变压器的性能,建议次级仅设1个绕组。

∙以最大输出15W来设计。

∙初级直流重叠电流根据所使用的真空管而不同,这里按照80mA来设计。

∙初级绕组的磁束密度线圈的饱和磁束密度在18000高斯左右,带有余量,这样可以抑制在无信号时的设计值6000高斯以下。

基准低频下限为了确保低频段的特性,定为20Hz。

(表―1)下面是另一些单端OPT的设计规格。

【2】关于铁芯规格铁芯规格例(表―2)为了确保所定的输出并降低铁芯的磁束密度,使用如表―2所示的截面积为15.8cm2的大型铁芯。

(表―2)下面是另一些铁芯的设计规格。

【3】关于匝数的设计针对最大初级电压所需的初级匝数为N1(匝)=E1*108/((2π/√2)・A・Bo・f)在这里,E1=243V;A=15.8cm2;Bo=6000高斯;f=20Hz,计算得出2894 匝。

另一方面,从经验来说,次级绕组在线径1mmφ时每一层绕50匝,则3层刚好为150匝,由于初级与次级的匝数比为20.9,针对次级的150匝从匝数比可求得初级为3137匝。

在此,若将初级匝数定为N1(匝)=3137匝,则根据上述公式到推,磁束密度将是5536高斯,落在目标值的6000高斯以下。

通过上述设定,在单端机上,即使是在20Hz的超低频段也可确保15W以上输出。

1000W以下小型电源变压器的四种绕制方法

1000W以下小型电源变压器的四种绕制方法

1000W以下小型电源变压器的四种绕制方法2注:经桥式整流电容滤波后的电压约是原变压器次级电压的1.4倍。

方法二:制作一定功率的变压器1. 求铁芯面积铁芯截面积 S =是被线圈套着部位铁芯的截面积, 单位:cm 2, P 为输出功率,单位:W );2. 求线圈匝数铁芯的磁感应强度可取(7000-10000Gs ),通常取 8000Gs, 每伏匝数 T =450000/(8000×铁芯截面积 S );3. 求导线直径同方法一。

例如:制作功率为 20W 的变压器,输出电压 50V 。

1. 求铁芯面积铁芯截面积 S ==1.25×20=1.25×4.472≈ 5.6 cm22. 求线圈匝数 (磁感应强度取 8200高斯)每伏匝数T =450000/(8000×S ) =450000/(8200×5.6) ≈ 9.8匝484 34 例如:制作功率为 20W 的变压器,输出电压 50V 。

查上表,根据表中红色一行数据进行绕制即可。

方法四:利用图表数据制作变压器(2)也可利用下面的“图 1或图 2”来计算。

如:设计一个30瓦的变压器,铁芯面积可直接从图中刻度线上得到6.8㎝ 2;如果采用比较好的铁芯片, 磁通密度可取10000高斯,在磁通密度的刻度线上找到10000Gs 这个点;在变压器电功率的刻度线上找到 30瓦这个点,连接这两点,交每伏匝数刻度线于 6.7, 也就是说每伏应该绕 6.7匝。

另外,导线的直径可以根据各个线圈使用的电流,从图中的刻度线上图 1查出。

根据散热环境,电流密度可取 2-3A /mm 2,一般可取 2.5A /mm 2。

图 2二、电源变压器绕制小常识1. 如何选定变压器绕组所用导线电流密度绕组导线的电流密度,主要取决于负载损耗、绕组温升和变压器二次侧突然短路时的动、热稳定。

一般铝导线电流密度取2.3A/mm2567(1)提高铁芯 (如硅钢片 ) 质量。

变压器基本工作原理

变压器基本工作原理

变压器基本工作原理
变压器是一种电气设备,它通过电磁感应的原理将输入电压转换为输出电压。

其基本工作原理可以归纳为以下几个方面:
1. 电磁感应定律:根据法拉第电磁感应定律,在变压器的铁芯上绕制有两个相互绝缘的线圈,即主线圈(也称为初级线圈)和副线圈(也称为次级线圈)。

当主线圈中有交流电流通过时,将会在铁芯内产生一个变化的磁场。

2. 磁耦合效应:由于电磁感应的存在,主线圈中产生的磁场会通过铁芯传导到副线圈中。

在副线圈中,由于磁场的变化,将会产生感应电动势。

而感应电动势的大小与线圈的匝数成正比,即副线圈匝数的增加将会使输出电压增加。

3. 变压器的变压比:根据电磁感应定律,主线圈和副线圈中的感应电动势与其匝数成正比。

因此,变压器的变压比可以通过改变主线圈和副线圈的匝数比来实现。

如果副线圈匝数远大于主线圈匝数,输出电压将会比输入电压高;反之,如果副线圈匝数远小于主线圈匝数,输出电压将会比输入电压低。

4. 能量传递:变压器实现输入电压到输出电压的转换,是通过磁场能量的传递实现的。

当主线圈中有交流电流通过时,会在铁芯中产生一个变化的磁场。

这个磁场会通过铁芯传导到副线圈中,进而在副线圈中产生感应电动势。

经过适当的变压比转换,输出电压就会随之改变。

需要注意的是,变压器的工作原理符合能量守恒定律,输入电
压和输出电压之间的关系受到线圈的匝数比及磁场的变化情况的制约。

变压器还通过使用绝缘材料来隔离主线圈和副线圈,以确保电流的安全传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于输出变压器的绕制(单端)一般业余绕制输出变压器不必过多注重理论参数和公式计算,但有三项指标必须重视:1.输出变压器阻抗。

2.尽量大的电感量。

3尽量小的分布电容。

对于输出变压器阻抗,理论上讲即变压器阻抗必须和功放管内阻一致,这样才能达到该功放管的最大设计功率,但实际制作胆机时,往往为了最佳音质而舍弃最佳功率,因而一般都取变压器阻抗远大于胆管内阻。

以805管为例,本人一般设计变压器时都取其胆内阻的3-5倍,因为有如此大的余量,所以只要按原设计者提供的数据绕制,一般都不会有什么问题。

尽量大的电感量和尽量小的分布电容,电感量大则低频好,分布电容小则高频好,但这本身就是一对矛盾,因为要电感量大则分布电容必然也大,要分布电容小则电感量也必然会小,如何解决这一对矛盾,既要电感量大,以保持低频好,又要分布电容小以保持好的高频,这就是我们绕制输出变压器以保证音质的关键所在。

如何解决好这一对矛盾呢?下面详细谈谈个人的制作体会,不对之处请大家讨论。

1.为保证有尽量大的电感量,一定要选择大规格的铁芯,只有大规格铁芯才是大电感量的重要保证,市售成品机往往低频下潜不深、缺乏弹性、没有冲击力,速度慢的重要因素都在其为节约成本选用铁芯太小所致,尤其是单端机,因为要流气缝,铁芯规格小了肯定是不行的,本人用于10-20W的小功率单端机的输出牛铁芯决不会小于舌宽35mm,叠厚不得小于65mm,即35×65以上。

而大功率单端机的输出牛一般都用舌宽41mm,叠厚75mm,也就是41×75以上,以保证该输出牛有足够的电感量,从而保证低频有很好的下潜,弹性和速度。

2.为保证有尽量小的分布电容:a.各绕组尽量分多层绕制,一般来讲初级绕组不得小于5-7层,次级绕组也必须分5-7层,夹在初级绕组当中,因为这样即有很好的藕合,且各绕组的分布电容呈串联结构,而电容是越串联越小的。

b.注意绕制工艺,手法也是减少分布电容的重要措施。

第一,绕制时线圈一定要拉紧,越紧越好,这也是高级输出牛只能手工绕制,不能机器绕制的原因所在,但不一定要排列十分整齐,有少量乱层对分布电容相反有好处。

第二,线间绝缘层越薄越好,如有绕制经验,有耐心,用绕一层刷一层快干漆更好,但刚开始绕制本人推荐用普通封装纸箱的不干胶胶带,但必须用不透明的那种,透明的反而不好用。

每绕一层就用不干胶带封一层,初级与次级间封两层,因其薄膜很薄且有很好的固定作用。

第三,次级绕组尽量均匀稀绕,尽量不要象初级那样排的过密,但一定要拉紧。

3.线材选用:因我们选用的铁芯较大,相应的窗口也就较大,对我们选用线材带来了好处,一般初级可选用直径0.31-0.45mm的高强度漆包线,次级选用直径1.2-1.45mm的高强度漆包线,视铁芯窗口大小而定。

用这种规格线材既可以拉紧,又可减小变压器的直流电阻,从而减小了变压器的铜损和铁损,对改善音质非常有利。

4.关于铁芯质量选择:对于一个装机高手来讲,有了一副好铁芯就等于成功了一半。

铁芯除规格大小外,还有一个重要参数,就是必须选用0.35片厚的,片厚0.50的铁芯因有涡流产生只能用作电源变压器,不能用于输出牛,如能找到0.35以下的光面冷轧铁芯则更好,但其含硅量不一定要很高,中等就可以了。

5.关于骨架:一般各种规格的骨架市面都有售,也可自制,但自制较麻烦。

以上罗嗦了半天也不知讲清了没有,如有不祥之处以后再作交流,写累了,先歇歇。

风梦网友:环形牛我也没绕过,撇开其物理特性不谈,我主要不绕的原因有两点:1.如绕制推挽牛,那起码初级要正绕十多个绕组,反绕十多个绕组,且正反绕组要交叉平行,次级绕组又要夹在其中,机器绕又不能用,手工穿绕是不可能的。

2.如果绕单端牛,因有气缝,则必须将环形铁芯切成两片,同样无法绕制。

至于C型铁芯,我倒是绕过几只,声音非常好,但必须注意两点:1.必须用双C型铁芯,这样才能只绕成一个线包,以保证各绕组各项指标的对称性。

单C铁芯因要绕左右两个线包,其一致性很难保证。

2.必须选用真正好的铁芯,即片厚薄且内部完整。

现市场出售的C型铁芯,基本上是作电源牛用的,撇开片厚不谈,单就其铁芯内部,很多都是断的、碎的片芯压在一起的,外观上看不出来,实际上不能用。

三江网友:好的铁芯倒是要碰运气,我在寻铁芯时,除各电子商店外,各大电子厂的废品仓库、个旧机电交易市场,甚至大街小巷的废品收购站,我都是常客,淘到好的铁芯真是如获至宝。

至于漆包线,倒不一定要无氧铜的,只要质量好的高强度漆包线完全可以胜任,声音好坏主要取决于铁芯品质和绕制工艺水平,当然如能搞到符合规格要求的无氧铜漆包线则更好,但很困难输出变压器在胆机中的作用极其重要,有人说它是胆味的主要源头之一,也有人尝试给石机加上输出变压器,以便使石机具有胆味。

输出变压器的质量与整机工作性能有密切关系,因此除了使用优质硅钢片以外其制作工艺要求较高,特别是由于众所周知的原因,制造商对输出变压器的数据及工艺往往讳莫如深,给初学者以神秘的感觉。

网上关于输出变压器的帖子较多,为使初入此道的朋友有一个初步的认识,这里谈谈输出变压器的有关知识,本人从不搞输出变压器以及其他元器件的制售等经营,有些观点纯属一家之言,如有得罪请多海涵。

一、输出变压器的功能:1、把胆机输出的功率通过阻抗变换,传输给低阻抗的喇叭(音箱)功放电子管的屏极负载阻抗较高,不同工况负载阻抗也不同,三极管负载阻抗一般取值较高,为内阻的2~3倍,有的甚至达到4倍,而集射管或无极管为内阻的0.1~0.25倍。

下面为常见的功放管单端负载阻抗典型值:6F6GT 6V6GT6L6G EL34 KT66 807 2A345211 WE300B8456P147K 5.0K 2.5K 2.0K 2.2K 2.5K2.5K3.9K 5.0K 3.0K 3.4K 5.2K如果负载阻抗发生变化,必须适当调整功放管的工作点。

一般喇叭或音箱阻抗多为4、5、6(日本)、8、16、32(多为电影放映机功放专用,因为传输距离较远,可以降低损耗)Ω等,所以必须通过输出变压器加以变换,其公式为N初/N次=√R初/R次或N初平方/N次平方=R初/R次(为了叙述简便,先不考虑效率问题),这个公式是从功率P=U平方/R演变来的,P初=P次,U初平方/R初=U次平方/R 次,变换一下就成为U初平方/U次平方=R初/R次。

从变压器原理可知初次级电压比U初/U 次=圈数比N初/N次,因此用N(圈数)代替U(电压)便得到N初平方/N次平方=R初/R次,把这个公式开方便得到N初/N次=√R初/R次。

电子管功放对阻抗匹配要求较严格,如果负载阻抗发生变化,必须重新设计、调整功放管的工作点。

因此次级阻抗要根据喇叭或音箱阻抗决定,如果次级负载有多种如0-4-8-16Ω,次级绕组可以有几种阻抗与之配合(如果只用低阻抗,则高阻抗绕组会加大漏感,因此一般采用0-4-8Ω或0-8-16Ω。

如鑫诺威特——拉斐尔的套机就有两种输出变压器可供选择)。

2、隔离直流高压,这个就不解释了,对于屏压较高的输出电路,应注意初次级之间以及对地(铁心或底盘)的绝缘问题。

二、输出变压器的主要参数:1、初次级阻抗或变比基本概念前面已经讲过了,在选择或设计制作变压器时要根据功放管的负载阻抗和喇叭(音箱)阻抗确定初次级阻抗和变比。

在实际设计时要考虑效率问题。

2、额定功率由于功放输出功率不同,输出变压器也要与之相匹配,电子管功放输出变压器的功率从直流收音机的0.5W到大型扩音机的275W不等,一般高保真功放在2.5W-100W左右,为了避免失真,高保真功放输出变压器一般适宜在小于额定功率条件下工作,因此功放输出功率须留出足够的富裕量。

说到这里顺便指出,有很多网友图省事和经济,利用6P1收音机2W输出变压器(其中当然也不乏拆旧收音机或27厂的库存品)做6P1或6P14单端功放,甚至直接利用红灯711等收音机改制音响。

由于三级收音机额定不失真输出功率只有0.5W,6P1的设计屏压仅为200V左右,其频率范围只有150Hz-5000Hz(由喇叭和调幅广播频宽所决定),由此可知,根本不可能取得好的放音效果。

至于用小功率电力变压器代替输出变压器,无论是初级电感还是铁心质量与输出变压器的要求相去甚远,应急修理临时替代尚可,用来装机还是免了吧。

说句不太中听的话,玩胆机本身就是锦上添花的事,一味穷凑合不如不玩。

有网友可能会问,这与你主张修旧利废不是矛盾吗?非也,修旧利废不等于降低对元器件的质量要求,我用旧存的七灯变压器装四管胆前级,用海鸥闪光灯快速电解电容作滤波,其性能比电路图本身要求高出许多,还有那大红袍金属膜电阻,现在都是抢手货。

3、初级电感L 初级电感与低频响应有关,输出变压器最低频下限fd在初级电感的感抗等于负载阻抗处。

感抗Rl=2πfdL,把这个公式变换一下可以得出L=Rl/2πfd,把1/2π变化为0.159可以得出L=0.159Rl/fd,L单位为亨利(H),fd为最低放音频率,单位Hz,Rl单位Ω,这就是设计输出变压器的公式之一。

从这个公式可以得知,同样的负载阻抗,其最低放音频率越低,输出变压器所需初级电感越大;而同样的初级电感,负载阻抗低的,其最低放音频率也低,反之负载阻抗较高的变压器要获得同样的最低放音频率,其电感必然要加大(电感大漏感也大,这是互相矛盾的,下面会进一步论述两者的关系)。

负反馈可以提高功放阻尼系数,但初级电感与负反馈无关,不会因为有负反馈而减小。

4、漏感Lp 漏感决定了高频部分的频率响应特性,漏感的阻抗等于负载阻抗处为高频上限,一般值为XXmH。

由此可知内阻低负载阻抗也低的三极管对漏感要求高,而内阻高负载阻抗也高的集射管或五极管允许的漏感要大。

下面的图表(摘自唐道济先生著《电子管声频放大器实用手册》,下面的设计公式也摘自该书,在此一并表示感谢!)反映了初级电感与最低频率和最大漏感与最高频率的关系:通过上面对电感和漏感的论述得知,初级电感和漏感决定了输出变压器的放音频率上下限,把公式L=0.159Rl/f分别变化为低频下限fd=0.159Rl/L及高频上限fg=0.159Rl/Lp。

通过测定电感与漏感很容易判断其频率范围,设一个负载阻抗3K的输出变压器,其初级电感为15H,漏感为30mH,根据公式计算得知,其最低放音频率为32Hz,频率上限为15KHz;如果一个负载阻抗5K的变压器要达到上述频响范围,其初级电感为25H,而漏感也可以放宽为53mH。

假如其初级电感仍为15H,那么其最低放音频率只有53Hz。

网友可以根据上面公式和手头变压器的参数自行计算其频率范围。

初级电感大,其漏感相对也大。

为了降低初级电感,功放管除了使用三极管外,也可以选择内阻低的集射管和五极管如6L6G、EL34、KT66以及807等。

相关文档
最新文档