功能关系,能量守恒练习题
05专题:功能关系和能量守恒专题(含答案)

05专题:功能关系和能量守恒专题【知识点一】对功能关系的理解1、如图所示,某段滑雪雪道倾角为30°,总质量为m (包括雪具在内)的滑雪运动员从距底端高为h 处的雪道上由静止开始匀加速下滑,加速度为13g 。
在他从上向下滑到底端的过程中,下列说法正确的是( )A .运动员减少的重力势能全部转化为动能B .运动员获得的动能为13mgh C .运动员克服摩擦力做功为23mgh D .下滑过程中系统减少的机械能为13mgh 2、质量为m 的物体在竖直向上的恒定拉力F 的作用下,由静止开始向上运动H 高度,所受空气阻力恒为f ,g 为当地的重力加速度。
则此过程中,下列说法正确的是( )A .物体的动能增加了(F -mg )HB .物体的重力势能增加了mgHC .物体的机械能减少了fHD .物体的机械能增加了FH【知识点二】功能关系的综合应用3、(2020·全国卷Ⅰ,20)一物块在高3.0 m 、长5.0 m 的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离s 的变化如图中直线Ⅰ、Ⅱ所示,重力加速度取10 m/s 2。
则( )A.物块下滑过程中机械能不守恒B.物块与斜面间的动摩擦因数为0.5C.物块下滑时加速度的大小为6.0 m/s 2D.当物块下滑2.0 m 时机械能损失了12 J4、 (多选)(2019·全国卷Ⅱ,18)从地面竖直向上抛出一物体,其机械能E 总等于动能E k 与重力势能E p 之和。
取地面为重力势能零点,该物体的E 总和E p 随它离开地面的高度h 的变化如图所示。
重力加速度取10 m/s 2。
由图中数据可得( )A.物体的质量为2 kgB.h =0时,物体的速率为20 m/sC.h =2 m 时,物体的动能E k =40 JD.从地面至h =4 m ,物体的动能减少100 J【知识点三】能量守恒定律的应用5、如图所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数μ=34,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点,用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子与斜面平行,A的质量为2m=4 kg,B的质量为m=2 kg,初始时物体A到C点的距离为L=1 m,现给A、B一初速度v0=3 m/s,使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点.已知重力加速度g取10 m/s2,不计空气阻力,整个过程中轻绳始终处于伸直状态,求此过程中:(1)物体A向下运动刚到达C点时的速度大小;(2)弹簧的最大压缩量;(3)弹簧中的最大弹性势能.6、如图所示,固定的粗糙弧形轨道下端B点水平,上端A与B点的高度差为h1=0.3 m,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C点与B点的高度差为h2=0.112 5 m(传送带传动轮的大小可忽略不计)。
功能关系与能量守恒专项小题

功能关系与能量守恒专项小题一、几种常见的功能关系 功是能量转化的量度,即做了多少功就有多少能量发生了转化。
做功的过程一定伴随着能量的转化,而且能量的转化必须通过做功来实现。
因此在涉及能量转化的问题中,首先要弄清楚是哪些力做功引起了哪些能量的转化的。
牢记以下功与能量转化间的关系。
做功能量变化的关系 表达式 关系说明重力的功等于重力势能变化量的相反数 W G =-ΔE P 重力做正功重力势能减小 重力做负功重力势能增加 弹簧弹力的功等于弹性势能变化量的相反数W 弹=-ΔE P 同上 电场力的功等电势能变化量的相反数W 电=-ΔE P 同上 非重(弹)力的功等于机械能的变化量 W 非=ΔE 非重(弹)力做了多少正功,机械能增加多少;非重(弹)力做了多少负功,机械能减少多少。
合外力的功等于动能的变化量 W 合=ΔE k 合外力做了多少正功,动能增加多少; 合外力做了多少负功,动能减多少; 一对滑动摩擦力做功之和的绝对值等于系统内能的增量W 一对f =-F f l 相 F f l 相=ΔE 内=Q 一对滑动摩擦力做功之和为负值,系统内能的增加量与某一个摩擦力做功无关。
外界对系统做的功等于系统总能量的增量W 外=ΔE 是外力还是内力要看研究对象 由于动能定理只适合于单个质点(研究对象是单个质点),涉及的能只有动能,重力(弹簧弹力)是外力;研究外界对系统做的功时,涉及物体的重力(弹性、电)势能,它们是物体与地球(弹簧、电场)所共有的,此时重力(弹力、电场力)属内力。
二、对能量守恒定律的理解:(1)某种形式的能减少,一定存在其他形式的能增加,且减少量一定等于增加量;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量也一定等于增加量; 这也是我们列能量守恒定律方程式的两条基本思路.应用能量守恒定律解决有关问题,关键是准确分析有多少种形式的能量在变化,求出减少的总能量ΔE 减和增加的总能量ΔE 增,然后再依据能量守恒定律(ΔE 减=ΔE 增)列式求解.【习题精选】1.从地面竖直上抛一个质量为m 的小球,小球上升的最大高度为H .设上升过程中空气阻力F 阻恒定.则对于小球的整个上升过程,下列说法中错误的是( A )A .小球动能减少了mgHB .小球机械能减少了F 阻HC .小球重力势能增加了mgHD .小球的加速度大于重力加速度g2.已知货物的质量为m ,在某段时间内起重机将货物以a 的加速度加速升高h ,则在这段时间内,下列叙述正确的是(重力加速度为g )( D )A .货物的动能一定增加mah -mghB .货物的机械能一定增加mahC .货物的重力势能一定增加mahD .货物的机械能一定增加mah +mgh3.如图所示,质量为m 的小车在水平恒力F 推动下,从山坡(粗糙)底部A 处由静止起运动至高为h 的坡顶B ,获得速度为v, AB 之间的水平距离为s ,重力加速度为g .下列说法不正确的是( C )A .小车克服重力所做的功是mghB .合外力对小车做的功是12m v 2 C .推力对小车做的功是12m v 2+mgh D .阻力对小车做的功是12m v 2+mgh -Fs4.如图所示,电梯的质量为M,其天花板上通过一轻质弹簧悬挂一质量为m的物体。
高中物理专题练习-动能定理 机械能守恒定律及功能关系的应用(含答案)

高中物理专题练习-动能定理机械能守恒定律及功能关系的应用(含答案)满分:100分时间:60分钟一、单项选择题(本题共6小题,每小题5分,共30分.每小题只有一个选项符合题意.)1.(四川理综,1)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小()A.一样大B.水平抛的最大C.斜向上抛的最大D.斜向下抛的最大2.(新课标全国卷Ⅱ,17)一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P随时间t的变化如图所示.假定汽车所受阻力的大小f恒定不变.下列描述该汽车的速度v随时间t变化的图线中,可能正确的是()3.(新课标全国卷Ⅱ,16)一物体静止在粗糙水平地面上,现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v,若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v,对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则()A.W F2>4W F1,W f2>2W f1B.W F2>4W F1, W f2=2W f1C.W F2<4W F1,W f2=2W f1D.W F2<4W F1, W f2<2W f14.(新课标全国卷Ⅰ,17)如图,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平.一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道.质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小.用W表示质点从P点运动到N点的过程中克服摩擦力所做的功.则()A.W=12mgR,质点恰好可以到达Q点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离5.(海南单科,4)如图,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g .质点自P 滑到Q 的过程中,克服摩擦力所做的功为( ) A.14mgR B.13mgRC.12mgRD.π4mgR 6.(天津理综,5)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),则在圆环下滑到最大距离的过程中( ) A .圆环的机械能守恒 B .弹簧弹性势能变化了3mgLC .圆环下滑到最大距离时,所受合力为零D .圆环重力势能与弹簧弹性势能之和保持不变二、多项选择题(本题共4小题,每小题7分,共计28分.每小题有多个选项符合题意.全部选对的得7分,选对但不全的得4分,错选或不答的得0分.)7.(浙江理综,18)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104kg,设起飞过程中发动机的推力恒为1.0×105 N ;弹射器有效作用长度为100 m,推力恒定.要求舰载机在水平弹射结束时速度大小达到80 m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则( ) A .弹射器的推力大小为1.1×106 N B .弹射器对舰载机所做的功为1.1×108 J C .弹射器对舰载机做功的平均功率为8.8×107 WD .舰载机在弹射过程中的加速度大小为32 m/s 28.(新课标全国卷Ⅱ,21)如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a、b可视为质点,重力加速度大小为g.则() A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg9.(江苏单科,9)如图所示,轻质弹簧一端固定,另一端与一质量为m、套在粗糙竖直固定杆A处的圆环相连,弹簧水平且处于原长.圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,AC=h.圆环在C处获得一竖直向上的速度v,恰好能回到A.弹簧始终在弹性限度内,重力加速度为g.则圆环()A.下滑过程中,加速度一直减小B.下滑过程中,克服摩擦力做的功为14m v2C.在C处,弹簧的弹性势能为14m v2-mghD.上滑经过B的速度大于下滑经过B的速度10.(江苏南通一模)一质点在0~15 s内竖直向上运动,其加速度-时间图象如图所示,若取竖直向下为正,g取10 m/s2,则下列说法正确的是()A.质点的机械能不断增加B.在0~5 s内质点的动能增加C.在10~15 s内质点的机械能减少D.在t=15 s时质点的机械能大于t=5 s时质点的机械能三、计算题(本题共2小题,共计42分.解答时写出必要的文字说明,方程式和重要的演算步骤,只写出最后答案的不得分.)11.(江苏单科,14)(20分)一转动装置如图所示,四根轻杆OA、OC、AB和CB与两小球及一小环通过铰链连接,轻杆长均为l,球和环的质量均为m,O端固定在竖直的轻质转轴上.套在转轴上的轻质弹簧连接在O与小环之间,原长为L.装置静止时,弹簧长为32L.转动该装置并缓慢增大转速,小环缓慢上升.弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g.求:(1)弹簧的劲度系数k;(2)AB杆中弹力为零时,装置转动的角速度ω0;(3)弹簧长度从32L缓慢缩短为12L的过程中,外界对转动装置所做的功W.12.(福建理综,21)(22分)如图,质量为M的小车静止在光滑水平面上,小车AB段是半径为R的四分之一圆弧光滑轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点.一质量为m的滑块在小车上从A点由静止开始沿轨道滑下,重力加速度为g.(1)若固定小车,求滑块运动过程中对小车的最大压力;(2)若不固定小车,滑块仍从A点由静止下滑,然后滑入BC轨道,最后从C点滑出小车.已知滑块质量m=M2,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC间的动摩擦因数为μ,求:①滑块运动过程中,小车的最大速度大小v m;②滑块从B到C运动过程中,小车的位移大小s. 答案1. A [由机械能守恒定律mgh +12m v 21=12m v 22知,落地时速度v 2的大小相等,故 A 正确.]2.A [当汽车的功率为P 1时,汽车在运动过程中满足P 1=F 1v ,因为P 1不变,v 逐渐增大,所以牵引力F 1逐渐减小,由牛顿第二定律得F 1-f =ma 1,f 不变,所以汽车做加速度减小的加速运动,当F 1=f 时速度最大,且v m =P 1F 1=P 1f .当汽车的功率突变为P 2时,汽车的牵引力突增为F 2,汽车继续加速,由P 2=F 2v 可知F 2减小,又因F 2-f =ma 2,所以加速度逐渐减小,直到F 2=f 时,速度最大v m ′=P 2f ,以后匀速运动.综合以上分析可知选项A 正确.]3.C [两次物体均做匀加速运动,由于时间相等,两次的末速度之比为1∶2,则由v =at 可知两次的加速度之比为a 1a 2=12,F 1合F 2合=12,又两次的平均速度分别为v 2、v ,故两次的位移之比为x 1x 2=12,由于两次的摩擦阻力相等,由W f =fx 可知,W f 2=2W f 1;由动能定理知W 合1W 合2=ΔE k1ΔE k2=14,因为W 合=W F -W f ,故W F =W 合+W f ;W F 2=W 合2+W f 2=4W 合1+2W f 1<4W 合1+4W f 1=4W F 1;选项C 正确.]4.C [根据动能定理得P 点动能E k P =mgR ,经过N 点时,由牛顿第二定律和向心力公式可得4mg-mg =m v 2R ,所以N 点动能为E k N =3mgR2,从P 点到N 点根据动能定理可得mgR -W =E k N -E k P ,即克服摩擦力做功W =mgR2.质点运动过程,半径方向的合力提供向心力即F N -mg cos θ=ma =m v 2R ,根据左右对称,在同一高度处,由于摩擦力做功导致在右边圆形轨道中的速度变小,轨道弹力变小,滑动摩擦力F f =μF N 变小,所以摩擦力做功变小,那么从N 到Q ,根据动能定理-mgR -W ′=E k Q -E k N ,Q 点动能E k Q =3mgR 2-mgR -W ′=12mgR -W ′,由于W ′<mgR2,所以Q 点速度仍然没有减小到0,会继续向上运动一段距离,对照选项,C 正确.]5.C [在Q 点质点受到竖直向下的重力和竖直向上的支持力,两力的合力充当向心力,所以有F N -mg =m v 2R ,F N =2mg ,联立解得v =gR ,下滑过程中,根据动能定理可得mgR -W f =12m v 2,解得W f =12mgR ,所以克服摩擦力做功 12mgR ,C 正确.]6.B [圆环在下落过程中弹簧的弹性势能增加,由能量守恒定律可知圆环的机械能减少,而圆环与弹簧组成的系统机械能守恒,故A 、D 错误;圆环下滑到最大距离时速度为零,但是加速度不为零,即合外力不为零,故C 错误;圆环重力势能减少了3mgl ,由能量守恒定律知弹簧弹性势能增加了3mgl ,故B 正确.]7.ABD [设总推力为F ,位移x ,阻力F 阻=20%F ,对舰载机加速过程由动能定理得Fx -20%F ·x=12m v 2,解得F =1.2×106 N,弹射器推力F 弹=F -F 发=1.2×106 N -1.0×105 N =1.1×106 N,A 正确;弹射器对舰载机所做的功为W =F 弹·x =1.1×106×100 J =1.1×108 J,B 正确;弹射器对舰载机做功的平均功率P -=F 弹·0+v2=4.4×107 W,C 错误;根据运动学公式v 2=2ax ,得a =v 22x =32 m/s 2,D 正确.]8.BD [滑块b 的初速度为零,末速度也为零,所以轻杆对b 先做正功,后做负功,选项A 错误;以滑块a 、b 及轻杆为研究对象,系统的机械能守恒,当a 刚落地时,b 的速度为零,则mgh =12m v 2a +0,即v a =2gh ,选项B 正确;a 、b 的先后受力如图所示.由a 的受力图可知,a 下落过程中,其加速度大小先小于g 后大于g ,选项C 错误;当a 落地前b 的加速度为零(即轻杆对b 的作用力为零)时,b 的机械能最大,a 的机械能最小,这时b 受重力、支持力,且F N b =mg ,由牛顿第三定律可知,b 对地面的压力大小为mg ,选项D 正确.] 9.BD [由题意知,圆环从A 到C 先加速后减速,到达B 处的加速度减小为零,故加速度先减小后增大,故A 错误;根据能量守恒,从A 到C 有mgh =W f +E p ,从C 到A 有12m v 2+E p =mgh +W f ,联立解得:W f =14m v 2,E p =mgh -14m v 2,所以B 正确,C 错误;根据能量守恒,从A 到B 有mgh 1=12m v 2B 1+ΔE p1+W f 1,从C 到B 有12m v 2+ΔE p2=12m v 2B 2+W f 2+mgh 2,又有12m v 2+E p =mgh +W f ,联立可得v B 2>v B 1,所以D 正确.]10.CD [质点竖直向上运动,0~15 s 内加速度方向向下,质点一直做减速运动,B 错误;0~5 s内,a=10 m/s2,质点只受重力,机械能守恒;5~10 s内,a=8 m/s2,受重力和向上的力F1,F1做正功,机械能增加;10~15 s内,a=12 m/s2,质点受重力和向下的力F2,F2做负功,机械能减少,A错误,C正确;由F合=ma可推知F1=F2,由于做减速运动,5~10 s内通过的位移大于10~15 s内通过的位移,F1做的功大于F2做的功,5~15 s内增加的机械能大于减少的机械能,所以D正确.]11.解析(1)装置静止时,设OA、AB杆中的弹力分别为F1、T1,OA杆与转轴的夹角为θ1小环受到弹簧的弹力F弹1=k·L2小环受力平衡:F弹1=mg+2T1cos θ1小球受力平衡:F1cos θ1+T1cos θ1=mg, F1sin θ1=T1sin θ1解得k=4mg L(2)设OA、AB杆中的弹力分别为F2、T2,OA杆与转轴的夹角为θ2,弹簧长度为x 小环受到弹簧的弹力F弹2=k(x-L)小环受力平衡:F弹2=mg,得x=54L对小球:F2cos θ2=mg, F2sin θ2=mω20l sin θ2且cos θ2=x 2l解得ω0=8g 5L(3)弹簧长度为L2时,设OA、AB杆中的弹力分别为F3、T3,OA杆与弹簧的夹角为θ3小环受到弹簧的弹力F弹3=k·L2小环受力平衡:2T3cos θ3=mg+F弹3,且cos θ3=L 4l对小球:F3cos θ3=T3cos θ3+mg;F3sin θ3+T3sin θ3=mω23l sin θ3解得ω3=16g L整个过程弹簧弹性势能变化为零,则弹力做的功为零, 由动能定理:W -mg ⎝ ⎛⎭⎪⎫3L 2-L 2-2mg ⎝ ⎛⎭⎪⎫3L 4-L 4=2×12m (ω3l sin θ3)2解得:W =mgL +16mgl 2L 答案 (1)4mgL (2)8g 5L (3)mgL +16mgl 2L12.解析 (1)滑块滑到B 点时对小车压力最大,从A 到B 机械能守恒mgR =12m v 2B ①滑块在B 点处,由牛顿第二定律知 N -mg =m v 2B R ② 解得N =3mg ③ 由牛顿第三定律知 N ′=3mg ④(2)①滑块下滑到达B 点时,小车速度最大.由机械能守恒 mgR =12M v 2m +12m (2v m )2⑤ 解得v m =gR3⑥②设滑块运动到C 点时,小车速度大小为v C ,由功能关系 mgR -μmgL =12M v 2C +12m (2v C )2⑦ 设滑块从B 到C 过程中,小车运动加速度大小为a ,由牛顿第二定律 μmg =Ma ⑧ 由运动学规律v 2C -v 2m =-2as ⑨解得s =13L ⑩ 答案 (1)3mg (2)①gR 3 ②13L1.运用功能关系分析问题的基本思路(1)选定研究对象或系统,弄清物理过程;(2)分析受力情况,看有什么力在做功,弄清系统内有多少种形式的能在参与转化;(3)仔细分析系统内各种能量的变化情况、变化数量.2.功能关系。
2023高三物理寒假作业五:功能关系、能量守恒(试题)

寒假作业五功能关系、能量守恒1.如图所示为被称为“亚洲撑杆跳女王”的李玲比赛时的英姿,撑杆跳运动的过程大概可以分为助跑、起跳、下落三个阶段。
已知李玲和撑杆总质量为m ,某次比赛中,助跑结束时恰好达到最大速度v ,起跳后重心上升高度h 后成功越过横杆,落在缓冲海绵垫上,撑杆脱离运动员之后会出现弹跳现象,重力加速度为g ,不计空气阻力,取地面为零势能面,则下列说法正确的是()A .助跑过程中,运动员所处高度不变,运动员和撑杆整体机械能守恒B .从运动员离开地面到手脱离撑杆的过程中,撑杆的弹性势能不断增大C .运动员在最高点的重力势能2p 12E mv =D.越过横杆后,落到海绵垫上之前,运动员机械能守恒2.电动机通过轻绳将小球自离地一定高度处由静止开始竖直向上提升,运动中小球的机械能E 随时间t 变化的图像如图所示(图中各物理量已知),小球质量为m ,下列说法正确的是()A .小球向上做匀加速直线运动B .小球上升的最大速度为11E mgtC .已知小球1t 时间内上升的高度为1h ,则可求出1t 时刻小球的速度D .若小球在1t 时刻的速度为1v ,则该时刻的加速度为1011E E mv t -3.如图所示,质量11kg m =的木板Q 静止在水平地面上,质量23kg m =的物块P 在木板左端,P 与Q 之间动摩擦因数10.2μ=,地面与Q 之间动摩擦因数20.1μ=。
现给P 物块04m/s v =的初速度使其在木板上向右滑动,最终P 和Q 都静止且P 没有滑离木板Q ,重力加速度g 取210m /s ,下列说法正确的是()A .P 与Q 开始相对静止的速度是2.5m /sB .长木板Q 长度至少为3mC .P 与Q 之间产生的热量和地面与Q 之间产生的热量之比为1:1D .P 与Q 之间产生的热量和地面与Q 之间产生的热量之比为2:14.轻杆AB 长2L ,A 端连在固定轴上,B 端固定一个质量为2m 的小球,中点C 固定一个质量为m 的小球。
高考物理 功能关系 能量守恒定律(含答案)

基础课时15功能关系能量守恒定律一、单项选择题1.运动员跳伞将经历加速下降和减速下降两个过程,将人和伞看成一个系统,在这两个过程中,下列说法正确的是()A.阻力对系统始终做负功B.系统受到的合外力始终向下C.重力做功使系统的重力势能增加D.任意相等的时间内重力做的功相等解析运动员无论是加速下降还是减速下降,阻力始终阻碍系统的运动,所以阻力对系统始终做负功,故选项A正确;运动员加速下降时系统所受的合外力向下,减速下降时系统所受的合外力向上,故选项B错误;由W G=-ΔE p 知,运动员下落过程中重力始终做正功,系统重力势能减少,故选项C错误;运动员在加速下降和减速下降的过程中,任意相等时间内所通过的位移不一定相等,所以任意相等时间内重力做的功不一定相等,故选项D错误。
答案 A2.(2014·广东理综,16)如图1所示,是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中()图1A.缓冲器的机械能守恒B.摩擦力做功消耗机械能C.垫板的动能全部转化为内能D.弹簧的弹性势能全部转化为动能解析由于楔块与弹簧盒、垫板间有摩擦力,即摩擦力做负功,则机械能转化为内能,故A错误,B正确;垫板动能转化为内能和弹性势能,故C、D 错误。
答案 B3.升降机底板上放一质量为100 kg的物体,物体随升降机由静止开始竖直向上移动5 m时速度达到4 m/s,则此过程中(g取10 m/s2)()A.升降机对物体做功5 800 JB.合外力对物体做功5 800 JC.物体的重力势能增加500 JD.物体的机械能增加800 J解析根据动能定理得W升-mgh=12m v2,可解得W升=5 800 J,A正确;合外力做的功为12m v2=12×100×42 J=800 J,B错误;物体重力势能增加mgh=100×10×5 J=5 000 J,C错误;物体机械能增加ΔE=Fh=W升=5 800 J,D错误。
4.高考物理功能关系 能量守恒定律专题精练含答案

进入导航
第23页
1.(2019·四川五校联考)如图所示,轻质弹簧一端固定,另 一端与一质量为 m、套在粗糙竖直固定杆 A 处的圆环相连,弹簧 水平且处于原长.圆环从 A 处由静止开始下滑,经过 B 处的速度 最大,到达 C 处的速度为零,AC=h,此为过程Ⅰ;若圆环在 C 处获得一竖直向上的速度 v,则恰好能回到 A 处,此为过程Ⅱ. 已知弹簧始终在弹性范围内,重力加速度为 g,则圆环( D )
进入导航
第4页
2.几种常见的功能关系及其表达式
进入导航
第5页
进入导航
第6页
1.如图,一质量为 m、长度为 l 的均匀柔软细绳 PQ 竖直悬 挂.用外力将绳的下端 Q 缓慢地竖直向上拉起至 M 点,M 点与 绳的上端 P 相距13l.重力加速度大小为 g.在此过程中,外力做的功 为( A )
进入导航
进入导航
第14页
A.小物块到达小车最右端时具有的动能为(F-f)(L+x) B.小物块到达小车最右端时,小车具有的动能为 fx C.小物块克服摩擦力所做的功为 f(L+x) D.小物块和小车增加的机械能为 Fx
解析:由动能定理可得,小物块到达小车最右端时的动能 Ek 物=W 合=(F-f)(L+x),A 正确;小物块到达小车最右端时, 小车的动能 Ek 车=fx,B 正确;小物块克服摩擦力所做的功 Wf =f(L+x),C 正确;小物块和小车增加的机械能为 F(L+x)-fL, D 错误.
进入导航
第19页
3.运用能量守恒定律解题的基本思路
进入导航
第20页
考向 1 摩擦力做功的理解与计算 将三个木板 1、2、3 固定在墙角,木板与墙壁和地
面构成了三个不同的三角形,如图所示,其中 1 与 2 最低点相同, 2 和 3 高度相同.现将一个可以视为质点的物块分别从三个木板 的顶端由静止释放,并沿斜面下滑到底端,物块与木板之间的动 摩擦因数 μ 均相同.在这三个过程中,下列说法不正确的是( A )
第六章 第5练 功能关系 能量守恒定律

1.(多选)如图所示,在粗糙的桌面上有一个质量为M 的物块,通过轻绳跨过定滑轮与质量为m 的小球相连,不计轻绳与滑轮间的摩擦,在小球下落的过程中,下列说法正确的是( )A .小球的机械能守恒B .物块与小球组成的系统机械能守恒C .若小球匀速下降,小球减少的重力势能等于物块与桌面间摩擦产生的热量D .若小球加速下降,小球减少的机械能大于物块与桌面间摩擦产生的热量2.如图,一质量为m 、长度为L 的均匀柔软细绳PQ 竖直悬挂。
用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距L3,重力加速度大小为g 。
在此过程中,外力做的功为( )A.mgL 9B.mgL 6C.mgL 3D.mgL 23.(多选)如图所示,楔形木块abc 固定在水平面上,粗糙斜面ab 与水平面的夹角为60°,光滑斜面bc 与水平面的夹角为30°,顶角b 处安装一定滑轮。
质量分别为M 、m (M >m )的两滑块A 和B ,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行。
两滑块由静止释放后,沿斜面做匀加速运动,A 、B 不会与定滑轮碰撞。
若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )A .轻绳对滑轮作用力的方向竖直向下B .拉力和重力对A 做功之和大于A 动能的增加量C .拉力对A 做的功等于A 机械能的增加量D .两滑块组成系统的机械能损失等于A 克服摩擦力做的功4.(多选)如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 点的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力。
已知AP =2R ,重力加速度为g ,则小球从P 点运动到B 点的过程中( )A .重力做功2mgRB .机械能减少mgRC .合外力做功12mgRD .克服摩擦力做功12mgR5.如图所示,平直木板AB 倾斜放置,小物块与木板间的动摩擦因数由A 到B 均匀增大,小物块从A 点由静止释放,恰好可以到达B 点,小物块的加速度a 、动能E k 、重力势能E p 和机械能E (取地面为零势能面)随下滑位移s 变化的图像可能正确的是( )6.(多选)(2024·福建漳州市第一次质检)为预防电梯缆绳断裂的安全事故,电梯井底和电梯上分别安装有缓冲弹簧和安全钳,装置简化如图所示。
功能关系、能量守恒定律

高考经典课时作业5-4 功能关系、能量守恒定律(含标准答案及解析)时间:45分钟 分值:100分1. 木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是( )A .子弹的机械能守恒B .木块的机械能守恒C .子弹和木块的总机械能守恒D .子弹和木块的总能量守恒 2.(2013·长春模拟)如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点停止.若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ,下列说法正确的是( )A .物块滑到b 点时的速度为gRB .物块滑到b 点时对b 点的压力是3mgC .c 点与b 点的距离为RμD .整个过程中物块机械能损失了mgR3.已知货物的质量为m ,在某段时间内起重机将货物以加速度a 加速升高h ,则在这段时间内,下列叙述正确的是(重力加速度为g )( ) A .货物的动能一定增加mah -mgh B .货物的机械能一定增加mah C .货物的重力势能一定增加mah D .货物的机械能一定增加mah +mgh 4.(2013·东城区模拟)2010年广州亚运会上,刘翔重归赛场,以打破亚运会记录的方式夺得110米跨栏的冠军.他采用蹲踞式起跑,在发令枪响后,左脚迅速蹬离起跑器,在向前加速的同时提升身体重心.如图所示,假设质量为m 的运动员,在起跑时前进的距离x 内,重心上升高度为h ,获得的速度为v ,阻力做功为W 阻、重力对人做功W 重、地面对人做功W 地、运动员自身做功W 人,则在此过程中,下列说法中不正确的是( )A .地面对人做功W 地=12mv 2+mghB .运动员机械能增加了12mv 2+mghC .运动员的重力做功为W 重=-mghD .运动员自身做功W 人=12mv 2+mgh -W 阻5.如图所示,一物体从斜面上高为h 处的A 点由静止滑下,滑至斜面底端B 时,因与水平面碰撞仅保留了水平分速度而进入水平轨道,在水平面上滑行一段距离后停在C 点,测得A 、C 两点间的水平距离为x ,设物体与斜面、水平面间的动摩擦因数均为μ,则( )A .μ>hxB .μ<h xC .μ=hxD .无法确定6.(2013·秦皇岛模拟)如图所示,固定的倾斜光滑杆上套有一个质量为m 的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A 点,弹簧处于原长h .让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中( ) A .圆环机械能守恒B .弹簧的弹性势能先增大后减小C .弹簧的弹性势能变化了mghD .弹簧的弹性势能最大时圆环动能最大7.如图所示,水平面上的轻弹簧一端与物体相连,另一端固定在墙上的P 点,已知物体的质量为m =2.0 kg ,物体与水平面间的动摩擦因数μ=0.4,弹簧的劲度系数k =200 N/m.现用力F 拉物体,使弹簧从处于自然状态的O 点由静止开始向左移动10 cm ,这时弹簧具有弹性势能E p =1.0 J ,物体处于静止状态,若取g =10 m/s 2,则撤去外力F 后( ) A .物体向右滑动的距离可以达到12.5 cm B .物体向右滑动的距离一定小于12.5 cm C .物体回到O 点时速度最大D .物体到达最右端时动能为0,系统机械能不为0 8.(2013·长春模拟)如图所示,质量为m 的可看成质点的物块置于粗糙水平面上的M 点,水平面的右端与固定的斜面平滑连接,物块与水平面及斜面之间的动摩擦因数处处相同.物块与弹簧未连接,开始时物块挤压弹簧使弹簧处于压缩状态.现从M 点由静止释放物块,物块运动到N 点时恰好静止,弹簧原长小于MM ′.若物块从M 点 运动到N 点的过程中,物块与接触面之间由于摩擦所产生的热量为Q ,物块、弹簧与地球组成系统的机械能为E ,物块通过的路程为s .不计转折处的能量损失,下列图象所描述的关系中可能正确的是( )9.(2012·高考安徽卷)如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中( ) A .重力做功2mgR B .机械能减少mgRC .合外力做功mgRD .克服摩擦力做功12mgR10.如图所示,质量为m 的长木块A 静止于光滑水平面上,在其水平的上表面左端放一质量为m 的滑块B ,已知木块长为L ,它与滑块之间的动摩擦因数为μ.现用水平向右的恒力F 拉滑块B .(1)当长木块A 的位移为多少时,B 从A 的右端滑出? (2)求上述过程中滑块与木块之间产生的内能.11.(2012·安徽合肥一中联考)如图所示,物块A 的质量为M ,物块B 、C 的质量都是m ,并都可看做质点,且m <M <2m .三物块用细线通过滑轮连接,物块B 与物块C 的距离和物块C 到地面的距离都是L .现将物块A 下方的细线剪断,若物块A 距滑轮足够远且不计一切阻力.求:(1)物块A 上升时的最大速度;(2)若B 不能着地,求Mm满足的条件.12.如图所示, AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看做质点)从直轨道上的P 点由静止释放,结果它能在两轨道间做往返运动.已知P 点与圆弧的圆心O 等高,物体与轨道AB 间的动摩擦因数为μ.求:(1)物体做往返运动的整个过程中在AB 轨道上通过的总路程;(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力大小; (3)为使物体能顺利到达圆弧轨道的最高点D ,释放点距B 点的距离L ′应满足什么条件?标准答案及解析:1.解析:子弹射入木块过程,系统中摩擦力做负功,机械能减少,而共同上摆过程,系统只有重力做功,机械能守恒.综上所述,整个过程机械能减少,减少部分等于克服木块摩擦力做功产生的热量. 答案:D 2.答案:BCD 3.解析:据牛顿第二定律,物体所受的合外力F =ma ,则动能的增加量为mah ,选项A 错误;重力势能的增加量等于克服重力做的功mgh ,选项C 错误;机械能的增量为除重力之外的力做的功(ma +mg )h ,选项B 错误、D 正确. 答案:D 4.解析:由动能定理可知W 地+W 阻+W 重+W 人=12mv 2,其中W 重=-mgh ,所以W 地=12mv 2+mgh -W 阻-W 人,A 错误;运动员机械能的增加量ΔE =W 地+W 阻+W 人=12mv 2+mgh ,B 正确;重力做功W 重=-mgh ,C 正确;运动员自身做功W 人=12mv 2+mgh -W 阻-W 地,D 错误. 答案:AD 5.解析:μmgx <mgh ,则μ<hx,故B 正确.答案:B 6.解析:圆环下滑过程中,圆环和弹簧组成的系统机械能守恒,圆环减少的重力势能转化为动能和弹簧的弹性势能,因初末状态的动能均为零,故弹簧弹性势能的增加量等于圆环重力势能的减少量,故A 错误,C 正确;在整个过程中弹簧先逐渐压缩,再恢复原长,最后又伸长,弹簧的压缩量最大时,圆环的速度还在增大,故B 、D 均错误. 答案:C 7.解析:物体向右滑动时,kx -μmg =ma ,当a =0时速度达到最大,而此时弹簧的伸长量x =μmg k,物体没有回到O 点,故C 错误;因弹簧处于原长时,E p >μmg ·x =0.8 J ,故物体到O 点后继续向右运动,弹簧被压缩,因有E p =μmgx m +E p ′,得x m =E p -E p ′μmg <E pμmg=12.5 cm ,故A 错误、B 正确;因物体滑到最右端时,动能为零,弹性势能不为零,故系统的机械能不为零,D 正确. 答案:BD 8.答案:C 9.解析:一个小球在A 点正上方由静止释放,刚好通过B 点恰好对轨道没有压力,只有重力提供向心力,即:mg =m v 2R ,得v 2=gR ,对全过程运用动能定理可得D 正确.答案:D 10.解析:(1)设B 从A 的右端滑出时,A 的位移为l ,A 、B 的速度分别为v A 、v B ,由动能定理得μm gl =12mv 2A(F -μmg )·(l +L )=12mv 2B又由同时性可得v A a A =v B a B ⎝⎛⎭⎫其中a A =μg ,a B =F -μmg m 可解得l =μmgLF -2μmg.(2)由功能关系知,拉力做的功等于A 、B 动能的增加量和A 、B 间产生的内能,即有F (l +L )=12mv 2A +12mv 2B +Q可解得Q =μmgL . 答案:(1)μmgLF -2μmg (2)μmgL11.解析:(1)A 上升L 时速度达到最大,设为v ,由机械能守恒定律有2mgL -MgL =12(M +2m )v 2得v =2 2m -M g L2m +M.(2)C 着地后,若B 恰不能着地,即B 物块再下降L 时速度为零. 法一:根据转化观点,机械能守恒定律的表达式可写为MgL -mgL =12(M +m )v 2将v 代入,整理得:M =2m .法二:根据转移观点,机械能守恒定律的表达式还可写为:MgL -12Mv 2=mgL +12mv 2代入v ,解得:M =2m 所以Mm >2时,B 物体将不会着地.答案:(1)2 2m -M g L 2m +M(2)Mm > 212.解析:(1)物体在P 点及最终到B 点的速度都为零,对全过程由动能定理得 mgR cos θ-μmg cos θ·s =0①得s =R μ.(2)设物体在E 点的速度为v E ,由机械能守恒定律有mgR (1-cos θ)=12mv 2E②在E 点时由牛顿第二定律有N -mg =mv 2ER③联立②③式解得N =(3-2cos θ)mg .由牛顿第三定律可知物体对圆弧轨道E 点的压力大小为(3-2cos θ)mg . (3)设物体刚好通过D 点时的速度为v D ,由牛顿第二定律有:mg =m v 2DR ,得:v D =gR ④设物体恰好通过D 点时,释放点距B 点的距离为L 0,在粗糙直轨道上重力的功 W G 1=mgL 0sin θ⑤滑动摩擦力的功:W f =-μmg cos θ·L 0⑥在光滑圆弧轨道上重力的功W G 2=-mgR (1+cos θ)⑦对全过程由动能定理得W G 1+W f +W G 2=12mv 2D ⑧联立④⑤⑥⑦⑧式解得:L 0=3+2cos θR 2 s in θ-μcos θ则L ′≥3+2cos θR2 s in θ-μcos θ.答案:(1)Rμ (2)(3-2cos θ)mg(3)L ′≥3+2cos θR 2 s in θ-μcos θ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功能关系,能量守恒练习题
典例(2012·重庆理综)题23图所示为一种摆式摩擦因数测量仪,可测量轮胎与地面间动摩擦因数,基主要部件有:底部固定有轮胎橡胶片的摆锤和连接摆锤的轻质细杆。
摆锤的质量为m ,细杆可绕轴O 在竖直平面内自由转动,摆锤重心到O 点距离为L 。
测量时,测量仪固定于水平地面,将摆锤从与O 等高的位置处静止释放。
摆锤到最低点附近时,橡胶片紧压地面擦过一小段距离s (s<L ),之后继续摆至与竖直方向成θ角的最高位置。
若摆锤对地面的压力可视为大小为F 的恒力,重力加速度为g ,求 (1)摆锤在上述过程中损失的机械能;
(2)在上述过程中摩擦力对摆锤所做的功; (3)橡胶片与地面之间的动摩擦因数。
【针对训练题精选解析】
1(2010山东理综)如图11所示,倾角θ=30°的粗糙斜面固定在地面上,长为l 、质量为m 、粗细均匀、质量分布均匀的软绳置于斜面上,其上端与斜面顶端齐平。
用细线将物块与软绳相连,物块由静止释放后向下运动,直到软绳刚好全部离开斜面(此时物块未到达地面)在此过程中 A .物块的机械能逐渐增加
B .软绳的重力势能共减少了mgl /4
C .物块重力势能的减少等于软绳克服摩擦力所做的功
D .软绳的重力势能的减少小于软绳动能的增加与软绳克服摩擦力所做的功之和
2.(2012年海南琼海一模)如图所示,质量为M 、长为L 的木板置于
光滑的水平面上,一质量为m 的滑块放置在木板左端,滑块与木板间滑动摩擦力大小为f ,用水平的恒定拉力F 作用于滑块。
当滑块运动到木板右端时,木板在地面上移动的距离为s ,滑块速度为v 1,木板速度为v 2,下列结论中正确的是: (A)上述过程中,F 做功大小为
22
12
1122
mv Mv + (B) 其他条件不变的情况下,M 越大,s 越小
(C)其他条件不变的情况下,F 越大,滑块到达右端所用时间越长 (D)其他条件不变的情况下,f 越大,滑块与木板间产生的热量越多
3. (2012南京一模)某节能运输系统装置的简化示意图如图所示。
小车在轨道顶端时,自动将货物装入车中,然后小车载着货物沿不光滑的轨道无初速度的下滑,并压缩弹簧。
当弹簧被压缩至最短时,立即锁定并自动将货物卸下。
卸完货物后随即解锁,小车恰好被弹回到轨道顶端,此后重复上述过程。
则下列说法中正确的是( )
A .小车上滑的加速度大于下滑的加速度
B .小车每次运载货物的质量必须是确定的
C .小车上滑过程中克服摩擦阻力做的功小于小车下滑过程中克服摩擦阻力做的功
D .小车与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能
第9 题
4.(2012年2月宁波八校联考)如图所示,质量为M 、长为L 的木板置于光滑的水平面上,一质量为m 的滑块放置在木板左端,滑块与木板间滑动摩擦力大小为f ,用水平的恒定拉力F 作用于滑块.当滑块运动到木板右端时,木板在地面上移动的距离为s ,滑块速度为v 1,木板速度为v 2,下列结论中正确的是
A .上述过程中,F 做功大小为
22
12
1122
mv Mv + B .其他条件不变的情况下,F 越大,滑块到达右端所用时间越长
C .其他条件不变的情况下,M 越大,s 越小
D .其他条件不变的情况下,f 越大,滑块与木板间产生的热量越多
5. (2007年高考海南物理)如图,卷扬机的绳索通过定滑轮用力F拉位于粗糙斜面上的木箱,使之沿斜面加速向上移动。
在移动过程中,下列说法正确的是
A.F对木箱做的功等于木箱增加的动能与木箱克服摩擦力所做的功之和 B.F对木箱做的功等于木箱克服摩擦力和克服重力所做的功之和 C.木箱克服重力所做的功等于木箱增加的重力势能
D.F对木箱做的功等于木箱增加的机械能与木箱克服摩擦力做的功之和
6.. (河北省唐山市2012届高三下学期第一次模拟)滑雪是人们喜爱的一种冬季户外活动,某滑雪场有一种双人无动力滑雪车,两人前后相隔一定距离坐在车上,沿倾斜雪道加速滑到坡底水平雪道上,惊险刺激。
甲乙两人同乘一辆滑雪车,甲在前,乙在后,如果两人可视为质点,忽略滑雪车质量,且不计各种机械能损耗,当两人都到达水平雪道上时,甲的机械能与出发时相比 A. 甲的机械能一定增加 B. 甲的机械能一定减少
C. 两人下滑的初始位置越高,甲的机械能变化越大
D. 两人下滑的初始位置越髙,甲的机械能变化越小
7.(2011海淀测试)用图17所示的水平传送带AB 和斜面BC 将货物运送到斜面的顶端。
传送带AB 的长度L =11m ,上表面保持匀速向右运行,运行的速度v =12m/s 。
传送带B 端靠近倾角θ =37︒的斜面底端,斜面底端与传送带的B 端之间有一段长度可以不计的小圆弧。
在A 、C 处各有一个机器人,A 处机器人每隔∆t =1.0s 将一个质量m =10kg 的货物箱(可视为质点)轻放在传送带A 端,货物箱经传送带和斜面后到达斜面顶端的C 点时速度恰好为零,C 点处机器人立刻将货物箱搬走。
已知斜面BC 的长度s =5.0m ,传送带与货物箱之间的动摩擦因数μ0=0.55,货物箱由传送带的右端到斜面底端的过程中速度大小损失原来的
11
1,g =10m/s 2
(sin37°=0.6,cos37°=0.8)。
求: (1)斜面与货物箱之间的动摩擦因数μ;
(2)从第一个货物箱放上传送带A 端开始计时,在t 0=3.0 s 的时间内,所有货物箱与传送带的摩擦产生的热量Q ;
(3)如果C 点处的机器人操作失误,未能将第一个到达C 点的货物箱搬走而造成与第二个货物箱在斜面上相撞。
求两个货物箱在斜面上相撞的位置到C 点的距离。
(本问结果可以用根式表示)
第10题图
8(2012浙江大学附中期中考试)在赛车场上,为了安全起见,车道外围都固定上废旧轮胎作为围栏,当车碰撞围拦时起缓冲器作用.为了检验废旧轮胎的缓冲效果,在一次模拟实验中用弹簧来代替废旧轮胎,实验情况如图所示.水平放置的轻弹簧左侧固定于墙上,处于自然状态,开始赛车在A处处于静止,距弹簧自由端的距离为L1=1m。
当赛车起动时,产生水平向左的牵引力恒为F=24N使赛车向左做匀加速前进,当赛车接触弹簧的瞬间立即关闭发动机撤去F,赛车继续压缩弹簧,最后被弹回到B处停下.已知赛车的质量为m=2kg,A、B之间的距离为L2=3m,赛车被弹回的过程中离开弹簧时的速度大小为v=4m/s,水平向右.求:
(1)赛车和地面间的动摩擦因数;
(2)弹簧被压缩的最大距离;
(3)弹簧的最大弹性势能
9、第二十九届奥林匹克运动会将于2008年8月8日至8月24日在中华人民共和国首都北京举行。
在奥运会的体育比赛项目中,撑杆跳高是指运动员双手握住一根特制的轻杆,经过快速助跑后,借助轻杆撑地的反弹力量,使身体腾起,跃过横杆。
当今男子世界记录达到了6.14m,女子世界记录达到5.01m。
这是一项技术性很强的体育运动,可以简化成如图所示三个阶段,助跑、起跳撑杆上升、越杆下降落地。
(g=10m/s2 )问:
(1)如果运动员只是通过借助撑杆把助跑提供的动能转化为上升过程中的重力势能,那么运动员助跑到10m/s后起跳,最多能使自身重心升高多少?
(2)若运动员体重75kg,助跑到8m/s后起跳,使重心升
高5m后越过横杆,从最高点到落地过程中水平位移为2m,
运动员在最高点水平速度为v为多少?
(3)在第(2)问的过程中,该运动员起跳撑杆上升阶段至
少把多少体内生物化学能转化成机械能?
10.高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性。
某滑雪轨道的完整结构可以简化成如图所示的示意图。
其中AB段是助滑雪道,倾角 =30°,BC段是水平起跳台,CD段是着陆雪道, AB段与BC段圆滑相连,DE段是一小段圆弧(其长度可忽略),在D、E两点分别与CD、EF 相切,EF是减速雪道,倾角θ=37°.轨道各部分与滑雪板间的动摩擦因数均为μ=0.25,图中轨道最高点A处的起滑台距起跳台BC的竖直高度h=10m. A点与C点的水平距离L1=20m,C点与D点的距离为32.625m. 运动员连同滑雪板的质量m=60kg,滑雪运动员从A点由静止开始起滑,通过起跳台从C点水平飞出,在落到着陆雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿着陆雪道的分速度而不弹起. 除缓冲外运动员均可视为质点,设运动员在全过程中不使用雪杖助滑,忽略空气阻力的影响,取重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8. 求:
(1)运动员在C点水平飞出时速度的大小;
(2)运动员在着陆雪道CD上的着陆位置与C点的距离;
(3)运动员滑过D点时的速度大小;
(4)从运动员到达E点起,经3.0s正好通过减速雪道上的G点,求EG之间的距离.
Welcome !!! 欢迎您的下载,资料仅供参考!。