上海2020高三数学一模分类汇编-函数(详答版)
上海市闵行区2023届高三一模数学试题(解析版)

【解析】
【分析】根据复数除法计算求解.
【详解】由 可得 ,
故答案为:
3.双曲线 的离心率为______.
【答案】
【解析】
【分析】由双曲线的标准方程求得 ,从而求得双曲线的离心率.
【详解】因为双曲线 ,
所以 ,则 ,
所以双曲线的离心率为 .
故答案为:
4.在 中,已知边 ,角 , ,则边 ______.
【详解】 ,令 ,
, ,
,作出函数 的图象,如图,
由图可知,以 为中心,当 变大时,若 ,函数最大值 ,最小值 ,不满足 ,若 时,函数最大值 ,所以只需要确定函数最小值,因为 ,需函数最小值为 ,所以当 时,即 时,
函数值域为 ,满足 ,当 时,函数最小值 ,此时不满足 ,综上 .
故答案为: .
12.已知平面向量 、 、 和实数 满足 , , ,则 的取值范围是______.
【答案】1
【解析】
【分析】对函数 求导得 ,令 ,求解即可.
【详解】解:因为 ,
所以 ,
又因为直线 的斜率为 ,
所以 ,
解得: ,
即切点的横坐标为:1.
故答案为:1
9.已知二次函数 的值域为 ,则函数 的值域为______.
【答案】
【解析】
【分析】由二次函数的值域为 ,分析求出参数 ,然后代入 中求出值域即可
【答案】 (只要使得 即可).
【解析】
【分析】利用线面垂直的判定定理及线面垂直的定义可得出结论.
【详解】连接 ,如下图所示:
因为 平面 , 平面 ,则 ,
若 , , 、 平面 , 平面 ,
平面 , .
故答案为: (只要使得 即可).
上海市杨浦区2020届高三一模数学试卷及详细解析(Word版)

上海市杨浦区2020届高三一模数学试卷及详细解析2019. 12一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 函数2()f x x =的定义域为______2. 关于x 、y 的方程组2130x y x y -=⎧⎨+=⎩的增广矩阵为______ 3. 已知函数()f x 的反函数12()log f x x -=,则(1)f -=______4. 设a ∈R ,2(1)i a a a a --++为纯虚数(i 为虚数单位),则a =______5. 己知圆锥的底面半径为1cm ,侧面积为22cm π,则母线与底面所成角的大小为______6. 已知7(1)ax+二项展开式中3x 的系数为280,则实数a =______7. 椭圆22194x y +=焦点为1F 、2F ,P 为椭圆上一点,若PF =15,则12cos F PF ∠=______8. 已知数列{n a }的通项公式为1(2)1()32n n n n a n -≤⎧⎪=⎨≥⎪⎩(n ∈N *),n S 是数列{n a }的前n 项和.则lim n x S →∞=______ 9. 在直角坐标平面xOy 中,A (-2,0),B (0,1),动点P 在圆C :222x y +=上,则 PA PB ⋅的取值范围为______10. 已知六个函数:①21y x=;②cos y x =;③12y x =;④arcsin y x =;⑤1lg()1x y x+=-;⑥1y x =+.从中任选三个函数,则其中既有奇函数又有偶函数的选法有______种11. 已知函数1|1()|xf x =-,(0x >),若关于x 的方程[]2()()230f x mf x m +++=有三个不相等的实数解,则实数m 的取值范围为______12. 向量集合S ={(),|,,a a x y x y =∈R },对于任意α、S β∈,以及任意λ∈(0,1),都有()12S λαβ+-∈,则称S 为“C 类集”.现有四个命题:①若S 为“C 类集”,则集合M ={,|a a S R μμ∈∈}也是“C 类集”; ②若S 、T 都是“C 类集”,则集合M ={|,a b a S b T +∈∈}也是“C 类集”; ③若1A 、2A 都是“C 类集”,则12A A 也是“C 类集”;④若1A 、2A 都是“C 类集”,且交集非空,则12A A 也是“C 类集”. 其中正确的命题有______二、选择题(本大题共4题,每题5分,共20分)13. 已知实数a 、b 满足a b >,则下列不等式中恒成立的是( )A. 22a b >B. 11a b< C. |a ||b |> D. 22a b > 14. 要得到函数2sin(2)3y x π=+的图象,只要将2sin2y x =的图象( )A. 向左平移6π个单位B. 向右平移6π个单位 C. 向左平移3π个单位 D. 向右平移3π个单位 15. 设1z 、2z 为复数,则下列命题中一定成立的是( )A. 如果120z z ->,那么12z z >B. 如果12z z =,那么12z z =±,C. 如果12||1z z >,那么12z z >D. 如果22120z z +=,那么120z z == 16. 对于全集R 的子集A ,定义函数1(()0())A x f x x A A ⎧=∈⎨⎩∈R为A 的特征函数.设A 、B 为全集R 的子集,下列结论中错误的是( )A. 若A B ∈,则()()A B f x f x ≤B. ()1()A A f x f x =-RC. ()()()A A B B f x f x f x =⋅D. ()()()A A B B f x f x f x =+三、解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,四棱锥P ABCD -中,底面ABCD 为矩形,P A ⊥底面ABCD ,AB =P A =1,AD =3,E 、F 分别为棱PD 、P A 的中点.(1)求证:B 、C 、E 、F 四点共面;(2)求异面直线PB 与AE 所成的角.18. 已知函数()22x xa f x =+,其中a 为实常数. (1) (0)7f =,解关于x 的方程()5f x =;(2) 判断函数()f x 的奇偶性,并说明理由.19. 东西向的铁路上有两个道口A 、B ,铁路两侧的公路分布如图,C 位于A 的南偏西15°,且位于B 的南偏东15°方向,D 位于A 的正北方向,AC =AD =2km ,C 处一辆救护车欲通过道口前往D 处的医院送病人,发现北偏东45°方向的E 处(火车头位置)有一列火车自东向西驶来,若火车通过每个道口都需要1分钟,救护车和火车的速度均为60 km /h .(1) 判断救护车通过道口A 是否会受到火车影响,并说明理由;(2) 为了尽快将病人送到医院,救护车应选择A 、B 中的哪个道口?通过计算说明.20. 如图,在平面直角坐标系xOy 中,己知抛物线C :24y x =的焦点为F ,点A 是第一象限内抛物线C 上的一点,点D 的坐标为(,0t ),0t >,(1)若||5OA =,求点A 的坐标;(2)若△AFD 为等腰直角三角形,且FAD ∠=90o ,求点D 的坐标;(3)弦AB 经过点D ,过弦AB 上一点P 作直线x t =-的垂线,垂足为点Q ,求证:“直线QA 与抛物线相切” 的一个充要条件是“p 为弦AB 的中点”.21. 已知无穷数列{n a }的前n 项和为n S ,若对于任意的正整数n ,均有210n S -≥,20n S ≤,则称数列{n a }具有性质P .(1) 判断首项为1,公比为2-的无穷等比数列{n a }是否具有性质P ,并说明理由;(2) 已知无穷数列{n a }具有性质P ,且任意相邻四项之和都相等,求证:40S =;(3) 已知21n b n =-,n ∈N *,数列{n c }是等差数列,122n n n b n a c n +⎧⎪=⎨⎪⎩为奇数为偶数,若无穷数列{n a }具有性质P ,求2019c 的取值范围.上海市杨浦区2020届高三一模数学试卷及详细解析。
2020年上海新高一新教材数学讲义-专题14 函数(学生版)

专题14 函数(函数的概念,函数的表示方法)知识梳理一、函数的概念1.函数定义:定义一:如果在某个变化过程中有两个变量x ,y ,对于x 在某个范围D 内的每一个确定的值按照某种对应法则f , 都有唯一的值与它对应,那么y 就是x 的函数,记作()y f x =,x 叫做自变量,x 的取值范围D 叫做函数的定义域,和x 的值相对应的y 的值叫做函数值,函数值的集合叫做函数的值域. 定义二:非空数集A 到非空数集B 的一个对应关系f :A B →,使A 中每一个元素在B 中都有唯一确定的元素和它对应,那么对应关系f :A B →叫做A 到B 的函数,记作()y f x =,其中x A ∈,y B ∈,x 叫做自变量,x 的取值范围A 叫做函数的定义域,和x 的值相对应的y 的值叫做函数值,函数值的集合C 叫做函数的值域.(一般有C B ⊆)注意:1、函数定义中要求对定义域中的任何一个x ,在值域中有且只有一个y 值和它对应;但并不要求对于值域中的每一个y 也只能有一个x 和它相对应,即函数的对应法则可以是1对1,也可以多对1,但不可以1对多(即定义域中一个x 对应值域中一个以上的y ). 2、定义域与值域都必须是非空数集.3、定义域的表示方法有:集合表示法、区间表示法 2.函数的三要素: 定义域 、 值域 和 对应关系 .确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
3.相等函数:如果两个函数的 定义域 和 对应关系 完全一致,则这两个函数相等,这是判断两函数相等的依据.注:若两个函数的定义域与值域相同,是否为相等函数?(不一定。
如果函数y x =和1y x =+,其定义域与值域完全相同,但不是相等函数,看两个函数是否相等,关键是看定义域和对应关系) 4.函数的表示法:表示函数的常用方法有: 解析法 、 图象法 、 列表法 .函数解析式的求法主要包含: 配凑法 、 待定系数法 、 换元法 、 赋值法(方程组法) . 5.函数的定义域、值域:在函数()y f x x A =∈,,中,x 叫做自变量,x 的取值范围A 叫做函数的 定义域 ;与x 的值相对应的y 值叫做函数值,函数值的集合{()f x |x A ∈}叫做函数的 值域 .(1)函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x 的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);①限制型:指命题的条件或人为对自变量x 的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;①实际型:解决函数的综合问题与应用问题时,应认真考察自变量x 的实际意义。
2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。
2020年上海市高三数学一模分类汇编:向量与复数

向量: 2(2020徐汇一模). 向量(3,4)a =r 在向量(1,0)b =r 方向上的投影为5(2020闵行一模). 在△ABC 中,已知AB a =uu u r r ,BC b =uu u r r ,G 为△ABC 的重心,用向量a r 、b r 表示向量AG =uuu r6(2020嘉金一模). 已知向量13()2AB =uu u r ,31()2AC =uuu r ,则BAC ∠= 7(2020松江一模). 已知向量(1,2)a =r ,(,3)b m =-r ,若向量(2)a b -r r ∥b r ,则实数m =10(2020嘉金一模). 已知非零向量a r 、b r 、c r 两两不平行,且a r ∥()b c +r r ,b r ∥()a c +r r ,设c xa yb =+r r r ,,x y ∈R ,则2x y +=10(2020虹口一模). 如图所示,2角三角板拼在一起,则OD AB ⋅=uuu r uu u r10(2020闵行一模). 若O 是正六边形123456A A A A A A 的中心,{|1,2,3,4,5,6}i Q OA i ==u u u r ,,,a b c Q ∈r r r ,且a r 、b r 、c r 互不相同,要使得()0a b c +⋅=r r r ,则有序向量组(,,)a b c r r r 的个数为11(2020普陀一模). 设P 是长为22123456A A A A A A 的边上的任意一点,长度为4的线段MN 是该正六边形外接圆的一条动弦,PM PN ⋅uuu r uuu r 的取值范围为12(2020青浦一模). 已知点P 在双曲线221916x y -=上,点A 满足(1)PA t OP =-uu r uu u r (t ∈R ),且60OA OP ⋅=uu r uu u r ,(0,1)OB =uu u r ,则||OB OA ⋅uu u r uu r 的最大值为12(2020崇明一模). 正方形ABCD 的边长为4,O 是正方形ABCD 的中心,过中心O 的直线l 与边AB 交于点M ,与边CD 交于点N ,P 为平面上一点,满足2(1)OP OB OC λλ=+-uu u r uu u r uuu r ,则PM PN ⋅uuu r uuu r 的最小值为16. 设H 是ABC V 的垂心,且3450HA HB HC ++=uu u r uu u r uuu r r ,则cos BHC ∠的值为( ) A. 3010 B. 55- C. 66 D. 70 12(2020松江一模). 记边长为1的正六边形的六个顶点分别为1A 、2A 、3A 、4A 、5A 、6A ,集合{|(,1,2,3,4,5,6,)}i j M a a A A i j i j ===≠r r u u u u r ,在M 中任取两个元素m u r 、n r ,则0m n ⋅=u r r 的概率为复数:1(2020宝山一模). 若(1i)2i z +=(i 是虚数单位),则||z =2(2020虹口一模). 若复数3i 1iz -=+(i 为虚数单位),则||z = 2(2020青浦一模). 若复数i(32i)z =-(i 是虚数单位),则z 的模为 2(2020闵行一模). 复数5i 2-的共轭复数是 3(2020松江一模). 设1i 2i 1i z -=++,则||z = 4(2020杨浦一模). 设a ∈R ,2(1)i a a a a --++为纯虚数(i 为虚数单位),则a = 4(2020普陀一模). 已知i 为虚数单位,若复数1i i 1z m =++是实数,则实数m 的值为 4(2020徐汇一模). 复数1i 34i++的共轭复数为 14(2020崇明一模). 已知z ∈C ,“0z z +=”是“z 为纯虚数”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件15(2020杨浦一模). 设1z 、2z 为复数,则下列命题中一定成立的是( )A. 如果120z z ->,那么12z z >B. 如果12||||z z =,那么12z z =±C. 如果12||1z z >,那么12||||z z > D. 如果22120z z +=,那么120z z ==18(2020嘉金一模). 在复平面内复数1z 、2z 所对应的点为1Z 、2Z ,O 为坐标原点,i 是虚数单位.(1)112i z =+,234i z =-,计算12z z ⋅与12OZ OZ ⋅uuu r uuur ;(2)设1i z a b =+,2i z c d =+(,,,a b c d ∈R ),求证:2121||||OZ OZ z z ⋅≤⋅u u u r u u u r ,并指出向 量1OZ uuu r 、2OZ uuur 满足什么条件时该不等式取等号.。
2023年上海市黄浦区高三上学期高考(等级考)一模数学试卷含详解

上海市黄浦区2023届高三一模数学试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 函数lg(2)y x 的定义域是______.2. 已知集合2,2A ,3,1,51B ,则A B ______.3. 在5(21)x 的二项展开式中,3x 的系数是________4. 已知向量,1,3a m,2,,1b n,若a b ∥,则mn 的值为______.5. 已知复数z 满足1i 42i z (i 为虚数单位),则复数z 的模等于______.6. 某个品种的小麦麦穗长度(单位:cm )的样本数据如下:10.2、9.7、10.8、9.1、8.9、8.6、9.8、9.6、9.9、11.2、10.6、11.7,则这组数据的第80百分位数为______.7. 在平面直角坐标系xOy 中,若角 的顶点为坐标原点,始边与x 轴的非负半轴重合,终边与以点O 为圆心的单位圆交于点34,55P,则sin 22 的值为______. 8. 若一个圆锥侧面展开图是面积为的半圆面,则该圆锥的体积为 .9. 已知ABC 的三边长分别为4、5、7,记ABC 的三个内角的正切值所组成的集合为M ,则集合M 中的最大元素为______.10. 现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为_________.11. 已知四边形ABCD 是平行四边形,若2AD DE ,BF BE ∥u u ur u u u r ,0AF BE u u u r u u u r ,且60AF AC u u u r u u u r ,则AC 在AF上的数量投影为______.12.已知曲线1:C y与曲线2:C y ,长度为1的线段AB 的两端点A 、B 分别在曲线1C 、2C 上沿顺时针方向运动,若点A 从点1,0 开始运动,点B到达点 时停止运动,则线段AB 所扫过的区域的面积为______.二.选择题(本大题共4题,第13、14题各4分,第15、16题各5分,共18分)13. 在平面直角坐标系xOy 中,“0m ”是“方程221x my 表示的曲线是双曲线”的( )条件 A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分也不必要14. 如图,四边形ABCD 是边长为1的正方形,MD 平面ABCD ,NB 平面ABCD ,且1MD NB ,点G 为MC 的中点.则下列结论中不.正确的是( ) 的A. MC ANB. 平面//DCM 平面ABNC. 直线GB 与AM 是异面直线D. 直线GB 与平面AMD 无公共点15. 已知 sin 06f x x,且函数 y f x 恰有两个极大值点在0,3,则 的取值范围是( ) A. 7,13B. 7,13C. 7,10D. 7,1016. 设a 、b 、c 、p 为实数,若同时满足不等式20ax bx c 、20bx cx a 与20cx ax b 的全体实数x 所组成的集合等于 , p .则关于结论:①a 、b 、c 至少有一个为0;②0p .下列判断中正确的是( ) A. ①和②都正确 B. ①和②都错误 C. ①正确,②错误D. ①错误,②正确三.解答题(本大题共5题,共14+14+14+18+18=78分)17. 已知 n a 是等差数列, n b 是等比数列,且23b ,39b ,11a b ,144a b . (1)求 n a 通项公式; (2)设*1Nnn n n c a b n ,求数列 nc 前2n 项和.18. 如图所示,四棱锥P ABCD 中,底面ABCD 为菱形,且直线PA ABCD 平面,又棱2PA AB ,E 为CD 的中点,60.ABC(Ⅰ) 求证:直线AE PAB 平面; (Ⅱ) 求直线AE 与平面PCD 的正切值.19. 某展览会有四个展馆,分别位于矩形ABCD 四个顶点A 、B 、C 、D处,现要修建如图中实线所示的步道(宽的的的度忽略不计,长度可变)把这四个展馆连在一起,其中8AB 百米,6AD 百米,且AE DE BF CF .(1)试从各段步道的长度与图中各角的弧度数中选择某一变量作为自变量x ,并求出步道的总长y (单位:百米)关于x 的函数关系式;(2)求步道的最短总长度(精确到0.01百米).20. 已知椭圆 2222:10x y C a b a b离心率为2,以其四个顶点为顶点的四边形的面积等于.动直线1l 、2l 都过点 0,01M m m ,斜率分别为k 、3k ,1l 与椭圆C 交于点A 、P ,2l 与椭圆C 交于点B 、Q ,点P 、Q 分别在第一、四象限且PQ x 轴.(1)求椭圆C 的标准方程;(2)若直线1l 与x 轴交于点N ,求证:2NP MN ;(3)求直线AB 的斜率的最小值,并求直线AB 的斜率取最小值时的直线1l 的方程.21. 已知集合A 和定义域为R 的函数 y f x ,若对任意t A ,x R ,都有 f x t f x A ,则称f x 是关于A 的同变函数.(1)当 0,A 与 0,1时,分别判断 2xf x 是否为关于A 的同变函数,并说明理由;(2)若 f x 是关于 2的同变函数,且当 0,2x 时,f x f x 在 2,22Z k k k 上的表达式,并比较 f x 与12x的大小; (3)若n 为正整数,且f x 是关于12,2n n 的同变函数,求证: f x 既是关于 2Z n m m 的同变函数,也是关于0, 的同变函数.的上海市黄浦区2023届高三一模数学试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 函数lg(2)y x 的定义域是______. 【答案】(,2)【详解】由题设有20x ,解得2x ,故函数的定义域为 ,2 ,填 ,2 . 2. 已知集合 2,2A , 3,1,51B ,则A B ______. 【答案】 3,5【分析】运用数轴法求集合的并运算. 【详解】如图所示,则(3,5)A B . 故答案为:(3,5) .3. 在5(21)x 的二项展开式中,3x 的系数是________ 【答案】80【分析】写出展开式的通项公式,利用公式即可得答案.【详解】由题意得: 5r152rr T C x ,当2r 时, 32335280T C x x∴3x 的系数是80.故答案为:804. 已知向量 ,1,3a m , 2,,1b n ,若a b ∥,则mn 的值为______.【答案】-2【分析】运用向量平行的坐标运算公式即可.【详解】∵//a b r r, ∴1321m n ,解得:6m ,13n ,∴mn 2 . 故答案为:2 .5. 已知复数z 满足 1i 42i z (i 为虚数单位),则复数z 的模等于______.【分析】利用复数的除法化简可得复数z ,利用复数的模长公式可求得z .【详解】因为 1i 42i z ,则42i 1i 42i 26i13i 1i 1i 1i 2z,z .故答案.6. 某个品种的小麦麦穗长度(单位:cm )的样本数据如下:10.2、9.7、10.8、9.1、8.9、8.6、9.8、9.6、9.9、11.2、10.6、11.7,则这组数据的第80百分位数为______. 【答案】10.8【分析】将数据从小到大排序后,运用百分位数的运算公式即可.【详解】数据从小到大排序为: 8.6、8.9、9.1、9.6、9.7、9.8、9.9、10.2、10.6、10.8、11.2、11.7,共有12个, 所以1280%=9.6 ,所以这组数据的第80百分位数是第10个数即:10.8. 故答案为:10.87. 在平面直角坐标系xOy 中,若角 的顶点为坐标原点,始边与x 轴的非负半轴重合,终边与以点O 为圆心的单位圆交于点34,55P ,则sin 22的值为______. 【答案】725##0.28. 【分析】运用三角函数的定义、诱导公式及二倍角公式计算即可. 【详解】由题意知,3cos 5, 所以222π37sin(2)cos 2(2cos 1)12cos 12()2525. 故答案为:725. 8. 若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为 .【答案】【详解】由面积为的半圆面,可得圆的半径为2,即圆锥的母线长为2.圆锥的底面周长为.所以底面半径为1.所以该圆锥的体积为3.9. 已知ABC 的三边长分别为4、5、7,记ABC 的三个内角的正切值所组成的集合为M ,则集合M 中的最大元素为______.【答案】5【分析】设ABC 的三边长分别为4,5,7a b c ,根据余弦定理确定三角形最大角角C 为钝角,利用大边对大角及正确函数性质,可知三个内角的正切值最大为tan B ,再利用余弦定理及同角三角关系即可求得tan B 得值. 【详解】不妨设ABC 的三边长分别为4,5,7a b c ,则由大边对大角可得A B C , 所以最大角为C ,由余弦定理得:2221625491cos 22455a b c C ab +-+-===-创,又 0,πC ,故角C 为钝角, 为所以π0π2A B C, 又函数tan y x 在π0,2上递增,此时tan 0x ,在π,π2上递增,此时tan 0x ,所以三个内角的正切值最大为tan B ,由余弦定理得:2221649255cos 22477a c b B ac ,则sin 7B ==,所以sin tan cos 5B B B.故答案为:5. 10. 现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为_________. 【答案】【详解】试题分析:由题活动恰好在第4人抽完后结束,包含的情况有;(不中)中中中,中(不中)中中,中中(不中)中.则概率为;232132213221111354325432543210101010P考点:相互独立事件及互斥事件概率算法.11. 已知四边形ABCD 是平行四边形,若2AD DE,BF BE ∥u u u r u u u r ,0AF BE u u u r u u u r ,且60AF AC u u u r u u u r,则AC在AF上的数量投影为______.【答案】10【分析】运用向量共线、向量垂直画图,运用平行线性质及直角三角形性质可得5||||3AC AM、||cos ||AM AF,再运用数量积运算及几何意义即可求得结果.【详解】因为2AD DE,所以A 、D 、E 三点共线,且||2||AD DE ,又因为//AD BC ,所以||||2||||3BC MC AE AM ,所以5||||3AC AM , 因为//BF BE,所以B 、E 、F 三点共线,又因为0AF BE u u u r u u u r ,所以AF BE ⊥,如图所示,设FAC ,则||cos ||AM AF,所以255||||cos ||||cos ||6033AF AC AF AC AM AF AF,解得:||6AF ,所以AC 在AF 上的数量投影为60||cos 106||AC AF AC AF. 故答案为:10.12.已知曲线1:C y与曲线2:C y,长度为1的线段AB 的两端点A 、B 分别在曲线1C 、2C 上沿顺时针方向运动,若点A 从点 1,0 开始运动,点B到达点时停止运动,则线段AB 所扫过的区域的面积为______. 【答案】3π8##3π8【分析】根据已知条件知,曲线1C 与曲线2C 是两个半圆,分别求出起点、终点处时A 、B 的坐标,可得线段AB 扫过的面积,进而通过三角形面积公式及扇形面积公式计算可得结果.【详解】设1A 、1B 分别为A 、B 点的起点,2A 、2B 分别为A 、B 点运动的终点,则图中阴影部分即为线段AB 扫过的面积.如图所示,则1(1,0)A,2B ,设111(,)B x y ,222(,)A x y , ∵曲线1C方程:221(0)y x y y , 曲线2C方程:222(0)y x y y,2211111((1))111y x x y y,即:1(1,1)B ,2222222(122x y x y y,即:2)22A , 记1C S 为圆221x y 的面积,2C S 为圆222x y 的面积,11A DB S 为 1DB 与1A D 、11A B 围成的面积,22A B F S 为 2A F 与2B F 、22A B 围成的面积,1S 为上半圆环的面积,S 为线段AB 扫过的面积.则211111()(2ππ)π222C C S S S, 因为111A B ,11OA,1OB,所以2221111A B OA OB ,所以111OA A B ,所以1145A OB ,所以11112111π1118242A DB OA BC ODB S S S S △,又因为221A B ,21OA,2 OB ,所以222OA A B ,所以2245A OB ,所以 222212111π112828A B F OA B C A OF S S S S△, 所以112211π11π3ππ242288A DB A B F S S S S. 故答案为:3π8. 二.选择题(本大题共4题,第13、14题各4分,第15、16题各5分,共18分)13. 在平面直角坐标系xOy 中,“0m ”是“方程221x my 表示的曲线是双曲线”的( )条件 A. 充分不必要 B. 必要不充分C. 充要D. 既不充分也不必要【答案】C【分析】由双曲线方程的特征计算得m 的范围,再由集合的包含关系可得结果. 【详解】∵221x my 表示双曲线, ∴0m .∴0m 是221x my 表示双曲线的充要条件. 故选:C.14. 如图,四边形ABCD 是边长为1的正方形,MD 平面ABCD ,NB 平面ABCD ,且1MD NB ,点G 为MC 的中点.则下列结论中不.正确的是( )A. MC ANB. 平面//DCM 平面ABNC. 直线GB 与AM 是异面直线D. 直线GB 与平面AMD 无公共点【答案】D【分析】根据给定条件,证明//AN DG 判断A ;利用线面、面面平行的判定推理判断B ;取DM 中点O ,证得四边形ABGO 是梯形判断CD 作答.【详解】因为MD 平面ABCD ,NB 平面ABCD ,则//MD NB ,取,,AB CD AN 中点,,F E H ,连接,,,EF EG FH GH ,如图,点G 为MC 的中点,的则//////EG MD NB FH ,且1122EG MD NB FH,于是四边形EFHG 是平行四边形, //,GH EF GH EF ,在正方形ABCD 中,//,EF AD EF AD ,则//,GH AD GH AD ,因此四边形ADGH 为平行四边形,//AN DG ,而1MD CD ,点G 为MC 的中点, 有DG MC ,所以MC AN ,A 正确;因为//MD NB ,MD 平面DCM ,NB 平面DCM ,则//NB 平面DCM , 又//AB CD ,CD 平面DCM ,AB 平面DCM ,则//AB 平面DCM , 而,,NB AB B NB AB 平面ABN ,所以平面//DCM 平面ABN ,B 正确; 取DM 中点O ,连接,GO AO ,则有11////,22GO CD AB GO CD AB,即四边形ABGO 为梯形, 因此直线,AO BG 必相交,而AO 平面AMD ,于是直线GB 与平面AMD 有公共点,D 错误;显然点A 平面ABGO ,点M 平面ABGO ,直线BG 平面ABGO ,点A 直线BG ,所以直线GB 与AM 是异面直线,C 正确. 故选:D【点睛】结论点睛:经过平面内一点和外一点的直线,与平面内不经过该点的直线是异面直线. 15. 已知 sin 06f x x,且函数 y f x 恰有两个极大值点在0,3,则 的取值范围是( ) A. 7,13 B. 7,13 C. 7,10 D. 7,10【答案】B【分析】运用整体思想法,求得π6x 的范围,再运用正弦函数图象分析即可. 【详解】∵π03x,0 , ∴ππππ6636x , 又∵()f x 在π[0,]3恰有2个极大值点,∴由正弦函数图象可知,5πππ9π2362,解得:713 . 故选:B.16. 设a 、b 、c 、p 为实数,若同时满足不等式20ax bx c 、20bx cx a 与20cx ax b 的全体实数x 所组成的集合等于 , p .则关于结论:①a 、b 、c 至少有一个为0;②0p .下列判断中正确的是( ) A. ①和②都正确 B. ①和②都错误 C. ①正确,②错误 D. ①错误,②正确【答案】D【分析】分类讨论研究一元二次不等式的解集即可.【详解】对于①假设0a 、0b 、0c =,则三个不等式解集为 ,不符合题意,所以“a 、b 、c 至少有一个为0”是错误的.对于②,由题意知,a 、b 、c 三个都不小于0,当0a ,0b ,0c 时,20ax bx c 解集为R ,20bx cx a 解集为(0,) ,20cx ax b 解集为(,0)(0,) ,所以三个集合交集为(0,) ;当0a ,0b ,0c =时,20ax bx c 解集为(0,) ,20bx cx a 解集为(,0)(0,) ,20cx ax b 解集为R ,所以三个集合交集为(0,) ;当0a ,0b ,0c 时,20ax bx c 解集为(,)c b ,20bx cx a 解集为(,)(0,)c b,20cx ax b 解集为R ,所以三个集合交集为(0,) ;同理可得:当0a ,0b ,0c =时,当0a ,0b ,0c 时,当0a ,0b ,0c =时,三个集合交集也是(0,) ;当0a ,0b ,0c 时,若20ax bx c 有两个不同的根,设20ax bx c 的两根为1x 、2x ,则120b x x a,120cx x a ,所以10x 且20x ,所以20ax bx c 解集为 1|x x x 或2}x x ,20bx cx a 只有一个根时,20bx cx a 解集为(,)(,)22c cb b, 20cx ax b 无根时,20cx ax b 解集为R ,所以集合的交集为(,)(,)m n ,与题意不符,综述: a 、b 、c 中有一个为0且另外两个大于0或a 、b 、c 中有两个为0且另外一个大于0,0p . 故选:D.三.解答题(本大题共5题,共14+14+14+18+18=78分)17. 已知 n a 是等差数列, n b 是等比数列,且23b ,39b ,11a b ,144a b . (1)求 n a 的通项公式; (2)设*1N nn n n c a b n ,求数列 nc 的前2n 项和.【答案】(1)21n a n(2)291444n n【分析】(1)运用等比数列、等差数列通项公式计算即可. (2)运用分组求和及等差数列、等比数列求和公式计算即可. 【小问1详解】设等差数列 n a 的公差为d ,等比数列 n b 的公比为q , 则323b q b,2111ba b q,144327a b b q , 又1411311327a a d d ,可得2d , 所以 1112121n a a n d n n . 【小问2详解】由(1)可得13n n b ,故113n n n b ,以它为通项的数列是以-1为首项、公比为-3的等比数列,所以1(21)(3)n n c n ,所以数列 n c 的前2n 项和为:21122133n n a a aL L221(3)214191421344nn n n n.即: 数列 n c 的前2n 项和为291444n n .18. 如图所示,四棱锥P ABCD 中,底面ABCD 为菱形,且直线PA ABCD 平面,又棱2PA AB ,E 为CD 的中点,60.ABC(Ⅰ) 求证:直线AE PAB 平面; (Ⅱ) 求直线AE 与平面PCD 的正切值.【答案】(1)见解析(2)3【分析】试题分析:(1)由线面垂直的判定定理证明,EA ⊥,AB EA ⊥P A ,得EA ⊥平面P AB ∠;(2)AEP为直线AE 与平面PCD所成角,所以tan 3PA AEP AE. 试题解析:解:(1)证明:∵∠ADE =∠ABC =60°,ED =1,AD =2,∴△AED 是以∠AED 为直角△Rt ,又∵AB ∥CD ∴, EA ⊥,AB 又P A ⊥平面ABCD ∴,EA ⊥P A ,∴EA ⊥平面P AB ;⊥(2)如图所示,连结PE ,过A 点作AH PE 于H 点.∵CD ⊥EA , CD ⊥,P A ∴CD ⊥平面P AE ,∵⊂∴又AH 平面PAE ,AH ⊥CD ,又AH ⊥⊂⊂平面平面PE,PE∩CD=E,PE PCD,CD PCD,∴AH ⊥平面PCD,∴∠AEP 为直线AE 与平面PCD 所成角.在△Rt P AE 中,∵P A =2,AE∴tan 3PA AEP AE. 【详解】19. 某展览会有四个展馆,分别位于矩形ABCD 的四个顶点A 、B 、C 、D 处,现要修建如图中实线所示的步道(宽度忽略不计,长度可变)把这四个展馆连在一起,其中8AB 百米,6AD 百米,且AE DE BF CF .(1)试从各段步道的长度与图中各角的弧度数中选择某一变量作为自变量x ,并求出步道的总长y (单位:百米)关于x 的函数关系式;(2)求步道的最短总长度(精确到0.01百米). 【答案】(1)答案见解析的(2)18.39百米【分析】(1)若设AE x 百米,运用勾股定理表示FN 、ME ,进而写出y 与x 的关系式; 若设MAE x ,运用三角函数表示AE 、FN 、ME ,进而写出y 与x 的关系式; (2)运用导数研究函数的最值即可. 【小问1详解】设直线EF 与AD ,BC 分别交于点M ,N ,若设AE x百米,则FN ME8EF MN FN ME又因为20003090AE x x FN x,所以 4835y x x . 若设MAE x ,则3cos AE x,3tan FN ME x , 86tan EF MN FN ME x ,则86tan 0x ,解得4tan 3x ,又因为π0,2x, 所以40arctan 3x , 所以12486tan 0arctan cos 3y x x x). 【小问2详解】设4835)f x x x ,435f x x ,令 0f x,可得x当3x40f x,当5x 时,()0f x ¢>,所以 fx上单调递减,在上单调递增,故当x 时, f x取得极小值(最小值)818.39f (百米). 所以步道的最短总长度约为18.39百米. 设 12486tan 0arctan cos 3f x x x x),在212sin 640arctan cos 3x f x x x,令 0f x ,可得π6x , 当π0,6x时, 0f x ,当π4,arctan 63x 时,()0f x ¢>, 所以 f x 在(0,6π上单调递减,在π4,arctan 63 上单调递增,故当π6x时, f x 取得极小值(最小值)π818.396f(百米), 所以步道的最短总长度约为18.39百米.20. 已知椭圆 2222:10x y C a b a b 的离心率为2,以其四个顶点为顶点的四边形的面积等于.动直线1l 、2l 都过点 0,01M m m ,斜率分别为k 、3k ,1l 与椭圆C 交于点A 、P ,2l 与椭圆C 交于点B 、Q ,点P 、Q 分别在第一、四象限且PQ x 轴.(1)求椭圆C 的标准方程;(2)若直线1l 与x 轴交于点N ,求证:2NP MN ;(3)求直线AB 的斜率的最小值,并求直线AB 的斜率取最小值时的直线1l 的方程. 【答案】(1)22184x y(2)证明见解析 (3)6,67y x【分析】(1)根据已知条件,分别求出a 、b 、c 的值即可.(2)根据两个斜率的关系式求得02y m ,由两点间距离公式求得NP 、NM 即可.(3)联立直线与椭圆方程解得1x 、2x ,代入直线AB 的斜率公式再应用基本不等式可求得结果. 【小问1详解】设椭圆C 的焦距为2c ,则由2c a,222a b c 且2ab ,可得2b c ,a C 的方程为22184x y.【小问2详解】设00,P x y , 00,Q x y ,则00y mk x,003y m k x ,可得00003y m y mx x ,解得02y m ,又NP m,NM ,所以2NP NM . 【小问3详解】设 11,A x y , 22,B x y ,直线1l ,2l 的方程分别为y kx m ,3y kx m , 由(2)知02y m ,所以0mk x,又m ,0x 均大于0,可知0k , 由22,28,y kx m x y 可得222(12)4280k x kmx m , 所以20122812m x x k,即212012812m x x k ,同理可得 2222200128128118123m m x x x k k , 直线AB 的斜率为2222001212221212220028328121183282812118k m k m k x k x kx m kx m y y m m x x x x k x k x224241161642k k k k k(当且仅当6k 时取等号).当6k时,0x,此时,2P m 在椭圆C 上,所以2264184m m ,又01m,可得7m, 所以直线AB的斜率的最小值为6,且当直线AB 的斜率取最小值时的直线1l的方程为67y x. 21. 已知集合A 和定义域为R 的函数 y f x ,若对任意t A ,x R ,都有 f x t f x A ,则称f x 是关于A 的同变函数.(1)当 0,A 与 0,1时,分别判断 2xf x 是否为关于A 的同变函数,并说明理由;(2)若 f x 是关于 2的同变函数,且当 0,2x 时,f x f x 在 2,22Z k k k 上的表达式,并比较 f x 与12x的大小; (3)若n 为正整数,且 f x 是关于12,2nn的同变函数,求证: f x 既是关于 2Z nm m 的同变函数,也是关于 0, 的同变函数.【答案】(1)当 0,A 时, 2xf x 是关于 0, 的同变函数;当 0,1A 时, f x 不是关于0,1的同变函数,理由见解析. (2)2f x k,当 12Z 2x k k时, 12f x x ;当 12Z 2x k k 时, 12f x x(3)证明见解析.【分析】(1)当 0,A 时,运用定义证明即可;当 0,1A 时,举反例说明即可.(2)由定义推导出 y f x x 是以2为周期的周期函数,进而可得()f x 在 2,22Z k k k 解析式,再运用作差法后使用换元法研究函数的最值来比较()f x 与12x的大小. (3)运用定义推导出 f x x 是以2n 为周期的周期函数,再用定义分别证明 2Z nt m m 与0,t 两种情况即可. 【小问1详解】当 0,A 时,对任意的t A ,x R , 221xtf x t f x ,由21t ,可得210t ,又20x ,所以 f x t f x A , 故 2xf x 是关于 0, 的同变函数;当 0,1A 时,存在12A ,2R ,使得2211f x t f x ,即 f x t f x A ,所以f x 不是关于 0,1的同变函数.【小问2详解】由 f x 是关于 2的同变函数,可知 22f x f x 恒成立,所以 22f x x f x x 恒成立,故 y f x x 是以2为周期的周期函数. 当 2,22Z x k k k 时, 20,2x k ,由 22f x x f x k x k , 可知222f x f x k k k.(提示: 22f x f x k k 也可通过分类讨论与累加法予以证明,下面的*式也同理可证) 对任意的x R ,都存在 k Z ,使得 2,22x k k ,故2f x k .所以11222f x x k xt ,则222t x k ,可得 0,2t ,所以 22111102222t f x x t t(当且仅当1t ,即122x k 时取等号)..所以当 12Z 2x k k 时, 12f x x ;当12Z 2x k k时, 12f x x . 【小问3详解】 因为 f x 是关于12,2nn的同变函数,所以对任意的12,2nnt ,x R ,都有 12,2n nf x t f x ,故 22nnf x f x ,用2n x 代换x ,可得1222nnnf x f x ,所以112222nnnnf x f x f x f x ,即1122nnf x f x ,又1122nnf x f x ,故1122nnf x f x ,且22nnf x f x .所以 22nnf x x f x x ,故 f x x 是以2n为周期的周期函数.对任意的 2Z nt m m ,x R ,由 22n n f x m x m f x x ,可得22nnf x m f x m ,(*) 所以 f x 是关于 2Z nm m 的同变函数.对任意的 0,t ,存在非负整数m ,使 2,12n nt m m ,所以 1122,2nn nt m ,对任意的x R , f x t f x12121212n n n n f x t m m f x f x t m m f x 21220n n n m m ,即 0,f x t f x ,所以 f x 是关于 0, 的同变函数. 故f x 既是关于2Z nm m 的同变函数,也是关于 0, 的同变函数.。
上海2024年高三数学 一模试卷 分类汇编 导数

上海2024年高三数学一模试卷分类汇编:导数一、客观题:1、闵行已知函数()y f x =的导函数为()y x x f '=∈R ,,且()y x f ='在R 上为严格增函数,关于下列两个命题的判断,说法正确的是()①“12x x >”是“1212(1)()()(1)f x f x f x f x ++>++”的充要条件;②“对任意0x <,都有()(0)f x f <”是“()y f x =在R 上为严格增函数”的充要条件.(A )①真命题;②假命题(B )①假命题;②真命题(C )①真命题;②真命题(D )①假命题;②假命题2、普陀设函数()2e 2xf x a x =-,若对任意()00,1x ∈,皆有()()000lim 0x x f x f x x x x x →--+>-成立,则实数a 的取值范围是______.3、松江函数()y f x =的图像如图所示,()'y f x =为函数()y f x =的导函数,则不等式()'0f x x<的解集为()A .()3,1--B .(0,1)C .()()3,10,1--⋃D .()(),31,-∞-⋃+∞二、解答题:1、宝山已知函数()e x f x x =-,()e x g x x -=+,其中e 为自然对数的底数.(1)求函数()y f x =的图像在点()()1,1f 处的切线方程;(2)设函数()()()F x af x g x =-,①若e a =,求函数()y F x =的单调区间,并写出函数()y F x m =-有三个零点时实数m 的取值范围;②当01a <<时,12x x 、分别为函数()y F x =的极大值点和极小值点,且不等式()()120F x tF x +>对任意()0,1a ∈恒成立,求实数t 的取值范围.2、崇明已知()sin (R 0)f x mx x m m =+∈≠且.(1)若函数()y f x =是实数集R 上的严格增函数,求实数m 的取值范围;(2)已知数列{}n a 是等差数列(公差0d ≠),()n n b f a =.是否存在数列{}n a 使得数列{}n b 是等差数列?若存在,请写出一个满足条件的数列{}n a ,并证明此时的数列{}n b 是等差数列;若不存在,请说明理由;(3)若1m =,是否存在直线y kx b =+满足:①对任意的x ∈R 都有()f x kx b +≥成立,②存在0x ∈R 使得00()f x kx b =+?若存在,请求出满足条件的直线方程;若不存在,请说明理由.3、虹口已知()y f x =与()y g x =都是定义在()0+∞,上的函数,若对任意()12,0x x ∈+∞,,当12x x <时,都有121212()()()()f x f xg x g x x x -≤≤-,则称()y g x =是()y f x =的一个“控制函数”.(1)判断2y x =是否为函数()20y x x =>的一个控制函数,并说明理由;(2)设()ln f x x =的导数为()'f x ,0a b <<,求证:关于x 的方程()()()'f b f a f x b a-=-在区间(),a b 上有实数解;(3)设()ln f x x x =,函数()y f x =是否存在控制函数?若存在,请求出()y f x =的所有控制函数;若不存在,请说明理由.4、黄浦设函数()f x 与()g x 的定义域均为D ,若存在0x D ∈,满足()()00f x g x =且()()00''f x g x =,则称函数()f x 与()g x “局部趋同”.(1)判断函数()151f x x =+与()322f x x x =+是否“局部趋同”,并说明理由;(2)已知函数()()()()2120,0xg x x ax x g x bex =-+>=>,求证:对任意的正数a ,都存在正数b ,使得函数()1g x 与()2g x “局部趋同”;(3)对于给定的实数m ,若存在实数n ,使得函数()()10nh x mx x x=+>与()2ln h x x =“局部趋同”,求实数m 的取值范围.5、金山设函数()y f x =的定义域为D ,给定区间[,]a b D ⊆,若存在0(,)x a b ∈,使得0()()()f b f a f x b a-=-,则称函数()y f x =为区间[,]a b 上的“均值函数”,0x 为函数()y f x =的“均值点”.(1)试判断函数2y x =是否为区间[1,2]上的“均值函数”,如果是,请求出其“均值点”;如果不是,请说明理由;(2)已知函数2112212x x y m --=-+⋅-是区间[1,3]上的“均值函数”,求实数m 的取值范围;(3)若函数222(22)x a y x x +=-+(常数a ∈R )是区间[2,2]-上的“均值函数”,且23为其“均值点”.将区间[2,0]-任意划分成1m +(m ∈N )份,设分点的横坐标从小到大依次为12,,,m t t t ,记02t =-,10m t +=,10|()()|mi i i G f t f t +==-∑.再将区间[0,2]等分成21n +(n ∈N )份,设等分点的横坐标从小到大依次为122,,,n x x x ,记21()ni i H f x ==∑.求使得2023H G ⋅>的最小整数n 的值.6、闵行已知a ∈R ,32()(2)5(1)ln f x a x x x a x =--++-.(1)若1为函数()y f x =的驻点,求实数a 的值;(2)若0a =,试问曲线()y f x =是否存在切线与直线10x y --=互相垂直?说明理由;(3)若2a =,是否存在等差数列123123,,(0)x x x x x x <<<,使得曲线()y f x =在点22(,())x f x 处的切线与过两点11(,())x f x 、33(,())x f x 的直线互相平行?若存在,求出所有满足条件的等差数列;若不存在,说明理由.7、浦东设()y f x =是定义在R 上的函数,若存在区间[],a b 和0(,)x a b ∈,使得()y f x =在0[,]a x 上严格减,在0[,]x b 上严格增,则称()y f x =为“含谷函数”,0x 为“谷点”,[],a b 称为()y f x =的一个“含谷区间”.(1)判断下列函数中,哪些是含谷函数?若是,请指出谷点;若不是,请说明理由:①2y x =,②cos y x x =+;(2)已知实数0m >,()22ln 1y x x m x =---是含谷函数,且[]2,4是它的一个含谷区间,求m 的取值范围;(3)设,R p q ∈,()()432432h x x px qx p q x =-+++--.设函数()y h x =是含谷函数,[],a b 是它的一个含谷区间,并记b a -的最大值为(),L p q .若()()12h h ≤,且()10h ≤,求(),L p q 的最小值.8、普陀(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.设函数()y f x =的表达式为()e exxf x a -=+.(1)求证:“1a =”是“函数()y f x =为偶函数”的充要条件;(2)若1a =,且()()223f m f m +≤-,求实数m 的取值范围.9、松江已知函数()y f x =,记()sin ,f x x x x D =+∈.(1)若[]0,2D π=,判断函数的单调性;(2)若0,2D π⎛⎤= ⎥⎝⎦,不等式()f x kx >对任意x D ∈恒成立,求实数k 的取值范围;(3)若D =R ,则曲线()y f x =上是否存在三个不同的点A 、B 、C ,使则曲线()y f x =在A 、B 、C 三点处的切线互相重合?若存在,求出所有符合要求的切线的方程;若不存在,请说明理由.10、徐汇若函数(),y f x x =∈R 的导函数(),y f x x '=∈R 是以(0)T T ≠为周期的函数,则称函数(),y f x x =∈R 具有“T 性质”.(1)试判断函数2y x =和sin y x =是否具有“2π性质”,并说明理由;(2)已知函数()y h x =,其中2()2sin (03)=++<<h x ax bx bx b 具有“π性质”,求函数()y h x =在[0,]π上的极小值点;(3)若函数(),y f x x =∈R 具有“T 性质”,且存在实数0M >使得对任意x ∈R 都有|()|f x M <成立,求证:(),y f x x =∈R 为周期函数.(可用结论:若函数(),y f x x =∈R 的导函数满足()=0,f x x '∈R ,则()()常数=f x C .)11、杨浦设函数()e ,x f x x =∈R .(1)求方程()2()()2f x f x =+的实数解;(2)若不等式()x b f x +≤对于一切x ∈R 都成立,求实数b 的取值范围.12、长宁若函数()y f x =与()y g x =满足:对任意12,R x x ∈,都有()()()()1212f x f x g x g x -≥-,则称函数()y f x =是函数()y g x =的“约束函数”.已知函数()y f x =是函数()y g x =的“约束函数”.(1)若()2f x x =,判断函数()y g x =的奇偶性,并说明理由;(2)若()()30f x ax x a =+>,()sin g x x =,求实数a 的取值范围;(3)若()y g x =为严格减函数,()()01f f <,且函数()y f x =的图像是连续曲线,求证:()y f x =是()0,1上的严格增函数.13、嘉定已知ln (),()e xx xf xg x x==.(1)求函数()()y f x y g x ==、的单调区间和极值;(2)请严格证明曲线()()y f x y g x ==、有唯一交点;(3)对于常数10,e a ⎛⎫∈ ⎪⎝⎭,若直线y a =和曲线()()y f x y g x ==、共有三个不同交点()()()123,,,x a x a x a 、、,其中123x x x <<,求证:123x x x 、、成等比数列.。
上海市闵行区2020届高三一模数学试卷及详细解析(Word版)

上海市闵行区2020届高三一模数学试卷及详解2019.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知集合A ={-3,-1,0,1,2},B ={x ||x |>1},则A ∩B =______ 2. 复数52i -的共轭复数是______ 3. 计算23lim 13(21)x n n →∞+++-L =______4. 已知0<x <1,使得()1x x -取到最大值时,x =______5. 在△ABC 中,已知AB a =u u u r r ,BC b =u u u r r ,G 为△ABC 的重心,用向量a r 、b r表示向量AG u u u r=______6. 设函数()f x =22log (1)1log 1x x --,则方程()f x =1的解为______7. 已知()22416012881x a a x a x a x -=+++⋯+则3a =______ (结果用数字表示)8. 若首项为正数的等比数列{n a },公比q =lg x ,且100a <99a <101a ,则实数x 的取值范围是______9. 如图,在三棱锥D -AEF 中,A 1、B 1、C 1 分别是DA 、DE 、DF 的中点,B 、C 分别是 AE 、AF 的中点,设三棱柱ABC - A 1B 1C 1的 体积为V 1,三棱锥D -AEF 的体积为V 2, 则V 1:V 2=______10. 若O 是正六边形123456A A A A A A 的中心,Q ={i OA u u u r|i =1,2,3,4,5,6},,,a b c r r r ∈Q,且a r 、b r 、c r 互不相同,要使得()·0b c a +=r r r ,则有序向量组),(,a c b r r r的个数为______11. 若()f x =3x a x a -⋅-,且x ∈(0,1)上的值域为[0,f (1)],则实数a 的取值范围是______12. 设函数()f x =sin(x )6A πω-(ω>0,A >0),x ∈[0,2π],若()f x 恰有4个零点,则下述结论中:①若0()()f x f x ≥恒成立,则x 的值有且仅有2个;②()f x 在[0,819π]上单调递增;③存在ω和1x ,使得11()()()2f x f x f x π≤≤+对任意x ∈[0,2π]恒成立;④“A ≥1”是“方程()f x =12-在[0,2π]内恰有五个解”的必要条件;所有正确结论的编号是______二. 选择题(本大题共4题,每题5分,共20分)13. 已知直线l 的斜率为2,则直线l 的法向量为( )A. (1,2)B. (2,1)C. (1,-2)D. (2,-1) 14. 命题“若x a >,则10x x->”是真命题,实数a 的取值范围是( ) A. (0,+∞) B. (-∞,1] C. [1,+∞) D. (-∞,0] 15. 在正四面体A -BCD 中,点P 为△BCD 所在平面上的动点,若AP 与AB 所成角为定值θ,θ∈(0,2π),则动点P 的轨迹是( ) A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 16. 已知各项为正数的非常数数列{a n }满足11n a n a a +=,有以下两个结论:①若32a a >,则数列{a n }是递增数列;②数列{a n }奇数项是递增数列;则( )A. ①对②错B. ①错②对C. ①②均错误D. ①②均正确三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在一个圆锥内作一个内接圆柱(圆柱的下底面在圆锥的底面上,上底面的圆在圆锥的侧面上),圆锥的母线长为4,AB 、CD 是底面的两条直径,且AB =4,AB ⊥CD ,圆柱与圆锥的公共点F 恰好为其所在母线P A 的中点,点O 是底面的圆心.(1) 求圆柱的侧面积;(2) 求异面直线OF 和PC 所成的角的大小.18. 已知函数()f x =22x xa +. (1) 若()f x 为奇函数,求a 的值;(2) 若()f x <3在x ∈[1,3]上恒成立,求实数a 的取值范围.19. 某地实行垃圾分类后,政府决定为A 、B 、C 三个校区建造一座垃圾处理站M ,集中处理三个小区的湿垃圾,已知A 在B 的正西方向,C 在B 的北偏东30°方向,M 在B 的北偏西20°方向,且在C 的北偏西45°方向,小区A 与B 相距2 km ,B 与C 相距3 km .(1) 求垃圾处理站M 与小区C 之间的距离;(2) 假设有大、小两种运输车,车在往返各小区、处理站之间都是直线行驶,一辆大车的行车费用为每公里a 元,一辆小车的行车费用为每公里λa 元(其中λ为满足100λ是1-99内的正整数),现有两种运输湿垃圾的方案:方案1:只用一辆大车运输,从M 出发,依次经A 、B 、C 再由C 返回到M ; 方案2:先用两辆小车分别从A 、C 运送到B ,然后并各自返回到A 、C ,一辆大车从M 直接到B 再返回到M ;试比较哪种方案更合算?请说明理由. (结果精确到小数点后两位)20. 已知抛物线Γ:2y =8x 和圆Ω:2240x y x +-=,抛物线Γ的焦点为F . (1) 求Ω的圆心到Γ的准线的距离;(2) 若点T (x,y )在抛物线Γ上,且满足x ∈[1,4],过点T 作圆Ω的两条切线,记切线为A 、B ,求四边形TAFB 的面积的取值范围;(3) 如图,若直线l 与抛物线Γ和圆Ω依次交于M 、P 、Q 、N 四点,证明:“|MP |=|QN |=12|PQ |”的充要条件是“直线l 的方程为2x =”.21. 已知数列{a n }满足1a =1,2a =a (a >1),211n n n n a a a a d +++-=-+(d >0), n ∈N *.(1) 当d =a =2时,写出4a 所有可能的值;(2) 当d =1时,若221n n a a ->且221n n a a +> 对任意n ∈N *恒成立,求数列{n a }的通项公式;(3) 记数列{n a }的前n 项和为n S ,若{2n a }、{21n a }分别构成等差数列,求2n S .上海市闵行区2020届高三一模数学答案详解一.填空题1. {-3,2},将A 中元素逐个代入|x |>1,符合条件的有-3、2,即A ∩B ={-3,2};2. -2+i ,522z i i ==---,2z i ∴=-+;3. 3,1+3+...+(2n -1)2(121)2n n n +-=,22233limlim 313(21)x x n n n n →∞→∞==++-L ;4.12,(1)x x +-≥12≤,当且仅当1x x =-时等号成立,12x =.或设2(1)t x x x x =-=-+,01x <<,转化为二次函数最值问题;5. 211111121,(),333333333a b BG BA BC b a AG AB BG a b a a b+=+=-=+=+-=+u u ur u u u r u u u r u u u r u u u r u u u r r r r r r r r r r ;6. ()()()222222log 1log log 1,2(2)1x f x x x x x x x x x ==-+=-=-===-,,或舍;7. ()()5652638335615656a x C x x a -=-=-=-,,;8. 221999999991(0,),0,0,11,1,,10a q a a a a q q q q <>∴><∴<>∴<-Q 由且1lg 1,010x x <-∴<<即;9.3:8,1,ABC S S A ABC h =令,点到平面的距离为121218,4S 2,:3:833V Sh V h Sh V V ∴==⋅⋅==;10. 48,①如左图,这样的a r 、b r 有6对,且a r 、b r 可交换,此时c r有2种情况,∴个数为62224⨯⨯=个;②如右图,这样的a r 、b r 有3对,且a r 、b r可交换,此时c r有4种情况,∴个数为32424⨯⨯=3x 2x 4=24个.综上所述,总数为24+24=48个;11. [0,14],()()()()()230030min f x x a x a a f x f a =--<==>,当,,不符题意;()()[]()()()2200320,101max a f a f a a x f x f f ≥=≥=∈=Q 当,,结合图像,当,或,()()()21101313[0,4)]4(1f f f a a a a a ∴--≥≥∴≤∈Q 值域为[0,(1)],,即,,综上,;12. ①③④,()()254324.61219[)12f x f x A πππωπω∴≤-<∈=Q 恰有个零点,,,①即有两个交点,正确;②结合右图,当2512ω=时,f (x )在[0,825π]递增,∴②错误;③192512121212]]12122192521925T ππωππππω∈∴∈∈∴Q Q [,],=(,,(,,存在1()f x 为最小值,1(x )2f π+为最大值,正确;④结合右图,若方程(x)f =12-在[0,2π]内恰有五个解,需满足1(0)2f ≤-,即A ≥1,同时结合左图,当A ≥1,不一定有五个解,正确.二.选择题13.选D ,斜率为2,方向向量可以为(1,2),∴法向量可以是(2,-1); 14.选C ,“x >a ”⇒“x >1或x <0”,Q 范围小的推出范围大的,∴a ≥1;15.选B ,以平面截圆锥面,平面位置不同,生成的相交轨迹可以为抛物线、双曲线、椭圆、圆.当截面与圆锥母线垂直时,轨迹为抛物线,当截面与轴线垂直时,轨迹为圆,由题意可知,AB 不可能垂直于平面BCD ,即轨迹不可能为圆,可进一步计算AB 与平面BCD 所成角为,即θ=arctan 时,轨迹为抛物线,0<θ<arctan 时,轨迹为椭圆,<θ<2π时,轨迹为双曲线一支,Q θ∈(0,4π),故选B ; 16.选D ,Q {n a }为各项为正数的非常数数列,10a ∴>且10a ≠;(1)当11a >时,显然{n a }为递增数列,①②均正确;(2)当0<1a <1时,3212113111(,1),(,)a a a a a a a a a a =∈=∈,不满足①的前提32a a >,又由,332142411132511134(,)(,),(,)(,)a a a a a a a a a a a a a a a a a a =∈==∈=,依此可得,2212221212(,),(,)k k k k k k a a a a a a --+-∈∈,即偶数项递减,奇数项递增;综上,选D.三.解答题17. (1)设圆柱上底面的圆心为O ',在△P AO 中,F 是P A 的中点,FO '//AO ,OA =2,∴FO '=1,OO '=2S rh π==圆柱侧.(2)F 、O 分别是P A 、AB 的中点,∴FO //PB ,∴异面直线OF 和PC 所成的角等于PB 和PC 的夹角∠BPC ,PB =PC =4,BC =,161683cos BPC 2444+-∠==⨯⨯,∴异面直线OF 和PC 所成的角为3arccos418. (1)解法1:Q x ∈R ,(x)f 为奇函数,∴(0)0f =,即1+a =0,∴a =-1, 当a =-1,1()22x x f x =-,11()22()22x xx x f x f x ---=-=-=-,满足奇函数的条件,∴a =-1. 解法2:()22x x af x =+,x ∈R ,Q ()f x 为奇函数,∴()()f x f x -=- 1()2222x x x x a f x a ---=+=+⋅,()22x x af x -=--,∴2(a 1)(21)0x ++=恒成立,∴a =-1.(2)Q x ∈[1,3],()f x <3恒成立,∴由232x x a+<得2322x x a <⋅-恒成立,而2239322(2)24x x x y =⋅-=--+,又2x ∈[2,8],min 40y ∴=-,40a ∴<-19. (1)在△MBC 中,∠MBC =50°,∠MCB =105°,BC =3,∠BMC =25°,由正弦定理得:3sin 50sin 25MC =o o,3sin 50 5.44sin 25MC ∴=≈oo 答:垃圾处理站M 与小区C 间的距离为5.44公里.(2)在△MBC 中,由3sin105sin 25MB =o o得:3sin105 6.857sin 25MB =≈oo ,在△MAB 中,∠MBA =70°,AB =2,222270MA AB MB AB MB cos =⋅∴+-⋅o , 6.452MA ∴≈,方案一费用:()()1 6.45223 5.43816.890y a MA AB BC CM a a =+++=+++=; 方案二费用:()()22213.71310|y a MB a AB BC a λλ=++=+, 当12y y >时,方案二合算,此时00.32λ<<; 当12y y <时,方案一合算,此时0.320λ<<;∴当00.32λ<<时,方案二合算;当0.320λ<<时,方案一合算.20. (1)由2240x y x +-=可得:()2224x y -+=,∴Ω的圆心与Γ的焦点F 重合,∴Ω的圆心到Γ的准线的距离为4.(2)四边形TAFB 的面积为:222S =⋅⋅===,∴当x ∈[1,4]时,四边形TAFB 的面积的取值范围为[(2)证明(充分性):若直线l 的方程为x =2,将x =2分别代入28y x =,2240x y x +-=得:M (2,4)、P (2,2)、Q (2,-2)、N (2,-4),2N MP Q ∴==,122PQ ⋅=,12MP QN PQ ∴==⋅;(必要性):若12MP QN PQ ==,则线段MN 与线段PQ 的中点重合, 设l 的方程为x =ty +m ,M (11,x y )、N (22,x y )、P (33,x y )、Q (44,x y ), 则12y y +=34y y +,将x =ty +m 代入28y x =得:2880y ty m --=,12y y +=8t ,△=26432t m +>0,220t m +>,同理可得:()342221m y y t -+=+,()22281m t t -=+即t =0或()22281m t -=+, 即t =0或242m t =--而当242m t =--时,将其代入220t m +>得:2220t -->不可能成立;当t =0时,由280y m -=得:1y =,2y =-;将x =m 代入2240x y x +-=得:3y =4y =12MP PQ =Q ,12=⋅即= 220m m ∴-=,m =2或m =0(舍),∴直线l 的方程为x =2,∴“12MP QN PQ ==”的充要条件是“直线l 的方程为x =2”.21.(1)当d =a =2时,2112n n n n a a a a +++-=-+,即{1n n a a +-}是以1为首项、2为公差的等差数列,121n n a a n +∴-=- 可得:323a a -=±,435a a -=±,35,1a ∴=,435a a =±410a =或40a =或44a =或46a =-.(2)当d =1时,2111n n n n a a a a +++-=-+,即{1n n a a +-}是首项为a -1、公差为1的等差数列,1112n n a a a n a n +-=-+-=-+21222n n a a a n +-=-+∴,22132n n a a a n --=-+221n n a a ->Q 且221n n a a +>,22122n n a a a n +∴-=-+,22132n n a a a n --=-+21211n n a a +-∴-=-,212n a n -∴=-,221321n n a a n a a n -∴=-++=-+3212n n n a n n a -⎧⎪⎪∴=⎨⎪+-⎪⎩为奇数为偶数(或21n k n a k k n k a -⎧=⎨+-⎩=2-1=2) (3)由己知得:11(1)n n a a a n d +-=-+-(*n N ∈) 若{2n a }、{21n a -}分别构成等差数列,则()221)2(122n n a a a n d n --=±-+⎤⎣⎦≥⎡-②()21212(1)1n n a a a n d n +-=±-+-⎤⎦≥⎡⎣,()2221()121n n a a a nd n ++-=±-+≥,由②+③得:()()2121122(12)12n n a a a n d a n d n +-⎡⎤⎡⎤⎣⎦⎣⎦-=±-+-±-+-≥, Q {21n a -}是等差数列,2121n n a a +--必为定值,()()2121121122n n a a a n d a n d +-⎡⎤⎡⎤⎣∴-=-+---+-⎦⎣⎦, 或()()2121121122n n a a a n d a n d +--=--+-+-+-⎡⎤⎡⎤⎣⎦⎣⎦, 即2121n n a a d +--=(n 2)>或2121n n a a d +--=-(n 2)> 而由①知321a a a d -=-+,即32(1)a a a d -=±-+ ()3111a a a a d -=-±-+∴,即31a a d -=-或312(a 1)a a d -=-+(舍), 2121n n a a d +-∴-=-(n ∈N *),211(n 1)n a d -∴=--(n ∈N *) 同理,由③+④得:[]()22212121n n a a a nd a n d +-=±-++-+-⎡⎤⎣⎦(1)n ≥, 222n n a a d +-=∴或222n n a a d +-=-,由上面的分析可知:()32112a a a d a d -=-+-±-+∴, 而()4312a a a d -=±-+,()42112a a a d a d -=-+-±-+, 即42a d a -=或42222a a a d -=-+-(舍),222n n a a d +-=∴, ()21n a a n d ∴=+-,从而21221221k k k k a a a a a -+++=+=+(k ∈N *),()()()()21221...11...11n n n aS a a a a a a n a +∴=+++=++++++=+1444442444443个.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年一模汇编——函数一、填空题【杨浦1】函数12()f x x -=的定义域为【答案】(0,)x ∈+∞【解析】12()f x x-==(0,)x ∈+∞ 【长宁,嘉定,金山2】方程27x =的解为 【答案】2log 7x =【解析】本题考察了对数的概念 【杨浦3】已知函数()f x 的反函数12()log fx x -=,则(1)f -=【答案】12【解析】因为21log 12=-,所以1(1)2f -= 【宝山3】函数)1(31<=-x y x 的反函数是 .【答案】1log 3+=xy ,]1,0(∈x 【解析】y x ,互换,13-=y x ⇒1log 3+=xy]1,0(∈x 【普陀5】设函数()log (4)(01)a f x x a a =+≠>且,若其反函数的零点为2,则a =__________. 【答案】2【解析】反函数-1(2)0f =,有2(0)log (04)=log 2=2a a f =+,易知2a =【崇明5】函数()f x =的反函数是 .【答案】12()1(0)fx x x -=-≥【解析】令1+=x y ,2211y x x y ∴=+⇒=-【徐汇5】 已知()y f x =是定义在R 上的偶函数,且它在[0,)+∞上单调递增,那么使得(2)()f f a -≤成立的实数a 的取值范围是【答案】(][),22,-∞-+∞【解析】由题,()y f x =是定义在R 上的偶函数,且它在[0,)+∞上单调递增,则()f x 在(],0-∞上单调递减,(2)()f f a -≤,则2a -≤,解得a 的取值范围是(][),22,-∞-+∞【闵行6】设函数22log (1)1()log 1x f x x --=,则方程()1f x =的解为【答案】2x = 【解析】22222log (1)1()=log (1)log log (1)1log 1x f x x x x x x --=-+=-=()()12100x x x x -=⎧⎪∴-⎨⎪⎩>>2x ∴= 【奉贤8】已知点()3,9在函数()1x f x a =+的图像上,则()f x 的反函数为()1f x -=__________. 【答案】()2log 1x -【解析】将点()3,9代入函数()1x f x a =+中得2a =,所以()12xf x =+,用y 表示x 得()2log 1x y =-,所以()1f x -=()2log 1x -【虹口8】设1()f x -为函数2()log (41)x f x =-的反函数,则当1()2()f x f x -=时,x 的值为_________. 【答案】1【解析】由于函数2()log (41)x f x =-的反函数为)12(log 4+=xy ,当1()2()f x f x -=, 即)12(log 2)14(log 42+=-xx,计算出1=x 【松江8】已知函数()y f x =存在反函数()-1y f x =,若函数()+2y f x =的图像经过点()16,,则函数()-12+log y f x x =的图像必过点__________. 【答案】()43,.【解析】()y f x =的图像过点()14,,()-1y f x =过点()41,,()-12+log y f x x =的图像过点()43,. 【普陀10】已知函数22()(815)()f x x x ax bx c =++++是偶函数,若方程21ax bx c ++=在区间[]1,2上有解,则实数a 的取值范围是_____________.【答案】11,83⎡⎤⎢⎥⎣⎦【解析】函数整理为()()()()432()815815815f x ax a b x a b c x b c x c =+++++++++,因为函数是偶函数,需80a b +=,1580b c +=,即8b a =-,15c 158b a =-=,所以21ax bx c ++=可整理:281510ax ax a -+-=.令()28151g x ax ax a =-+-,对称轴4x =在区间[]1,2的右侧,可保证区间内函数()g x 单调,根据零点存在性定理:()()120g g ⋅≤,即()()81514161510a a a a a a -+-⋅-+-≤,易得11,83a ⎡⎤∈⎢⎥⎣⎦【崇明10】已知函数()f x 是定义在R 上的周期为2的奇函数.当01x <≤时,3(1)f x x ax =-+,则实数a 的值等于 .【答案】2【解析】函数为奇函数,)()(x f x f -=-,当1-≤x <0时,1)(3--=ax x x f , 函数周期为2,所以)1()1(f f =-,代入得2=a【黄浦10】已知函数()y f x =与()y g x =的图像关于直线y x =对称,若2()log (22)xf x x =++,则满足2()log 3()f x g x >>的x 的取值范围是 【答案】2(0,log 15)【解析】22223()log (22)log 3log (22)log 02x x x f x x x =++>⇒+>⇒>由题意得2()log (22)xf x x =++单调递增,故反函数单调递增,22(log 3)log 15f =, 112222log 3()log 3(log 15)()log 15g x f f x x -->⇒=>⇒<【青浦10】已知对于任意给定的正实数k ,函数()22x xf x k -=+⋅的图像都关于直线x m=成轴对称图形,则m = 【答案】21log 2k【解析】对任意的R x ∈,)()(x m f m x f -=+成立,故m x x m m x m x k k ----+⋅+=⋅+2222,整理得0)22)(22(=⋅----m m x x k ,所以022=⋅--m m k ,即k m 2log 21=. 【松江10】函数=ax by cx d++的图像如图,若图像经过()()0-1-4,3,,两点,且-1x =和2y =是其两条渐近线,则:::a b c d = __________. 【答案】2:-1:1:1.【解析】()==adb a adc cxd b ax b a c c c y dcx d cx d c x c-++-+=++++,由于-1x =和2y =是其两条渐近线,则12d ac c ==,,又函数图像经过()0-1,,所以-1b d=,所以:::2:-1:1:1a b c d =.【杨浦10】已知六个函数(1)21y x=;(2)cos y x =;(3)12y x =;(4)arcsin y x =;(5)1lg()1xy x+=-;(6)1y x =+,从中任选三个函数,则其中弃既有奇函数又有偶函数的选法有 种。
【答案】12【解析】奇函数有(4)(5),偶函数有(1)(2),所以一共有两奇一偶2种,一奇两偶2种,一奇一偶8种,合计12种 【杨浦11】已知函数1()1(0)f x x x=->,若关于x 的方程[]2()()230f x mf x m +++=有三个不相等的实数解,则实数m 的取值范围为 【答案】34(,]23m ∈-- 【解析】设()f x t =,则当(0,1)x ∈时,t 有两个解,当{}1[1,)x ∈⋃+∞时,t 有一个解,因为2230t mt m +++=有三个解,而一个一元二次方程最多两个解,因此这两个解一定一个在(0,1),另一个在{}1[1,)⋃+∞,当另一个为1x =时,两根之积为0,此时32m =-,而两根之和不可能为32,矛盾,因此另一个在[1,)+∞,因此(0)0(1)0f f >⎧⎨≤⎩,即230340m m +>⎧⎨+≤⎩,所以34(,]23m ∈-- 【闵行11】若()|||3|f x x a x a =-⋅-,且[0,1]x ∈上的值域为[0,(1)]f ,则实数a 的取值范围是 【答案】10,4⎡⎤⎢⎥⎣⎦【解析】当0a =时,符合,当0a >时必有14104a a ≤⇒<≤当0a <时,()f x 单调递增,值域为()()()20,13,1f f a f ⎡⎤=⎡⎤⎣⎦⎣⎦,不符合【奉贤11】给出下列一组函数:()()212log +23f x x x =+、()()22ln 2+58f x x x =+、()()23lg 3+813f x x x =+、()()240.3log +7.46551713.931034f x x x =+,......,请你通过研究以上所给的四个函数解析式具有的特征,写出一个类似的函数解析式()2log a y Ax Bx C =++()0,1a a >≠:______________.【答案】()23log 4710y x x =++(答案不唯一) 【解析】()222,log 2610A CB y x x +==++【黄浦11】设函数()y f x =的定义域为D ,若对任意的1x D ∈,总存在2x D ∈,使得12()()1f x f x ⋅=,则称函数()f x 具有性质M ,下列结论:① 函数3y x x =-具有性质M ;② 函数35x x y =+具有性质M ;③若函数8log (2)y x =+,[0,]x t ∈具有性质M ,则510t =;④若3sin 4x ay +=具有性质M ,则5a =;其中正确结论的序号是 【答案】②③【解析】①函数3y x x =-,由于(0)0f =,故不成立 ②函数35x x y =+值域(0,)+∞,所以具有性质M ③函数8log (2)y x =+,[0,]x t ∈单调递增,1(0)3f =,故()3510f t t =⇒= ④若3sin 4x ay +=具有性质M ,则5a =±,故不成立 【松江11】若实数,0a b >,满足abc a b c =++,221a b +=,则实数c 的最小值为________.【答案】-【解析】法1(三角换元),令cos ,sin ,0,2a b πθθθ⎛⎫==∈ ⎪⎝⎭代入得cos sin sin cos 1c θθθθ+=-,再设sin cos t θθ=+,可知(t ∈所以222231312t t c t t t t ===----,在(t ∈上单调递减,故t =时c 最小,最小为-法2.根据对称式的形式,大胆猜测当2a b ==时c最小,代入得c =-【静安12】设0,,0,0a a M N >≠1>>,我们可以证明对数的运算性质如下:log log log log a a a a M N M N a a a MN +==,① log log log a a a MN M N ∴=+.我们将①式称为证明的“关键步骤”.则证明log log ra a M r M =(其中0,M r R >∈)的“关键步骤”为________.【答案】log log ra a M r M =【解析】log log ()a a M r M r r a a M ==,log log r a a M r M ∴=.【普陀12】若M N 、两点分别在函数()y f x =与()y g x =的图像上,且关于直线1x =对称,则称M N 、是()y f x =与()y g x =的一对“伴点”(M N 、与N M 、视为相同的一对)。