上海市各区2018届高三数学(理科)一模试题分类汇编:三角函数 精品

合集下载

上海市黄浦区2018届高三一模数学试卷及答案解析.pdf

上海市黄浦区2018届高三一模数学试卷及答案解析.pdf

,A(﹣1.1)=﹣1.若 A(2x•A(x))=5,则正实数 x 的取
第 1页(共 18页)
值范围是

12.(3 分)已知点 M(m,0),m>0 和抛物线 C:y2=4x.过 C 的焦点 F 的直线
与 C 交于 A,B 两点,若 =2 ,且| |=| |,则 m=

二、选择题(本大题共有 4 题,满分 12 分.) 13.(3 分)若 x∈R,则“x>1”是“ ”的( )
(用符
号“<“连接起来).
10.(3 分)已知点 O,A,B,F 分别为椭圆
的中心、左
顶点、上顶点、右焦点,过点 F 作 OB 的平行线,它与椭圆 C 在第一象限部分交
于点 P,若
,则实数λ的值为

11 .( 3 分 ) 已 知 x∈R , 定 义 : A ( x ) 表 示 不 小 于 x 的 最 小 整 数 . 如
18.(12 分)如图,已知点 A 是单位圆上一点,且位于第一象限,以 x 轴的正半 轴为始边,OA 为终边的角设为α,将 OA 绕坐标原点逆时针旋转 至 OB. (1)用α表示 A,B 两点的坐标; (2)M 为 x 轴上异于 O 的点,若 MA⊥MB,求点 M 横坐标的取值范围.
19.(14 分)已知函数 g(x)=
∴| ﹣ |=
≥| |﹣1=
﹣1= ﹣1,
∴| ﹣ |的最小值为 ﹣1
8.(3 分)已知函数 y=f(x)是奇函数,且当 x≥0 时,f(x)=log2(x+1).若函 数 y=g(x)是 y=f(x)的反函数,则 g(﹣3)= ﹣7 . 【解答】解:∵反函数与原函数具有相同的奇偶性. ∴g(﹣3)=﹣g(3), ∵反函数的定义域是原函数的值域, ∴log2(x+1)=3, 解得:x=7, 即 g(3)=7, 故得 g(﹣3)=﹣7. 故答案为:﹣7.

最新上海市2018届高三一模数学试卷(含答案)

最新上海市2018届高三一模数学试卷(含答案)

高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 方程lg(34)1x +=的解x =2. 若关于x 的不等式0x a x b->-(,a b R ∈)的解集为(,1)(4,)-∞+∞,则a b += 3. 已知数列{}n a 的前n 项和为21n n S =-,则此数列的通项公式为4. 函数()1f x x =+的反函数是5. 6(12)x +展开式中3x 项的系数为 (用数字作答)6. 如图,已知正方形1111ABCD A B C D -,12AA =,E 为棱1CC 的中点,则三棱锥1D ADE -的体积为7. 从单词“shadow ”中任意选取4个不同的字母排成一排,则其中含有“a ”的共有 种排法(用数字作答)8. 集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示)9. 如图,已知半径为1的扇形AOB ,60AOB ∠=︒,P为弧AB 上的一个动点,则OP AB ⋅取值范围是10. 已知x 、y 满足曲线方程2212x y+=,则22x y +的 取值范围是11. 已知两个不相等的非零向量a 和b ,向量组1234(,,,)x x x x 和1234(,,,)y y y y 均由2个a 和2个b 排列而成,记11223344S x y x y x y x y =⋅+⋅+⋅+⋅,那么S 的所有可能取值中的最 小值是 (用向量a 、b 表示)12. 已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=,数列{}n b 满足1n n n b b a +-=(*n N ∈),若数列2{}n nb a 中的任意一项都在该数列中重复出现无数次,则满 足要求的1b 的值为二. 选择题(本大题共4题,每题5分,共20分)13. 若a 、b 为实数,则“1a <”是“11a>”的( )条件 A. 充要 B. 充分不必要 C. 必要不充分 D. 既不充分也不必要14. 若a 为实数,(2)(2)4ai a i i +-=-(i 是虚数单位),则a =( )A. 1-B. 0C. 1D. 215. 函数2()||f x x a =-在区间[1,1]-上的最大值是a ,那么实数a 的取值范围是( ) A. [0,)+∞ B. 1[,1]2 C. 1[,)2+∞ D. [1,)+∞ 16. 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( ) A. 恒为偶数 B. 恒为奇数 C. 不超过2017 D. 可超过2017三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在Rt AOB ∆中,6OAB π∠=,斜边4AB =,D 是AB 中点,现将Rt AOB ∆以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上一点,且90BOC ∠=︒,(1)求圆锥的侧面积;(2)求直线CD 与平面BOC 所成的角的大小;(用反三角函数表示)18. 已知(23,1)m =,2(cos ,sin )2A n A =,A 、B 、C 是ABC ∆的内角; (1)当2A π=时,求||n 的值;(2)若23C π=,||3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长;19. 如图所示,沿河有A 、B 两城镇,它们相距20千米,以前,两城镇的污水直接排入河 里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污 水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送), 依据经验公式,建厂的费用为0.7()25f m m =⋅(万元),m 表示污水流量,铺设管道的费 用(包括管道费)() 3.2g x x =(万元),x 表示输送污水管道的长度(千米);已知城镇A 和城镇B 的污水流量分别为13m =、25m =,A 、B 两城镇连接污水处理 厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排 入河中;请解答下列问题(结果精确到0.1)(1)若在城镇A 和城镇B 单独建厂,共需多少总费用?(2)考虑联合建厂可能节约总投资,设城镇A 到拟建厂的距离为x 千米,求联合建厂的总费用y 与x 的函数关系式,并求y 的取值范围;20. 如图,椭圆2214yx+=的左、右顶点分别为A、B,双曲线Γ以A、B为顶点,焦距为25,点P是Γ上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为k,O为坐标原点;(1)求双曲线Γ的方程;(2)求点M的纵坐标M y的取值范围;(3)是否存在定直线l,使得直线BP与直线OM关于直线l对称?若存在,求直线l方程,若不存在,请说明理由;21. 在平面直角坐标系上,有一点列01231,,,,,,n n P P P P P P -⋅⋅⋅,设点k P 的坐标(,)k k x y (k N ∈,k n ≤),其中k x 、k y Z ∈,记1k k k x x x -∆=-,1k k k y y y -∆=-,且满足 ||||2k k x y ∆⋅∆=(*k N ∈,k n ≤);(1)已知点0(0,1)P ,点1P 满足110y x ∆>∆>,求1P 的坐标;(2)已知点0(0,1)P ,1k x ∆=(*k N ∈,k n ≤),且{}k y (k N ∈,k n ≤)是递增数列,点n P 在直线:38l y x =-上,求n ;(3)若点0P 的坐标为(0,0),2016100y =,求0122016x x x x +++⋅⋅⋅+的最大值;。

(最新整理)2018高三“一模”数学试题汇编(函数)

(最新整理)2018高三“一模”数学试题汇编(函数)

2018高三“一模”数学试题汇编(函数)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高三“一模”数学试题汇编(函数))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高三“一模”数学试题汇编(函数)的全部内容。

2018上海各区高三“一模”数学试题分类(函数)一、填空题: 1.若全集,集合,则U R ={}02A x x x =≤≥或U C A = 2.设集合,,则{2,3,4,12}A ={}0,1,2,3B =A B = 3.已知集合,,若,则{}1,2,5A ={}2,B a ={}1,2,3,5A B = a =4.已知全集,集合,集合,则U N ={}1,2,3,4A ={}3,4,5B =()U C A B = 5.设全集,集合,,则U Z ={}1,2M ={}2,1,0,1,2P =--()U P C M = 6.已知函数,,若,则实数{}2,3A ={}1,2,B a =A B ⊆a =7.已知集合,,则{}03A x x =<<{}24B x x =≥A B = 8.已知集合,,若,则实数{}1,2,A m ={}3,4B ={}3A B = m =9.函数的定义域是()lg(2)f x x =-10.函数的定义域为()f x =11.若行列式,则 124012x -=x =12.不等式的解为 10x x-<13.不等式的解集是 11x<14.不等式的解集是 211x x +>+15.不等式的解集是 2433(1)12(2x x x --->16.不等式的解集为 111x ≥-17.已知是定义在上的奇函数,则()f x R (1)(0)(1)f f f -++=18.已知函数的反函数为,则()21f x x =-1()f x -1(5)f -=19.若函数的反函数的图像经过点,则 ()f x x α=11(,)24a =20.方程的解222log (2)log (3)log 12x x -+-=x =21.已知函数的反函数为,则,则实数2()log ()f x x a =+1()y f x -=1(2)1f -=a =22.已知函数是奇函数,当时,,且,则()y f x =0x <()2x f x ax =-(2)2f =a =23.已知函数,是函数的反函数,若的图像()1log a f x x =+1()y f x -=()y f x =1()y f x -= 过点,则实数的值是(2,4)a 24.已知函数是定义在上且周期为的偶函数,当时,()f x R 4[2,4]x ∈43()log ()2f x x =- 则 1(2f =25.已知函数是定义在上的偶函数,且在上是增函数,若,()y f x =R [0,)+∞(1)(4)f a f +≤ 则实数的取值范围是a 26.已知,函数在区间上有最小值,且有最大值为13a >()lg(1)f x x a =-+[0,31]a -0,则实数的取值范围是lg(1)a +a 27.若不等式对任意正整数恒成立,则实数的取值范围是 1(1)(1)31n na n +--⋅<++n a 28.若不等式对满足的任意实数恒成立,则实数的最大值222()x y cx y x -≤-0x y >>,x y c 为29.已知函数有三个零点,则实数的取值范围是()21f x x x a =--a 30.已知函数有三个不同的零点,则实数的取值范围是 22log (),0()3,0x a x f x x ax a x +≤⎧=⎨-+>⎩a 31.定义,已知函数、的定义域都是,则下列四个命题中为,(,),a a b F a b b a b ≤⎧=⎨>⎩()f x ()g x R 真命题的是 (写出所有真命题的序号)①若、都是奇函数,则函数为奇函数;()f x ()g x ((),())F f x g x ②若、都是偶函数,则函数为偶函数;()f x ()g x ((),())F f x g x ③若、都是增函数,则函数为增函数;()f x ()g x ((),())F f x g x ④若、都是减函数,则函数为减函数。

专题10 三角函数综合-2018年上海高考理科数学模拟题分类汇编

专题10 三角函数综合-2018年上海高考理科数学模拟题分类汇编

专题10 三角函数综合【母题原题1】【2018上海卷,18】设常数a R ∈,函数f x ()22?asin x cos x =+ (1)若f x ()为偶函数,求a 的值;(2)若4f π〔〕1=,求方程1f x =()ππ-[,]上的解。

【答案】(1);(2)或或.【解析】 【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出, (2)先求出a 的值,再根据三角形函数的性质即可求出. 【详解】∴,∴,∴,∵,∴,∴,∴,或,∴,或,∵,∴或或【点睛】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.【母题原题2】【2017上海卷,18】已知函数,.(1)求的单调递增区间;(2)设△ABC为锐角三角形,角A所对边,角B所对边,若,求△ABC的面积. 【答案】(1);(2)若,即有解得,即由余弦定理可得a2=b2+c2﹣2bc cos A,化为c2﹣5c+6=0,解得c =2或3, 若c =2,则即有B 为钝角,c =2不成立, 则c =3,△ABC 的面积为【母题原题3】【2017上海卷,11】设、,且,则的最小值等于________ 【答案】【命题意图】 高考对本部分内容的考查以能力为主,重点考查三角函数的性质(周期性、奇偶性、对称性、单调性、最值等),体现数形结合的思想,函数与方程的思想等的应用,均可能出现填空题与解答题中,难度中低档为主,主要有两种考查题型:(1)根据三角函数的解析式确定其性质;(2)根据三角函数的性质求相关的参数值(或取值范围).【命题规律】1. 高考对三角函数的图象与性质的考查往往集中于正弦函数、余弦函数、正切函数的图象与性质;函数y =Asin(ωx +φ)的图象及性质,主要考查三角函数图象的识别及其简单的性质(周期、单调性、奇偶性、最值、对称性、图象平移及变换等).2. 高考中主要涉及如下题型:(1) 考查周期、单调性、极值等简单性质;(2) 考查与三角函数有关的零点问题;(3) 考查图象的识别. 【方法总结】1.根据函数的图象确定函数()sin()(0,0)f x A x B A ωϕω=++>>中的参数主要方法:(1)A ,B 主要是根据图象的最高点或最低点的纵坐标确定,即2A -=最大值最小值,2B +=最大值最小值;(2)ω的值主要由周期T 的值确定,而T 的值的确定主要是根据图象的零点与最值点的横坐标确定;(3)ϕ值的确定主要是由图象的特殊点(通常优先取非零点)的坐标确定.2.在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.“先平移,后伸缩”主要体现为由函数sin y x =平移得到函数()sin y x ϕ=+的图象时,平移ϕ个长度单位;“先伸缩,后平移” 主要体现为由函数()sin y x ω=平移得到函数()sin y x ωϕ=+的图象时,平移ϕω个长度单位. 3. 利用函数图象处理函数的零点(方程根)主要有两种策略:(1)确定函数零点的个数:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数定性判断;(2)已知函数有零点(方程有根)求参数取值范围:通常也转化为两个新函数的交点,即在同一坐标系中作出两个函数的图象,通过观察它们交点的位置特征建立关于参数的不等式来求解. 4. 求解三角函数的周期性的方法:(1)求三角函数的周期,通常应将函数式化为只有一个函数名,且角度唯一,最高次数为一次的形式,然后借助于常见三角函数的周期来求解.(2)三角函数的最小正周期的求法有:①由定义出发去探求;②公式法:化成sin()y A x ωϕ=+,或tan()y A x ωϕ=+等类型后,用基本结论2||T πω=或||T πω=来确定;③根据图象来判断. 5. 求解三角函数的单调性的方法:(1)三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.(2)已知三角函数的单调区间求参数的取值范围的三种方法:①子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解;[ ②反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.6. 求解三角函数的奇偶性的策略:(1)判断函数的奇偶性,应先判定函数定义域的对称性,注意偶函数的和、差、积、商仍为偶函数;复合函数在复合过程中,对每个函数而言,“同奇才奇、一偶则偶”.一般情况下,需先对函数式进行化简,再判断其奇偶性;(2)两个常见结论:①若函数()()sin f x A x ωϕ=+为奇函数,则()k k Z ϕπ=∈;若函数()()sin f x A x ωϕ=+为偶函数,则()2k k Z πϕπ=+∈;②若函数()()cos f x A x ωϕ=+为奇函数,则()2k k Z πϕπ=+∈;若函数()()cos f x A x ωϕ=+为偶函数,则()k k Z ϕπ=∈.7. 求解三角函数对称性的方法:(1)求函数sin()y A x ωϕ=+的对称中心、对称轴问题往往转化为解方程问题:①由sin y x =的对称中心是(0)k π,,k ∈Z ,所以sin()y A x ωϕ=+的中心,由方程x k ωϕπ+=解出x 即可;②因为sin y x =的对称轴是2x k ππ=+,k ∈Z ,所以可由2x k πωϕπ+=+解出x ,即为函数sin()y A x ωϕ=+的对称轴;注意tan y x =的对称中心为1(,0)()2k k Z π∈;(2)对于函数sin()y A x ωϕ=+,其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线0x x =或点()0,0x 是否是函数的对称轴或对称中心时,可通过检验()0f x 的值进行判断. 8. 求解三角函数的值域(最值)常见的题目类型及求解策略:(1)形如sin cos y a x b x k =++的三角函数化为sin()y A x k ωϕ=++的形式,再利用正弦曲线的知识求最值(值域);(2)形如2sin sin y a x b x k =++的三角函数,可先设sin x t =,化为关于t 的二次函数求值域(最值); (3)形如()sin cos sin cos y a x x b x x c =+±+的三角函数,可先设sin cos t x x =±,化为关于t 的二次函数求值域(最值).1.【上海市浦东新区2018届三模】设函数的图象为,下面结论中正确的是( )A . 函数的最小正周期是B . 图象关于点对称C . 图象可由函数的图象向右平移个单位得到D . 函数在区间上是增函数【答案】B 【解析】 试题分析:的最小正周期,∵,∴图象关于点对称,∴图象可由函数的图象向右平移个单位得到,函数的单调递增区间是,当时,,∴函数在区间上是先增后减.考点:三角函数图象、周期性、单调性、图象平移、对称性.2.【上海市十二校2018届高三联考】已知函数()sincos 212cos2x x f x xωωω=(0)ω>, x R ∈,若函数()f x 在区间(),2ππ内没有零点,则ω的取值范围为( )A . 10,8⎛⎤ ⎥⎝⎦ B . 50,8⎛⎤ ⎥⎝⎦ C . ][150,,148⎛⎫⋃ ⎪⎝⎭ D . ][1150,,848⎛⎤⋃ ⎥⎝⎦【答案】D本题选择D 选项.点睛:重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 3.【上海市浦东新区2018届高三三模】已知的三边成等比数列,所对的角分别为,则的取值范围是_________.【答案】.【解析】 【分析】【点睛】本题考查等比中项的定义和余弦定理、基本不等式和正弦函数的图象和性质,考查运算能力,属于中档题.4.【上海市大同中学2018届高三三模】若,,,满足:,,则的值为__________.【答案】【解析】【分析】首先对所给的方程进行恒等变形,然后结合函数的单调性和角度的范围求得的值,然后求解三角函数值即可.【详解】∵,∴(−2β)3−2sinβcosβ−2λ=0,即(−2β)3+sin(−2β)−2λ=0.由可得.故−2β和是方程x3+sinx−2λ=0的两个实数解.再由,,,所以和的范围都是,由于函数x3+sinx在上单调递增,故方程x3+sinx−2λ=0在上只有一个解,所以,,∴,则的值为.【点睛】本题主要考查函数的单调性,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.5.【上海市2018年5月高考模拟】已知为常数),若对于任意都有,则方程在区间内的解为__________【答案】或【解析】【分析】由,可知是函数的最小值,利用辅助的角公式求出的关系,然后利用三角函数的图象和性质进行求解即可.【详解】则,由,解得,即,,当时,,当时,,故或,故答案为或.【点睛】本题主要考查三角函数的图象和性质,以及辅助角公式的应用,属于难题.利用该公式() 可以求出:①的周期;②单调区间(利用正弦函数的单调区间可通过解不等式求得);③值域();④对称轴及对称中心(由可得对称轴方程,由可得对称中心横坐标.6.【上海市浦东新区2018届高三三模】若的图像的最高点都在直线上,并且任意相邻两个最高点之间的距离为.(1)求和的值:(2)在中,分别是的对边,若点是函数图像的一个对称中心,且,求外接圆的面积.【答案】(1) .(2) .【解析】【分析】【点睛】本题考查了二倍角的正弦函数公式,以及正弦定理的应用,熟练掌握公式是解本题的关键,是中档题.7.【上海市大同中学2018届高三三模】如图一块长方形区域,,,在边的中点处有一个可转动的探照灯,其照射角始终为,设,探照灯照射在长方形内部区域的面积为.(1)当时,求关于的函数关系式;(2)当时,求的最大值;(3)若探照灯每9分钟旋转“一个来回”(自转到,再回到,称“一个来回”,忽略在及处所用的时间),且转动的角速度大小一定,设边上有一点,且,求点在“一个来回”中被照到的时间.【答案】(1)见解析;(2);(3)2分钟.【解析】【分析】(1)由题意结合三角函数的性质可得:当时,,当时,;(2)结合(1)中函数的解析式和三角函数的性质可得当时,;(3)结合实际问题和三角函数的性质计算可得点被照到的时间为分钟.【详解】【点睛】本题主要考查三角函数的实际应用,三角函数的性质,三角函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.8.【上海市2018年5月高考模拟】钓鱼岛及其附属岛屿是中国固有领土,如图:点分别表示钓鱼岛、南小岛、黄尾屿,点在点的北偏东方向,点在点的南偏西方向,点在点的南偏东方向,且两点的距离约为3海里.(1)求两点间的距离;(精确到0.01)(2)某一时刻,我国一渔船在点处因故障抛锚发出求教信号.一艘国舰艇正从点正东10海里的点处以18海里/小时的速度接近渔船,其航线为 (直线行进),而我东海某渔政船正位于点南偏西方向20海里的点处,收到信号后赶往救助,其航线为先向正北航行8海里至点处,再折向点直线航行,航速为22海里/小时.渔政船能否先于国舰艇赶到进行救助?说明理由.【答案】(1)14.25(2)渔政船能先于国舰艇赶到进行救助.【解析】【分析】(1)由题意,,,在中,由正弦定理可求两点间的距离;(2)结合(1)【点睛】本题主要考查阅读能力、数学建模能力和化归思想以及正弦定理与余弦定理的应用,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.9.【上海市虹口区2018届高三下学期教学质量监控(二模)】已知中,角所对应的边分别为,(是虚数单位)是方程的根,.(1)若,求边长的值;(2)求面积的最大值.【答案】(1);(2).【解析】试题分析:(1)解得,所以,,,由正弦定理得;(2)由余弦定理得,根据基本不等式,得,所以面积的最大值等于。

2018年上海市高考数学一模试卷(解析卷)

2018年上海市高考数学一模试卷(解析卷)

2018年上海市高考数学试卷一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.(4分)设全集U=Z,集合M={1,2},P={﹣2,﹣1,0,1,2},则P∩C U M {﹣2,﹣1,0} .【解答】解:C U M={﹣2,﹣1,0},故P∩C U M={﹣2,﹣1,0}故答案为:{﹣2,﹣1,0}2.(4分)已知复数(i为虚数单位),则=.【解答】解:复数==,∴=,∴=•==,故答案为.3.(4分)不等式2>()3(x﹣1)的解集为(﹣∞,﹣2)∪(3,+∞).【解答】解:不等式2>()3(x﹣1)化为2>23﹣3x,即x2﹣4x﹣3>3﹣3x,∴x2﹣x﹣6>0,解得x<﹣2或x>3,∴原不等式的解集为(﹣∞,﹣2)∪(3,+∞).故答案为:(﹣∞,﹣2)∪(3,+∞).4.(4分)函数f(x)=sinxcosx+cos2x的最大值为.【解答】解:函数f(x)=sinxcosx+cos2x=sin2x+cos2x+=sin(2x+)+,当2x+=2kπ+,k∈Z,即x=kπ+,k∈Z,函数取得最大值1+=,故答案为:.5.(4分)在平面直角坐标系xOy中,以直线y=±2x为渐近线,且经过椭圆x2+=1右顶点的双曲线的方程是x2﹣=1.【解答】解:设以直线y=±2x为渐近线的双曲线的方程为x2﹣=λ(λ≠0),∵双曲线椭圆x2+=1右顶点(1,0),∴1=λ,∴双曲线方程为:x2﹣=1.故答案为:x2﹣=1.6.(4分)将圆锥的侧面展开后得到一个半径为2的半圆,则此圆锥的体积为.【解答】解:设圆锥的底面半径为r,则2πr=2π,∴r=1.∴圆锥的高h=.∴圆锥的体积V==.故答案为:.7.(5分)设等差数列{a n}的公差d不为0,a1=9d.若a k是a1与a2k的等比中项,则k=4.【解答】解:因为a k是a1与a2k的等比中项,则a k2=a1a2k,[9d+(k﹣1)d]2=9d•[9d+(2k﹣1)d],又d≠0,则k2﹣2k﹣8=0,k=4或k=﹣2(舍去).故答案为:4.8.(5分)已知(1+2x)6展开式的二项式系数的最大值为a,系数的最大值为b,则=12.【解答】解:由题意可得a==20,再根据,解得,即≤r≤,∴r=4,此时b=×24=240;∴==12.故答案为:12.9.(5分)同时掷两枚质地均匀的骰子,则两个点数之积不小于4的概率为.【解答】解:同时掷两枚质地均匀的骰子,基本事件总数n=6×6=36,两个点数之积小于4包含的基本事件(a,b)有:(1,1),(1,2),(2,1),(1,3),(3,1),共5个,∴两个点数之积不小于4的概率为p=1﹣=.故答案为:.10.(5分)已知函数f(x)=有三个不同的零点,则实数a的取值范围是[1,+∞).【解答】解:由题意可知:函数图象的左半部分为单调递增对数函数的部分,函数图象的右半部分为开口向上的抛物线,对称轴为x=,最多两个零点,如上图,要满足题意,必须指数函数的部分向下平移到与x轴相交,由对数函数过点(1,0),故需左移至少1个单位,故a≥1,还需保证抛物线与x轴由两个交点,故最低点<0,解得a<0或a>,综合可得:a≥1,故答案为:[1,+∞).11.(5分)已知S n为数列{a n}的前n项和,a1=a2=1,平面内三个不共线的向量,,,满足=(a n﹣1+a n+1)+(1﹣a n),n≥2,n∈N*,若A,B,C在同一直线上,则S2018=2.【解答】解:若A,B,C三点共线,则=x+(1﹣x),∴根据条件“平面内三个不共线的向量,,,满足=(a n﹣1+a n+1)+(1﹣a n),n≥2,n∈N*,A,B,C在同一直线上,”得出a n﹣1+a n+1+1﹣a n=1,∴a n﹣1+a n+1=a n,∵S n为数列{a n}的前n项和,a1=a2=1,∴数列{a n}为:1,1,0,﹣1,﹣1,0,1,1,0,﹣1,﹣1,0,…即数列{a n}是以6为周期的周期数列,前6项为1,1,0,﹣1,﹣1,0,∵2018=6×336+2,∴S2018=336×(1+1+0﹣1﹣1+0)+1+1=2.故答案为:2.12.(5分)已知函数f(x)=m(x﹣m)(x+m+2)和g(x)=3x﹣3同时满足以下两个条件:①对任意实数x都有f(x)<0或g(x)<0;②总存在x0∈(﹣∞,﹣2),使f(x0)g(x0)<0成立.则m的取值范围是(﹣3,﹣2).【解答】解:对于①∵g(x)=3x﹣3,当x<1时,g(x)<0,又∵①∀x∈R,f(x)<0或g(x)<0∴f(x)=m(x﹣m)(x+m+2)<0在x≥1时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面,即,可得﹣3<m<0又∵②x∈(﹣∞,﹣2),f(x)g(x)<0∴此时g(x)=3x﹣3<0恒成立∴f(x)=m(x﹣m)(x+m+2)>0在x∈(﹣∞,﹣2)有成立的可能,则只要﹣2比x1,x2中的较小的根大即可,(i)当﹣1<m<0时,较小的根为﹣m﹣2,﹣m﹣2>﹣2不成立,(ii)当m=﹣1时,两个根同为﹣1>﹣3,不成立,(iii)当﹣3<m<﹣1时,较小的根为m,即m<﹣2成立.综上可得①②成立时﹣3<m<﹣2.故答案为:(﹣3,﹣2).二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)“a>b”是“()2>ab”成立的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件【解答】解:由()2>ab得>ab,即a2+2ab+b2>4ab,则a2﹣2ab+b2>0,即(a﹣b)2>0,则a≠b,则“a>b”是“()2>ab”成立的充分不必要条件,故选:A.14.(5分)已知函数f(x)=2sin(x+),若对任意实数x,都有f(x1)≤f (x)≤f(x2),则|x2﹣x1|的最小值是()A.πB.2πC.2 D.4【解答】解:对于函数f(x)=2sin(x+),若对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x2﹣x1|的最小值为函数f(x)的半个周期,即===2,故选:C.15.(5分)已知和是互相垂直的单位向量,向量满足:,,n∈N*,设θn为和的夹角,则()A.θn随着n的增大而增大B.θn随着n的增大而减小C.随着n的增大,θn先增大后减小D.随着n的增大,θn先减小后增大【解答】解:分别以和所在的直线为x轴,y轴建立坐标系,则=(1,0),=(0,1),设=(x n,y n),∵,,n∈N*,∴x n=n,y n=2n+1,n∈N*,∴=(n,2n+1),n∈N*,∵θn为和的夹角,∴tanθn===2+∴y=tanθn为减函数,∴θn随着n的增大而减小.故选:B.16.(5分)在平面直角坐标系xOy中,已知两圆C1:x2+y2=12和C2:x2+y2=14,又点A坐标为(3,﹣1),M、N是C1上的动点,Q为C2上的动点,则四边形AMQN能构成矩形的个数为()A.0个 B.2个 C.4个 D.无数个【解答】解:如图所示,任取圆C2上一点Q,以AQ为直径画圆,交圆C1与M、N两点,则四边形AMQN能构成矩形,由作图知,四边形AMQN能构成矩形的个数为无数个.故选:D.三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2AB=2,E是PB的中点.(1)求三棱锥P﹣ABC的体积;(2)求异面直线EC和AD所成的角(结果用反三角函数值表示).【解答】解:(1)∵PA⊥平面ABCD,底面ABCD是矩形,高PA=2,BC=AD=2,AB=1,==1.∴S△ABC故V P==.﹣ABC(2)∵BC∥AD,∴∠ECB或其补角为异面直线EC和AD所成的角θ,又∵PA⊥平面ABCD,∴PA⊥BC,又BC⊥AB,∴BC⊥平面PAB,∴BC⊥PB,于是在Rt△CEB中,BC=2,BE=PB=,tanθ==,∴异面直线EC和AD所成的角是arctan.18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.【解答】解:(1)∵y2=2px过点P(1,1),∴1=2p,解得p=,∴y2=x,∴焦点坐标为(,0),准线为x=﹣,(2)证明:设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),∴直线OP为y=x,直线ON为:y=x,由题意知A(x1,x1),B(x1,),由,可得k2x2+(k﹣1)x+=0,∴x1+x2=,x1x2=∴y1+=kx1++=2kx1+=2kx1+=2kx1+(1﹣k)•2x1=2x1,∴A为线段BM的中点.19.(14分)如图,某大型厂区有三个值班室A、B、C.值班室A在值班室B的正北方向2千米处,值班室C在值班室B的正东方向2千米处.(1)保安甲沿CA从值班室出发行至点P处,此时PC=1,求PB的距离;(2)保安甲沿CA从值班室C出发前往值班室A,保安乙沿AB从值班室A出发前往值班室B,甲乙同时出发,甲的速度为1千米/小时,乙的速度为2千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?【解答】解:(1)在Rt△ABC中,AB=2,BC=2,所以∠C=30°,在△PBC中PC=1,BC=2,由余弦定理可得BP2=BC2+PC2﹣2BC•PCcos30°=(2)2+1﹣2×2×1×=7,即BP=;(2)在Rt△ABC中,BA=2,BC=2,AC==4,设甲出发后的时间为t小时,则由题意可知0≤t≤4,设甲在线段CA上的位置为点M,则AM=4﹣t,①当0≤t≤1时,设乙在线段AB上的位置为点Q,则AQ=2t,如图所示,在△AMQ中,由余弦定理得MQ2=(4﹣t)2+(2t)2﹣2•2t•(4﹣t)cos60°=7t2﹣16t+7>9,解得t<或t>,所以0≤t≤;②当1≤t≤4时,乙在值班室B处,在△ABM中,由余弦定理得MB2=(4﹣t)2+4﹣2•2t•(4﹣t)cos60°=t2﹣6t+12>9,解得t<3﹣或t>3+,又1≤t≤4,不合题意舍去.综上所述0≤t≤时,甲乙间的距离大于3千米,所以两人不能通话的时间为小时.20.(16分)设集合A,B均为实数集R的子集,记A+B={a+b|a∈A,b∈B}.(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*且n≥2时,曲线+=的焦距为a n,如果A={a1,a2,…,a n},B={﹣,﹣,﹣},设A+B中的所有元素之和为S n,求S n的值;(3)在(2)的条件下,对于满足m+n=3k,且m≠n的任意正整数m,n,k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值.【解答】解:(1)∵A+B={a+b|a∈A,b∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线+=,即﹣=,在n≥2时表示双曲线,故a n=2=n,∴a1+a2+a3+…+a n=∵B={﹣,﹣,﹣},∴A+B中的所有元素之和为S n=3(a1+a2+a3+…+a n)+n(﹣﹣﹣)=3•+n (﹣﹣﹣)=n2,(3)∵∴S m+S n﹣λS k>0恒成立⇔λ<=恒成立,∵m+n=3k,且m≠n,∴==>,∴λ≤,故实数λ的最大值为21.(18分)对于定义在[0,+∞)上的函数f(x),若函数y=f(x)﹣(ax+b)满足:①在区间[0,+∞)上单调递减,②存在常数p,使其值域为(0,p],则称函数g(x)=ax+b是函数f(x)的“逼进函数”.(1)判断函数g(x)=2x+5是不是函数f(x)=,x∈[0,+∞)的“逼进函数”;(2)求证:函数g(x)=x不是函数f(x)=()x,x∈[0,+∞)的“逼进函数”(3)若g(x)=ax是函数f(x)=x+,x∈[0,+∞)的“逼进函数”,求a 的值.【解答】解:(1)f(x)﹣g(x)=﹣(2x+5)=,可得y=f(x)﹣g(x)在[0,+∞)递减,且x+2≥2,0<≤,可得存在p=,函数y的值域为(0,],则函数g(x)=2x+5是函数f(x)=,x∈[0,+∞)的“逼进函数”;(2)证明:f(x)﹣g(x)=()x﹣x,由y=()x,y=﹣x在[0,+∞)递减,则函数y=f(x)﹣g(x)在[0,+∞)递减,则函数y=f(x)﹣g(x)在[0,+∞)的最大值为1;由x=1时,y=﹣=0,x=2时,y=﹣1=﹣<0,则函数y=f(x)﹣g(x)在[0,+∞)的值域为(﹣∞,1],即有函数g(x)=x不是函数f(x)=()x,x∈[0,+∞)的“逼进函数”;(3)g(x)=ax是函数f(x)=x+,x∈[0,+∞)的“逼进函数”,可得y=x+﹣ax为[0,+∞)的减函数,可得导数y′=1﹣a+≤0在[0,+∞)恒成立,可得a﹣1≥,由x>0时,=≤1,则a﹣1≥1,即a≥2;又y=x+﹣ax在[0,+∞)的值域为(0,1],则>(a﹣1)x,x=0时,显然成立;x>0时,a﹣1<,可得a﹣1≤1,即a≤2.则a=2.。

2018学年上海高三数学一模分类汇编——解析几何,推荐文档

2018学年上海高三数学一模分类汇编——解析几何,推荐文档

2 (2018崇明一模).抛物线y2 4x的焦点坐标是_________________2 23 (2018静安一模)•与双曲线——1有公共的渐近线,且经过点A( 3,2. 3)的双曲线方9 16程是__________5(2018闵行一模)•已知直线l的一个法向量是n (.一3, 1),则I的倾斜角的大小是 _________________ 5(2018青浦一模).在平面直角坐标系xOy中,以直线y 2x为渐近线,且经过椭圆2X2 y 1右顶点的双曲线的标准方程是42 25(2018金山一模).已知F1、F2是椭圆——1的两个焦点,P是椭圆上一个动点,则25 9| PF1 | | PF2 |的最大值是_____________6(2018黄浦一模).过点P( 2,1)作圆x2 y2 5的切线,则该切线的点法向式方程是___________________2 26(2018徐汇一模).已知圆O:x y 1与圆0关于直线x y 5对称,则圆0的方程是一7(2018静安一模).已知点A(2,3)到直线ax (a 1)y 3 0的距离不小于3,则实数a的取值范围是________8(2018金山一模)已知点A(2,3),点B( 2,3),直线I过点P( 1,0),若直线I与线段AB 相交,则直线l的倾斜角的取值范围是 _____________2 28(2018松江一模).若直线ax y 3 0与圆(x 1)(y 2)4相交于A、B两点,且AB 2 . 3,则a __________一X22 28(2018虹口一模).在平面直角坐标系中,双曲线 p y 1的一个顶点与抛物线y 12x的a焦点重合,则双曲线的两条渐近线的方程为_______________2 29(2018宝山一模)•已知抛物线C的顶点为坐标原点,双曲线 - y 1的右焦点是C的焦25 144点F,若斜率为1,且过F的直线与C交于A、B两点,贝U | AB| _______________2 29(2018普陀一模).若直线l :x y 5与曲线C :x y 16交于两点A(X1,yJ、B(X2,y2),则为y2 x y1的值为____________9 (2018奉贤一模)•已知A(2,0), B(4,0),动点P满足PA 2 PB,则P到原点的距离为_______2 210 (2018奉贤一模).设焦点为F1、F2的椭圆令占1 (a 0)上的一点P也在抛物线a 39 25y2一x上,抛物线焦点为F3,若PF3—,则△ PF1F2的面积为------------4 162 210 (2018虹口一模).设椭圆乡£ 1的左、右焦点分别为F i、F2,过焦点F i的直线交椭4 3圆于M、N两点,若MNF2的内切圆的面积为,则S MNF2______________210(2018杨浦一模).抛物线y28x的焦点与双曲线笃 y21的左焦点重合,则这条双曲a线的两条渐近线的夹角为____________2 211 (2018闵行一模).已知F1、F2分别是双曲线— 2 1 (a 0,b 0 )的左右焦点,a b过F1且倾斜角为30°的直线交双曲线的右支于P,若PF2 F1F2,则该双曲线的渐近线方程是_________2X 212(2018杨浦一模).已知点C、D是椭圆y 1上的两个动点,且点M(0,2),若4umu UULUMD MC,则实数的取值范围为___________2X 212(2018普陀一模).双曲线y 1绕坐标原点O旋转适当角度可以成为函数 f (X)的图3像,关于此函数f (x)有如下四个命题:① f (x)是奇函数;② f (X)的图像过点(乜,3)或(-1, 3);2 2 2 23 3③ f (x)的值域是(,步屮寺);④函数y f (x) x有两个零点;则其中所有真命题的序号为___________2 2x y12(2018浦东一模).在平面直角坐标系中,O为坐标原点,M、N是双曲线1上2 4UUU UUUU UULT的两个动点,动点P满足OP 2OM ON,直线OM与直线ON斜率之积为2,已知平面内存在两定点F1、F2,使得|| PF1 | | PF2 ||为定值,则该定值为—2 216(2018松江一模).已知曲线C1 :| y | x 2与曲线C2 : x y 4恰好有两个不同的公共点,则实数的取值范围是()A. (, 1]U[0,1)B. ( 1,1]C. [ 1,1)D. [ 1,0]U(1,)2 2 2 216(2018青浦一模).在平面直角坐标系xOy中,已知两圆C1: x y 12和C? : x y 14,又点A坐标为(3, 1),M、N是C1 上的动点,Q为C2上的动点,则四边形AMQN能构成矩形的个数为()2 216( 2018 静安一模). 若曲线| y | x2_ c x2 与 C:42- 1恰有两个不同交点,则实数 4取值范围为( )A. (, 1]U(1,) B. (,1]C. (1,)D.[1,0)U(1,)218 ( 2018青浦一模).已知抛物线C: y交于不同两点(1 )求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点•、、卄x y、 、、19( 2018黄浦一模).已知椭圆E : —221 ( a b 0 )的右焦点为F (1,0),点B (0,b )满a b足|FB | 2.(1) 求实数a 、b 的值;(2) 过点F 作直线l 交椭圆E 于M 、N 两点,若 BFM 与 BFN 的面积之比为2,求直线I 的 方程.16( 2018 崇明一模). 直线x2与双曲线2x 2 C: y 1的渐近线交于 A 、B 两点,设P 为双4uuu uuu uuu 曲线上任一点,若0P aOA bOB ( a,b R ,O 为坐标原点),则下列不等式恒成立的是 (A. a b 1B.|ab| 1C. |a b| 1D. |a b| 2A. 0个B. 2个C. 4个D.无数个2px 过点P (1,1),过点D (0,-)作直线I 与抛物线C2 N ,过M 作x 轴的垂线分别与直线 OP 、ON 交于点A 、B ,其中O 为坐标原点x 20( 2018松江一模).已知椭圆aF ( 3,0),过F 点的直线I 交椭圆于(1)求椭圆E 的方程;(2) 过点F 且与I 垂直的直线交椭圆于4若四边形ACBD 的面积为4,求直线I 的方程;3umr uuir uuur uur(3) 设 MA 1 AF ,MB ?BF ,求证:12 为定值.20 ( 2018虹口一模).已知平面内的定点 F 到定直线I 的距离等于p ( p 0 ),动圆M 过点F 且与直线I 相切,记圆心 M 的轨迹为曲线 C ,在曲线C 上任取一点 A ,过A 作I 的垂线,垂足 为E . (1) 求曲线C 的轨迹方程;(2) 记点A 到直线I 的距离为d ,且坐 d 红,求 EAF 的取值范围;4 3(3) 判断 EAF 的平分线所在的直线与曲线的交点个数,并说明理由220( 2018杨浦一模).设直线I 与抛物线:y 4x 相交于不同两点 A 、B , O 为坐标原点.(1 )求抛物线的焦点到准线的距离;(2) 若直线I 又与圆C :(x 5)2 y 2 16相切于点M ,且M 为线段AB 的中点,求直线I 的 方程;uuu uuu(3) 若OA OB 0 ,点Q 在线段AB 上,满足OQ AB ,求点Q 的轨迹方程•20( 2018金山一模).给出定理:在圆锥曲线中, AB 是抛物线 :y 2 2px ( p 0 )的一条 弦,C 是AB 的中点,过点C 且平行于x 轴的直线与抛物线的交点为 D ,若A 、B 两点纵坐标右 1( a b 0)经过点(1,,其左焦点为C 、D 两点,点M .A 、B 两点,交y 轴的正2 2a 3ADB的面积S ADB 面,试运用上述定理求解以“弓形”的面积,并求出相应面积F i 、F 2与短轴的一个端点 Q 构成一个等腰直角三角形,互相垂直且与x 轴不重合的两直线 AB 、CD 分别交椭圆 别是弦AB 、CD 的中点• (1) 求椭圆 的标准方程;2(2) 求证:直线 MB 过定点R (—,0);3(3) 求MNF 2面积的最大值.20 (2018浦东一模).已知椭圆:x 2 -y 2 1 ( a b 0)的左、右焦点分别为 F l 、F 2,设之差的绝对值|y A y B | a ( a 0 ),则 下各题:(1 )若p 2 , AB 所在直线的方程为2x 4 , C 是AB 的中点,过C 且平行于x 轴的直线与抛物线的交点为D ,求S ADB(2)已知AB 是抛物线 :y 2 2px (0)的一条弦,C 是AB 的中点,过点C 且平行于X轴的直线与抛物线的交点为D ,E 、F 分别为AD 和BD 的中点,过 E 、F 且平行于x 轴的直线与抛物线 :y 2 2px ( p 0)分别交于点 M 、N ,若A 、B 两点纵坐标之差的绝对值1 y A y B 1 a( a 0 ),求 S AMD 和 S BND ;(3)请你在上述问题的启发下,设计一种方法求抛物线:2y 2px(p 0 )与弦AB 围成的2x 20( 2018普陀一模).设点F 1、F 2分别是椭圆C:—三 2t圆C 上的点到点F 2的距离的最小值为 2 22,点M 、 uumr uuur且向量F 1M 与向量F 2N 平行•(1)0 )的左、右焦点,且椭N 是椭圆C 上位于x 轴上方的两点,(2) (3) 求椭圆C 的方程; uuuu uuuu当F i N F 2N 0时,求 F i MN 的面积; luiuir uuuur 当| F ?N | | F i M |.6时,求直线F 2 N 的方程.20( 2018徐汇一模).已知椭圆2 X 2a0 )的左、右焦点分别为 F i 、F 2,且在椭圆上,过点F 2作C 、D ,且 M 、N 分a b2点A(0,b),在AF1F2中,F1AF2 ,周长为4 2 3 .3(1)求椭圆的方程;(2)设不经过点A的直线I与椭圆相交于B、C两点,若直线AB与AC的斜率之和为1,求证:直线I过定点,并求出该定点的坐标;(3)记第(2)问所求的定点为E,点P为椭圆上的一个动点,试根据AEP面积S的不同取值范围,讨论AEP存在的个数,并说明理由•2 2x V 220 (2018闵行一模)•已知椭圆1的右焦点是抛物线:V 2px的焦点,直线I与10 9相交于不同的两点A(x!,y1)、B(x2,y2).(1 )求的方程;(2)若直线I经过点P(2,0),求OAB的面积的最小值(O为坐标原点);(3)已知点C(1,2),直线I经过点Q(5, 2),D为线段AB的中点,求证:| AB | 2 |CD |.2x 220(2018崇明一模).在平面直角坐标系中,已知椭圆C:-^ y 1(a 0,a 1)的两个a焦点分别是F1、F2,直线I: y kx m (k,m R)与椭圆交于A、B两点•(1 )若M为椭圆短轴上的一个顶点,且MFF2是直角三角形,求a的值;(2)若k 1,且OAB是以O为直角顶点的直角三角形,求a与m满足的关系;1(3)若a 2,且k oA k oB ,求证:OAB的面积为定值.42 2 2 220(2018 奉贤一模)•设M {( x, y) ||x y | 1},N {( x, y) | x y 1},设任意一点2 2P (X o ,y 。

2018——2019年上海各区高中数学高三数学一模试卷试题汇总

2018——2019年上海各区高中数学高三数学一模试卷试题汇总

第一学期教学质量检测高三数学试卷一、填空题(本大题共有12题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分. 1. 已知全集R U =,集合(][)12,,=-∞+∞A ,则U=A ______________.()12,2. 抛物线24=y x 的焦点坐标为_________.()10, 3. 不等式2log 1021>x 的解为____________.4(,)+∞4. 已知复数z 满足(1i)4i z +⋅=(i 为虚数单位),则z 的模为_________. 225. 若函数()=y f x 的图像恒过点01(,),则函数13()-=+y fx 的图像一定经过定点____.()13,6. 已知数列{}n a 为等差数列,其前n 项和为n S .若936=S ,则348++=a a a ________.127. 在△ABC 中,内角,,A B C 的对边是,,a b c .若22)32(b a ⋅+=,c b =,则=A ___.56π 8. 已知圆锥的体积为π33,母线与底面所成角为3π,则该圆锥的表面积为 .π3 9.已知二项式n的展开式中,前三项的二项式系数之和为37,则展开式中的第五项为________.358x 10. 已知函数()2||1=+-f x x x a 有三个不同的零点,则实数a 的取值范围为_____.(,-∞11. 已知数列{}n a 满足:211007(1)2018(1)++=-++n n n na n a n a *()∈n N , 且121,2,a a ==若1lim,+→∞=n n na A a 则=A ___________. 100912. 已知函数()2,24161,22-⎧≥⎪+⎪=⎨⎛⎫⎪< ⎪⎪⎝⎭⎩x ax x x f x x ,若对任意的[)12,∈+∞x ,都存在唯一的()2,2∈-∞x ,满足()()12=f x f x ,则实数a 的取值范围为_________. [)2,6∈-a解:当[)12,∈+∞x 时,1211041616x x ⎛⎤∈ ⎥+⎝⎦,.当()2,2∈-∞x 时,(1)若2a ≥,则()11=22x aa xf x --⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭在(),2-∞上是单调递增函数,所以()2210,2a f x -⎛⎫⎛⎫∈ ⎪ ⎪ ⎪⎝⎭⎝⎭.若满足题目要求,则21100,162a -⎛⎫⎛⎤⎛⎫⊆ ⎪ ⎪⎥ ⎪⎝⎦⎝⎭⎝⎭,,所以24111,24,62162a a a -⎛⎫⎛⎫>=∴-<< ⎪⎪⎝⎭⎝⎭.又2a ≥,所以[)2,6a ∈. (2)若2a <,则()1,,21=21, 2.2a xx ax ax a f x a x ---⎧⎛⎫<⎪ ⎪⎪⎝⎭⎛⎫=⎨ ⎪⎝⎭⎛⎫⎪≤< ⎪⎪⎝⎭⎩,()f x 在(),a -∞上是单调递增函数,此时()()0,1f x ∈;()f x 在[),2a 上是单调递减函数,此时()21,12a f x -⎛⎤⎛⎫∈ ⎥ ⎪ ⎝⎭⎥⎝⎦.若满足题目要求,则211,2162aa -⎛⎫≤∴≥- ⎪⎝⎭,又2a <,所以[)2,2a ∈-.综上,[)2,6a ∈-.二、选择题(本大题共有4题,满分20分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分. 13. “14<a ”是“一元二次方程20-+=x x a 有实数解”的( A ) (A )充分非必要条件 (B )充分必要条件(C )必要非充分条件 (D )非充分非必要条件 14. 下列命题正确的是( D )(A )如果两条直线垂直于同一条直线,那么这两条直线平行(B )如果一条直线垂直于一个平面内的两条直线,那么这条直线垂直于这个平面 (C )如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面 (D )如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行15. 将4位志愿者分配到进博会的3个不同场馆服务,每个场馆至少1人,不同的分配方案有( B )种.(A )72 (B )36 ( (D )81 16. 已知点()()1,2,2,0-A B ,P ⋅AP AB 的取值范围为( A )(A )[]1,7 (B )[]1,7- (C)1,3⎡+⎣ (D)1,3⎡-+⎣三、解答题(本大题共有5题,满分76分)解答下列各题必须写出必要的步骤. 17.(本小题满分14分,第1小题满分7分,第2小题满分7分 已知直三棱柱ABC C B A -111中,︒=∠===9011BAC ,AA AC AB .(1)求异面直线B A 1与11C B 所成角; (2)求点1B 到平面BC A 1的距离.解:(1)在直三棱柱ABC C B A -111中,AB AA ⊥1,AC AA ⊥1,︒=∠===9011BAC ,AA AC AB所以,211===BC C A B A .…………………………2分因为,11C B //BC ,所以,BC A 1∠为异面直线B A 1与11C B 所成的角或补角.……4分 在BC A 1∆中,因为,211===BC C A B A ,所以,异面直线B A 1与11C B 所成角为3π.…………………………7分 (2)设点1B 到平面BC A 1的距离为h , 由(1)得23322211=π⋅⨯⨯=∆sin S BC A ,…………………………9分 21112111=⨯⨯=∆B B A S ,…………………………11分 因为,B B A C BC A B V V 1111--=,…………………………12分所以,CA S h S B B A BC A ⋅=⋅∆∆1113131,解得,33=h . 所以,点1B 到平面BC A 1的距离为33.…………………………14分 或者用空间向量:(1) 设异面直线B A 1与11C B 所成角为θ,如图建系,则()1011-=,,A ,()01111,,C B -=,…………4分A1C CB1B 1A因为,321221π=θ⇒=⋅-==θcos 所以,异面直线B A 1与11C B 所成角为3π.…………7分 (2)设平面BC A 1的法向量为()w ,v ,u n =,则B A n ,BC n 1⊥⊥. 又()011,,-=,()1011-=,,A ,……………9分所以,由⎩⎨⎧=-=+-⇒⎪⎩⎪⎨⎧=⋅=⋅00001w u v u A ,得()111,,n =.…………12分所以,点1B 到平面BC A 1的距离33==d .…………………………14分 18.(本小题满分14分,第1小题满分7分,第2小题满分7分)已知函数2()cos 2sin f x x x x =-.(1)若角α的终边与单位圆交于点3455(,)P ,求()f α的值; (2)当[,]63ππ∈-x 时,求()f x 的单调递增区间和值域.解:(1)∵角α的终边与单位圆交于点3455(,)P ,∴43sin =,cos =55αα ……2分2243432()cos 2sin 2()55525αααα=-=⨯-⨯=f …4分(2)2()cos 2sin f x x x x =-2cos21x x =+- …………………6分2sin(2)16x π=+- …………………………8分由222262k x k πππππ-≤+≤+得,36k x k ππππ-≤≤+又[,]63x ππ∈-,所以()f x 的单调递增区间是[,]66x ππ∈-; ………………10分∵[,]63x ππ∈-,∴52666x πππ-≤+≤…………………………12分 ∴1sin(2)126x π-≤+≤,()f x 的值域是[2,1]-. ………………14分19.(本小题满分14分,第1小题满分6分,第2小题满分8分) 某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:①3小时以内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值.....E (单位:exp )与游玩时间t (小时)满足关系式:22016E t t a =++;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验....值.不变); ③超过5小时为不健康时间,累积经验值.....开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.(1)当1a =时,写出累积经验值.....E 与游玩时间t 的函数关系式()E f t =,并求出游玩6小时的累积经验值.....; (2)该游戏厂商把累积经验值.....E 与游玩时间t 的比值称为“玩家愉悦指数”,记作()H t ;若0a >,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a的取值范围.解:(1)22016,03()85,3533550,5t t t E f t t t t ⎧++<≤⎪==<≤⎨⎪->⎩ (写对一段得1分,共3分)6t =时,(6)35E =    (6分)(2)03t <≤时,16()=20aH t t t++  (8分) 16()244≥⇒+≥aH t t t①0319[,]4164a ⎧<≤⎪⇒∈⎨⎪⎩     (10分) ②39(,)1616343a a⎧>⎪⇒∈+∞⎨+≥⎪⎩    (12分) 综上,1[,)4a ∈+∞        (14分)20.(本小题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)已知双曲线Γ: 22221(0,0)x y a b a b-=>>的左、右焦点分别是 1F 、2F ,左、右两顶点分别是 1A 、2A ,弦 AB 和CD 所在直线分别平行于x 轴与 y 轴,线段BA 的延长线与线段CD 相交于点 P (如图).(1)若(2,3)d =是Γ的一条渐近线的一个方向向量,试求Γ的两渐近线的夹角θ;(2)若1PA =,5PB = ,2PC =,4PD =,试求双曲线Γ的方程;(3)在(..1.)的条件下.....,且124A A =,点C 与双曲线的顶点不重合,直线1CA 和直线2CA 与直线:1l x =分别相交于点M 和N ,试问:以线段MN 为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.解:(1)双曲线22221x y a b-=的渐近线方程为:即0bx ay ±=,所以3b a =,…………2分 从而3tan2θ=22tan 2tan 431tan2θθθ==-, 所以arctan 3θ=………………………………………………..4分(2)设 (,)P P P x y ,则由条件知:11()()322P x PB PA PA PB PA =-+=+=,11()()122P y PC PD PC PD PC =+-=-=,即(3,1)P .…………6分所以(2,1)A ,(3,3)C ,………………………………………………………..…………7分代入双曲线方程知:2751,2781199114222222==⇒⎪⎩⎪⎨⎧=-=-b a ba b a ……9分 127527822=-y x ………………………………………………………………….. 10分 (3)因为124A A =,所以2a =,由(1)知,3b =Γ的方程为: 22143x y -=, 令00(,)C x y ,所以2200143x y -=,010:(2)2y CA y x x =++,令1x =,所以003(1,)2y M x +, 020:(2)2y CA y x x =--,令1x =,所以00(1,2y N x --, …………12分故以MN 为直径的圆的方程为:200003(1)()()022y y x y y x x --+--=+-, 即222000200033(1)()0224y y y x y y x x x -++--=-+-,即22000039(1)()0224y y x y y x x -++--=-+,…………………………………………….14分 若以MN 为直径的圆恒经过定点),(y x于是⎪⎩⎪⎨⎧=±=⇒⎪⎩⎪⎨⎧=-+-=0231049)1(022y x y x y 所以圆过x 轴上两个定点5(,0)2和1(,0)2-……………………………………………16分21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 已知平面直角坐标系xOy ,在x 轴的正半轴上,依次取点123,,,n A A A A (*n N ∈),并在第一象限内的抛物线232y x =上依次取点123,,,,n B B B B (*n N ∈),使得1k k kA B A -∆*()k N ∈都为等边三角形,其中0A 为坐标原点,设第n 个三角形的边长为()f n .(1)求(1),(2)f f ,并猜想()f n (不要求证明); (2)令9()8n a f n =-,记m t 为数列{}n a 中落在区间2(9,9)mm内的项的个数,设数列{}m t 的前m 项和为m S ,试问是否存在实数λ,使得2λ≤m S 对任意*m N ∈恒成立?若存在,求出λ的取值范围;若不存在,说明理由; (3)已知数列{}n b满足:11,2n b b +==数列{}n c 满足:111,n nc c +==求证:1()2n n n b f c π+<<.解:(1)(1)1f =,(2)2f =  (2分) 猜想()f n n =  (2分) (2)98n a n =-  (5分)由21218899899999m mm m n n --<-<⇒+<<+112191,92,,9---∴=++⋅⋅⋅⋅⋅⋅m m m n  (6分)21199m m m t --∴=-  (7分) 352211(91)(99)(99)(99)m m m S --∴=-+-+-+⋅⋅⋅+- 352121(9999)(1999)m m --=+++⋅⋅⋅+-+++⋅⋅⋅+22129(19)(19)91091191980m m m m +---⋅+=-=-- (9分) 2λ≤m S 对任意*m N ∈恒成立min 12()83λλ⇒≤==⇒≤m S S (10分).(3)1sin,4b π=记1sin ,4n n b πθθ==,则1sin sin 2n n θθ+== *1()2n n n N πθ+⇒=∈  (12分) 1tan ,4c π=记1tan ,4n n c πϕϕ==,则1sec 1tan tan tan 2n n n n ϕϕϕϕ+-==*1()2n n n N πϕ+⇒=∈  (14分) 11sin,tan ,22n n n n b c ππ++∴==当(0,)2x π∈时,sin tan x x x <<可知: 1111sin()tan ,2222n n n n n n b f c ππππ++++=<=<=  (18分)杨浦区2018学年度第一学期高三年级模拟质量调研数学学科试卷 2018.12.18一、填空题(本大题有12题,满分54分,第1——6题每题4分,第7—12题每题5分) 1、设全集{}1,2,3,4,5U =,若集合{}3,4,5A =,则____u=2、已知扇形的半径为6,圆心角为3π,则扇形的面积为_____ 3、已知双曲线221x y -=,则其两条渐近线的夹角为_____ 4、若()na b +展开式的二项式系数之和为8,则____n = 5、若实数,x y 满足221x y +=,则xy 的取值范围是_____6、若圆锥的母线长()5l cm =,高()4h cm =,则这个圆锥的体积等于_______7、在无穷等比数列{}n a 中,()121lim ,2n n a a a →+∞+++=则1a 的取值范围是____8、若函数()1ln 1xf x x+=-的定义域为集合A ,集合(),1B a a =+,且B A ⊆,则实数a 的取值范围__9、在行列式274434651xx--中,第3行第2列的元素的代数余子式记作()f x ,则()1y f x =+的零点是____10、已知复数())12cos 2,cos z x f x i z x x i =+=++,(,x R i ∈虚数单位)在复平面上,设复数12,z z 对应的点分别为12,Z Z ,若1290Z OZ ∠=,其中是坐标原点,则函数()f x 的最小正周期______ 11、当0x a <<时,不等式()22112x a x +≥-恒成立,则实数a 的最大值为______ 12、设d 为等差数列{}n a 的公差,数列{}n b 的前项和n T ,满足()()112nn n n T b n N *+=-∈, 且52d a b ==,若实数{}()23,3k k k m P x a x a k N k *-+∈=<<∈≥,则称m 具有性质k P ,若是n H 数列{}n T 的前n 项和,对任意的n N *∈,21n H -都具有性质k P ,则所有满足条件的k 的值为_____二、选题题(本题共有4题,满分20分,每题5分)13、下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( )(A )()arcsin f x x= (B )lg y x= (C )()f x x=-(D )()cos f x x =14、某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为 ( )(A )310 (B ) 35 (C ) 25 (D )2315、已知()sin log ,0,2f x x θπθ⎛⎫=∈ ⎪⎝⎭,设sin cos sin ,,2sin cos a f b f c f θθθθθ+⎛⎫⎛⎫===⎪⎪+⎝⎭⎝⎭,则,,a b c 的大小关系是 (A )a b c ≤≤ (B )b c a ≤≤ (C )c b a ≤≤(D )a b c ≤≤16、已知函数()22x f x m x nx =⋅++,记集合(){}0,A x f x x R ==∈,集合(){}0,B x f x x R ==∈,若A B =,且都不是空集,则m n +的取值范围是( ) ( A )[]0,4 (B )[]1,4- (C )[]3,5- (D )[]0,7三、解答题(本大题共有5题,满分76分) 17、(本题满分14分,第1题满分6分,第2小题满分8分)如图,,PA ABCD ⊥平面四边形ABCD 为矩形,1PA PB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动。

(2021年整理)2018年上海高三一模真题汇编——函数专题(教师版)

(2021年整理)2018年上海高三一模真题汇编——函数专题(教师版)

2018年上海高三一模真题汇编——函数专题(教师版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年上海高三一模真题汇编——函数专题(教师版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年上海高三一模真题汇编——函数专题(教师版)的全部内容。

2018年一模汇编—-函数专题一、知识梳理【知识点1】函数的概念与函数三要素【例1】 设函数2log ,0()4,0x x x f x x >⎧=⎨≤⎩,则((1))f f -= 。

【答案】2-。

【解析】()11144f --==,()()1124f f f ⎛⎫-==- ⎪⎝⎭。

【点评】考察函数的概念。

【例2】函数11,02()1,0x x f x x x⎧-≥⎪⎪=⎨⎪<⎪⎩,若()f a a >,则实数a 的取值范围是 .【答案】()1a ,∈-∞-. 【解析】①当0a ≥时,112a a ->,2a <-(舍);② 当0a <时,1a a>,1a >(舍)或1a <-;综上,所以()1a ,∈-∞-.【点评】考察分段函数的概念.【知识点2】函数的奇偶性【例1】已知()f x 、g()x 分别是定义在R 上的偶函数和奇函数,且()g()2x f x x x -=+,则(1)g(1)f += .【答案】12-。

【解析】()()()2x f x g x x ----=+-,根据奇偶性可得,()()2x f x g x x -+=-,所以()()1111212f g -+=-=-.【点评】考察函数的奇偶性,利用奇偶性求解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市各区2018届高三数学(理科)一模试题分类汇编三角函数2018.01.23(普陀区2018届高三1月一模,理)3. 在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若2=a ,32=c ,3π=C ,则=b .3. 4;(长宁区2018届高三1月一模,理)7、设ω>0,若函数f (x )=2sin ωx 在[-4,3ππ]上单调递增,则ω的取值范围是_________. 7、]23,0((徐汇区2018届高三1月一模,理)4. 已知3sin 5x =,,2x ππ⎛⎫∈ ⎪⎝⎭,则x = .(结果用反三角函数表示)(嘉定区2018届高三1月一模,理)6.已知θ为第二象限角,54sin =θ,则=⎪⎭⎫ ⎝⎛+4tan πθ____________.6.71-(杨浦区2018届高三1月一模,理)9. 已知函数()1cos sin )(2-+=x x x f ωω的最小正周期为π,则=ω _________. 9. 理1±;(浦东新区2018届高三1月一模,理)4.已知tan tan αβ、是方程2670x x ++=的两根,则tan()αβ+=_______. 4. 1(长宁区2018届高三1月一模,理)9、在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c.若bc b a 322=-,B C sin 32sin = ,则角A =._________9、6π (浦东新区2018届高三1月一模,理)9.在锐角ABC 中,4,3AC BC ==,三角形的面积等于33,则AB 的长为___________. 9. 13(徐汇区2018届高三1月一模,理)2. 函数x x y 2cos 2sin =的最小正周期是 .(普陀区2018届高三1月一模,理)17.将函数)(x f y =的图像向右平移4π个单位,再向上平移1个单位后得到的函数对应的表达式为x y 2sin 2=,则函数)(x f 的表达式可以是………………………………………( ))(A x sin 2. )(B x cos 2. )(C x 2sin . )(D x 2cos .17 C (徐汇区2018届高三1月一模,理)16. 为了得到函数2sin ,36x y x R π⎛⎫=+∈ ⎪⎝⎭的图像,只需把函数2sin ,y x x R =∈的图像上所有的点--------------------------------------------------------------------------------------------------------------------------------------( )(A) 向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (B) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(C) 向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)(D) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)(16. B浦东新区2018届高三1月一模,理)16. 方程5log sin x x 的解的个数为( )(A) 1 (B) 3 (C) 4 (D) 5 16. B(长宁区2018届高三1月一模,理)17、已知△ABC 为等边三角形,=2AB ,设点P,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ( )A .12B .122± C .1102± D .3222-± 17、A(嘉定区2018届高三1月一模,理)17.将函数x y 2sin =(R ∈x )的图像分别向左平移m (0>m )个单位,向右平移n(0>n )个单位,所得到的两个图像都与函数⎪⎭⎫⎝⎛+=62sin πx y 的图像重合,则n m + 的最小值为……………………………………………………………………………( ) A .32π B .65π C .π D .34π17.C(杨浦区2018届高三1月一模,理)17. 设锐角ABC ∆的三内角A 、B 、C 所对边的边长分别为a 、b 、c ,且 1=a ,A B 2=, 则b 的取值范围为 ………( ). )(A ()3,2 . )(B ()3,1 .)(C()2,2 . )(D ()2,0 .17. A ;(普陀区2018届高三1月一模,理)20. (本题满分14分)本大题共有2小题,第1小题满分6分,第2小题满分8分.已知函数x x x x f cos sin 322cos )(+=(1)求函数)(x f 的最大值,并指出取到最大值时对应的x 的值; (2)若60πθ<<,且34)(=θf ,计算θ2cos 的值. 20. (本题满分14分)本大题共有2小题,第1小题满分6分,第2小题满分8分.【解】(1))62sin(22sin 32cos )(π+=+=x x x x f ………………2分由20π≤≤x 得,67626πππ≤+≤x ………4分 所以当262ππ=+x 时,2)(max =x f ,此时6π=x ………6分(2)由(1)得,34)62sin(2)(=+=πθθf ,即32)62sin(=+πθ……………8分其中2626ππθπ<+<得0)62cos(>+πθ………………10分所以35)62cos(=+πθ……………11分 ]6)62cos[(2cos ππθθ-+=………………13分 621521322335+=⨯+⨯=………………14分(杨浦区2018届高三1月一模,理)21.(本题满分14分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分 .某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC 、BD 是过抛物线Γ焦点F 的两条弦,且其焦点)1,0(F ,0=⋅BD AC ,点E 为y 轴上一点,记α=∠EFA ,其中α为锐角. (1) 求抛物线Γ方程;(2) 如果使“蝴蝶形图案”的面积最小,求α的大小?21. 【解】理科 (1) 由抛物线Γ焦点)1,0(F 得,抛物线Γ方程为y x 42= ……5分 (2) 设m AF =,则点)1cos ,sin (+-ααm m A ……6分所以,)cos 1(4)sin (2ααm m +=-,既04cos 4sin 22=--ααm m ……7分解得 αα2sin )1(cos 2+=AF ……8分同理: αα2cos )sin 1(2-=BF ……9分 αα2cos )sin 1(2+=DF ……10分 αα2sin )cos 1(2-=CF ……11分 “蝴蝶形图案”的面积2)cos (sin cos sin 442121αααα-=⋅+⋅=+=∆∆DF CF BF AF S S S CFD AFB 令 ⎝⎛⎥⎦⎤∈=21,0,cos sin t t αα, [)+∞∈∴,21t ……12分则121141422-⎪⎭⎫⎝⎛-=-=t t t S , 21=∴t 时,即4πα=“蝴蝶形图案”的面积为8……14分(长宁区2018届高三1月一模,理)20.(本题满分14分,其中(1)小题满分6分,(2)小题满分8分)在ABC ∆中,已知3AB AC BA BC =. (1)求证tan 3tan B A =; (2)若5cos C =求角A 的大小. 20、(1)∵3AB AC BA BC =,∴cos =3cos AB AC A BA BC B , 即cos =3cos AC A BC B . …………2分 由正弦定理,得=sin sin AC BCB A,∴sin cos =3sin cos B A A B . …………4分 又∵0<A B<π+,∴cos 0 cos 0A>B>,.∴sin sin =3cos cos B AB A即tan 3tan B A =. …………6分(2)∵ 5cos 0C <C <π=,∴2525sin 1=5C ⎛⎫=- ⎪ ⎪⎝⎭.∴tan 2C =.…………8分 ∴()tan 2A B π⎡-+⎤=⎣⎦,即()tan 2A B +=-.∴tan tan 21tan tan A BA B+=--. …………10分由 (1) ,得24tan 213tan A A =--,解得1tan =1 tan =3A A -,. …………12分∵cos 0A>,∴tan =1A .∴=4A π. …………14分(浦东新区2018届高三1月一模,理)19. (本题满分12分,第1小题6分,第2小题6分)如图,四棱锥S ABCD -的底面是正方形,SD ⊥平面ABCD ,2SD AD ==(1)求证:AC SB ⊥;(2)求二面角C SA D --的大小. 19.解:(1)连接BD ,∵SD ⊥平面ABCDAC ⊆平面ABCD∴AC ⊥SD ………………4分 又四边形ABCD 是正方形,∴AC ⊥BD ∴AC ⊥平面SBD∴AC⊥SB. ………………6分(2)设SA 的中点为E ,连接DE 、CE , ∵SD=AD,CS=CA, ∴DE ⊥SA, CE ⊥SA.∴CED ∠是二面角C SA D --的平面角. …………9分 计算得:DE 2,CE 6,CD =2,则CD ⊥DE.3cos 3CED ∠=, 3arccos 3CED ∠= 所以所求二面角的大小为3arccos3.………12分(嘉定区2018届高三1月一模,理)20.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.已知函数3cos 32cos sin 2)(2-+=x x x x f ,R ∈x .(1)求函数)(x f 的最小正周期和单调递增区间; (2)在锐角三角形ABC 中,若1)(=A f ,2=⋅AC AB ,求△ABC 的面积.20.(本题满分14分,第1小题满分8分,第2小题满分6分)(1)⎪⎭⎫⎝⎛+=+=-+=32sin 22cos 32sin )1cos 2(3cos sin 2)(2πx x x x x x x x f , ………………………………………………(2分) 所以,函数)(x f 的最小正周期为π. ………………………………………………(1分) 由223222πππππ+≤+≤-k x k (Z ∈k ), ………………………………………(2分)得12125ππππ+≤≤-k x k (Z ∈k ), …………………………………………(2分) 所以,函数)(x f 的单调递增区间是⎥⎦⎤⎢⎣⎡+-12,125ππππk k (Z ∈k ). ……………(1分) (2)由已知,132sin 2)(=⎪⎭⎫⎝⎛+=πA A f ,所以2132sin =⎪⎭⎫ ⎝⎛+πA , ……………(1分)因为20π<<A ,所以34323πππ<+<A ,所以6532ππ=+A ,从而4π=A . …(2分)又2cos ||||=⋅⋅=⋅A AC AB AC AB ,,所以,2||||=⋅AC AB , ………………(1分) 所以,△ABC 的面积2222221sin ||||21=⨯⨯=⋅⋅⋅=A AC AB S . …………(2分)。

相关文档
最新文档