多边形内角和第二课时
人教版-数学-七年级下册-多边形及其内角和 第二课时 说课

《多边形的内角和》教材分析◆教材的地位和作用多边形的内角和是在三角形内角和知识基础上的拓广和发展,是从特殊到一般的深化,是后面学习多边形镶嵌的基础,也是今后学习空间几何的基础,学好多边形内角和的内容,为学生认识探索客观世界中不同形状物体存在的一般规律打下基础,对发展学生的空间观念和几何直觉有很大的帮助。
◆教学目标知识目标:通过探究,归纳出多边形的内角和和公式技能目标:通过探索多边形内角和和公式,尝试不同的角度寻求解决问题的方法,并能有效的解决问题德育目标:通过猜想、推理等数学活动,感受数学活动充满着探索,以及数学结论的确定性,提高学生学习热情。
◆重点难点重点:探索多边形的内角和和公式难点:探索多边形的内角和时,如何将多边形形转化为三角形教学方法数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要让学生知其然,而且要使学生知其所以然。
针对七年级学生的认知结构和心理特征,本节课选择“引导探索法”,由浅到深,由特殊到一般的提出问题,引导学生自主、探索合作交流,这种教学理念紧随新课改理念,也反映了时代的精神。
学法指导为了培养可持续发展的学生,在教学时,教师要有组织、有针对、有目的的引导学生,并参与到数学活动中来,鼓励学生采用自主探索、合作交流的研讨式学习方法,培养学生动手、动脑、动口的习惯和能力,使学生真正成为学习的主人。
教学过程本节课的基本程序是:创设情境导入新课,获得新知加深理解,学生归纳明晰概念,解决问题应用新知,总结交流效果回收,推荐作业拓展新知。
教学设计借助课件辅助教学,可以更好的突破重难点,增强直观效果,丰富学生的感性认识,提高课堂效率。
提出问题:三角形的内角和是多少?设计这个问题的目的是因为探索多边形内角和与边数关系的根本方法是把多边形转化为多个三角形,因此唤醒学生已有知识“三角形内角和等于180°”有助于解决后面的问题。
接下来提出问题,正方形、长方形的内角和是多少?学生回答后进入新课内容,根据三角形的内角和是个确定值,引导学生猜想任意四边形的内角和是多少?让学生通过度量得出结果,然后让学生分组讨论,归纳探索出求任意四边形内角和的方法。
人教版多边形的内角和(2)

n边形的外角和等于360°。
概念怎么用?
1.若一个多边形的内角和与它的外角和相等,则这个多
边形是( B )
A.三角形 B.四边形 C.五边形 D.六边形
2.如图,∠1,∠2,∠3,∠4是五边形ABCDE的4个外角,若 ∠A=120°,则∠1+∠2+∠3+∠4=___3_0_0__°。
感悟数学思想
概念怎么用?
1.一个多边形的内角和是1260°,这个多边形的边数
是( C )
A.7 B.8 C.9 D.10
2.若一个多边形增加一条边,那么它的内角和( A )
A.增加180° B.增加360° C.减少360° D.不变
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
概念怎么用?
例1 如果一个四边形的一组对角互补,那么另一组对角
多边形的内角和
温故知新
三角形内角和定理: 三角形三个内角的和等于180°。
A
如图,△ABC, ∠A+∠B+∠C=180°。
B
C
概念从哪里来?
正方形
长方形
概念怎么学?
正方形、长方形的每个内角都是90°,因此它 们的内角和为360°。 那任意四边形的内角和呢? 是否为360°呢?
概念怎么学? A
有什么关系? 解:如图,四边形ABCD中,
C D
∠A+∠C=180°。
∵ ∠A+∠B+∠C+∠D
=(4-2)×180°=360°, ∴ ∠B+∠D
A
B
=360°-(∠A+∠C)=360°-180°=180°。
如果四边形的一组对角互补,那么另一组对角也互补。
概念怎么学?
八年级数学《多边形的内角和》课件 (2)

请同学们根据思考题,以及自学中 的疑惑,先组内对议,再组内互议.
展示评讲
1、你能介绍多边形的相关概念吗?
在同一平面内,由 n条不在同一条直线上的线段 首尾 依
次连接组成的 封闭图形 叫做n边形
E
边
A
D
记作:
顶点 五边形ABCDE
外角
B
C
内角
对角线:多边形中不相邻的两个顶点所连的线段
展示评讲
2、你会求四边形的内角和吗?你有几种方法呢?DDAA分 割B
C
1800×2=3600
D A
B
C
1800×3-1800=3600
D
A
B
C
1800×4-3600=3600
B
C
1800×3-1800=3600
展示评讲
A1
An
3、类比四边形的内
角和求法,你能推导 多边形(n边形)的
A2
内角和公式吗?
A3 A4
多边形的内角和
授课人: 班 级:八( )班 学 校:
导新定向
1、了解多边形的相关概念,掌握多边 形的内角和公式,并能运用公式进行 相关运算. 2、通过探究多边形的内角和公式,向 学生渗透转化思想,培养学生的数学 思维能力.
自学课本
自学课本70页~71页内容,思考下列问题: 1、你能介绍多边形的相关概念吗? 2、你会求四边形的内角和吗?你有几种方法呢? 3、类比四边形的内角和求法,你能推导多边形 (n边形)的内角和公式吗?
1200n=(n-2)×1800 解得 n=6
即:该多边形的边数为6
师生总结
定义:在同一平面内,由n条不在同一直线上的线
段首尾依次连接组成的封闭图形叫做n边形
多边形内角和第二课时《探索多边形的外角和》

19.1 多边形的内角和教学目标:知识与技能1、进一步了解多边形外角的定义,并理解它与内角的关系。
2、掌握多边形外角和公式并用其解决实际问题。
3、了解正多边形的定义,并能进行简单的运算。
过程与方法1、经历探索多边形的外角和公式的推导过程,进一步发展学生的推理能力。
2、在探索过程中,发展学生合情推理的意识,培养主动探究的习惯。
情感、态度与价值观1、通过对内角和、外角和之间的关系的学习,体会知识的内在联系。
2、在探索多边形外角和的过程中,感受到学习数学图形的乐趣。
重点、难点重点:多边形外角和公式。
难点:多边形外角和公式的推导过程。
教学方法从生活情境中建立数学模型,分组讨论与教师引导有机结合。
教学准备多媒体课件,折纸。
教学过程一、复习提问,温故知新1、请同学们回忆上节课学过的多边形的内角和定理:n边形内角和等于(n-2)·180°(n为不小于3的整数).2、回忆多边形内角和公式是如何推导出来的?运用了什么数学思想?(化归思想)3、多边形的外角是如何定义的?(在多边形的顶点处,一边与另一边的延长线所组成的角,叫做多边形的外角)4、同一顶点处,外角和内角有什么关系?(互为邻补角)引出课题:探索多边形的外角和二、创设情境,引入新课小张正在学习汽车驾驶,教练让他在五个木桩处拐弯后回到原处。
(从下图中AE 之间的某点出发,逆时针驾驶再回到原处)1、小张共改变了几次方向?(5次)2、小张从一条路到下一条路,转过的角是哪些?(∠1,∠2,∠3,∠4,∠5)3、他每一次回到原处时,汽车转过了多少度?为什么?(360°,因为回到原处时方向没改变,相当于转过了一个周角。
) 4、猜测∠1+∠2+∠3+∠4+∠5=? (360°)。
5、教师操作:通过拼图、折纸的方式帮助学生发现规律。
1243 三、类比发现,探索规律我们猜想,五边形的外角和是360°,那么n 边形的外角和是多少度呢?为了解决这个问题,我们先研究三角形的外角和。
多边形的内角和

例1:求八边形的内角和的度数。
解:
∵ n=8 ∴(n-2)×180°=(8-2)×180°
=1080°
答:八边形的内角和为1080°。
例2:一个正多边形的一个内角为150°, 你知道它是几边形吗? 解:设 这个多边形为n边形,根据题意得: (n-2)×180=150n
n=12
答:这个多边形是12边形。
n边形的外角和是多少度呢?
答:都是360°.因为多边形的外角与它相邻 的内角是邻补角,所以n边形的外角和加内角 和等于n· 180°,内角和为(n-2)· 180°,因此, 外角和为:n· 180°-(n-2)· 180°= 360°.
结论:多边形的外角和都等于 360°.
例3:一个多边形的内角和等 于它的 外角和的3倍,它 是几边形?
解:因为多边形的外角和等于360°, 所以根据题意,可知道这个多边形的 边数是:360÷60=6 .
答:这个多边形是六边形.
2.下图是三个完全相同的正多边形 拼成的无缝隙不重叠的图形的一部 分,这种多边形是几边形?为什么?
解:设:这个正多边形的一个内 角 为 x° , 则 由 题 图 得 : 3x=360°. x=120°.再根据多边 形 的 内 角 和 公 式 得 : n×120°=(n-2)×180°. 解得 n=6 . 答:这种多边形是六边形
人教版数学教材八年级上
7.3多边形及其内角和(二)
济阳初中
回顾思考:
1.多边形定义:一般地,由n条不在同一直 线上的线段首尾顺次连结组成的平面图 形称为n边形,又称为多边形. 2.特殊的多边形:如果多边形各边都相等, 各个角也都相等,那么这样的多边形就 叫做正多边形. 3. n边形从一个顶点出发,能引出n-3条对 角线 4. n边形从一个顶点出发,能引出n-3条对 角线可把n边形分成了n-2个三角形?
《多边形的内角和》教案

《多边形的内角和》教案一、教学目标:1. 让学生理解多边形的内角和的概念。
2. 引导学生通过观察、思考、探究,发现多边形内角和的计算规律。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学内容:1. 多边形的内角和的概念。
2. 多边形内角和的计算规律。
三、教学重点与难点:重点:多边形的内角和的概念,多边形内角和的计算规律。
难点:发现并证明多边形内角和的计算规律。
四、教学方法:1. 采用问题驱动的教学方法,引导学生观察、思考、探究。
2. 利用几何画板软件,直观展示多边形的内角和。
3. 分组讨论,合作学习,培养学生的团队协作能力。
五、教学过程:1. 导入:通过展示一些多边形图片,引导学生关注多边形的内角和。
2. 新课导入:介绍多边形的内角和的概念,让学生理解多边形内角和的意义。
3. 探究活动:引导学生观察、思考多边形内角和的计算规律。
4. 小组讨论:分组讨论,让学生合作探究多边形内角和的计算规律。
5. 成果展示:各小组代表展示探究成果,总结多边形内角和的计算规律。
6. 讲解与示范:讲解多边形内角和的计算方法,并利用几何画板软件进行示范。
7. 练习与巩固:布置一些练习题,让学生运用所学知识解决问题。
8. 总结与反思:对本节课的内容进行总结,引导学生反思学习过程。
9. 课后作业:布置一些课后作业,巩固所学知识。
10. 教学反思:对课堂教学进行总结,反思教学过程中的优点与不足,为下一步教学做好准备。
六、教学评价:1. 评价学生对多边形内角和概念的理解程度。
2. 评价学生是否能运用多边形内角和计算规律解决实际问题。
3. 评价学生在小组讨论中的参与程度及团队协作能力。
七、教学反馈:1. 课后收集学生练习作业,分析学生掌握情况。
2. 课堂观察学生参与度,了解学生对教学内容的兴趣。
3. 听取学生对教学过程的建议和意见,以便改进教学方法。
八、教学拓展:1. 引导学生进一步研究多边形的其他性质,如外角和、对角线等。
《多边形的内角和与外交和第二课时》教学设计
思路:
每个顶点处的一个外角与内角和为180°5个顶点处的内外角和为5×180°,
5个内角的度数和为(4-2)×180°,所以,5个外角度数和为:
5×180°-(5-2)×180°=360°
归纳总结:
三角形外角和 :3×180°-(3-2)×180°=360°
四边形外角和: 4×180°-(4-2)×180°=360°
【知识与技能】 经历探索多边形的外角和的过程;,会应用多边形的外角和解决问题;
【过程与方法】 培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力.
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.
四边形、五边形、六边形、七边形、八边形的外角和为360°的证明过程,让同学们以小组合作交流的形式完成,并上讲台展示证明过程。
证明四边形的外角和为360°
思路:
每个顶点处的一个外角与内角和为180°4个顶点处的内外角和为4×180°,
4个内角的度数和为(4-2)×180°,所以,4个外角度数和为:
4×180°-(4-2)×180°=360°
(2)合作交流,探究新知:
通过小组合作,五个小组分别剪出任意四边形,五边形,六边形,七边形,八边形的与每个内角相邻的一个外角,把这些外角的顶点拼起来,你发现了什么?
设计意图:通过动手操作,把剪出的多边形以及多边形的外角拼起来,将成果展示在黑板上,激发学生的兴趣和积极性。
猜想:多边形的外角和为360度.
二 教材分析
本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的外角和到多边形的外角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,教材中强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是死记硬背,发展了学生的合情推理能力.
11.3.2多边形的内角和 课件(共21张PPT)
知识点二:多边形的外角和
如图,在五边形的每个顶点处各 取一个外角,这些外角的和叫做五边 形的外角和.
1A
B
5
2
E
C3
4 D
问题1:任意一个外角和它相邻的内角有什么关系?
互补
问题2:五个外角加上它们分别相邻的五个内角和是多少?
5×180°=900°
问题3:这五个平角和与五边形的内角和、外角和有什么关系?
方法1:如图,连接AC,
A
D
所以四边形被分为两个三角形,
所以四边形ABCD内角和为
180°×2=360°.
B C
方法2:如图,在CD边上任取一点E,连接AE,DE, 所以该四边形被分成三个三角形, 所以四边形ABCD的内角和为 180°×3-(∠AEB+∠AED+∠CED)=180°×3-180°=360°.
1
2
3
计算规律
1
1 ×180°
2
2 ×180°
3
3 ×180°
4
4 ×180°
…
… …
… … …
n边形
n
n-3
n-2 (n-2) ·180°
总结归纳 一般地,从n边形的一个顶点出发,可以作_(_n__-___3_)_
条对角线,它们将n边形分为_(__n__-___2_)_个三角形,n边形 的内角和等于_(_n__-___2_)_×_1__8_0_°.
解:设这个多边形的内角为7x °,外角为2x°, 根据题意得 7x+2x=180,
解得x=20. 即每个内角是140 °,每个外角是40 °.
360° ÷40 °=9. 答:这个多边形是九边形.
课堂小结
人教版八年级数学上册课件:11.3 多边形及其内角和(第
课堂练习
练习1 一个多边形的内角和与外角和相等,它是 几边形?
四边形
课堂练习
练习2 是否存在一个多边形,它的每个内角都等 于相邻外角的 1 ?为什么?
5 解:不存在.
理由:如果存在这样的多边形,设它的一个外角
为x ,则对应的内角为180°-x ,
于是
1 5x
=180°-
x,解得
x =150°.
4
3
+∠2 +∠BCD +∠3 +∠ADC +∠4 =180°×4.
由∠BAD +∠ABC +∠BCD +∠ADC =180°×2,得
∠1 +∠2 +∠3 +∠4 =180°×4 - 180°×2 =360°.
探索四边形、五边形、六边形的外角和
问题3 五边形的外角和等于多少度?六边形呢? 仿照上面的方法试一试.
在行程中转过的各个
角的和,就是多边形的外
角和.由于走了一周,所
转过的各个角的和等于一
个周角,所以多边形外角
和等于360°.
A
巩固多边形外角和公式
例1 一个多边形的内角和等于它的外角和的3 倍, 它是几边形?
解:设这个多边形为 n 边形, 根据题意,可列方程 ( n -2)×180°=3×360°. 解得 n =8.
这个多边形的边数为:360°÷150°=2.4,而边数
应是整数,因此不存在这样的多边形.
课堂小结
(1)本节课学习了哪些主要内容? (2)我们是怎样得到“多边形外角和等于360°”这
一结论的?
布置作业
教科书习题11.3第6题.
类比求三角形、四边形的外角和的方法求出五边 形的外角和是360°,六边形的外角和是360°(解答 过程略).
人教版数学八年级上册11 多边形的内角和(第二课时)课件
11.3 多边形及其内角和
11.3.2 多边形的内角和(第二课时)
以练助学
名师点睛 基础过关 能力提升 思维训练
名师点睛
数学·八年级 (上)·配人教
3
知识点1 多边形内角和 一般地,由于从n边形的一个顶点出发,可以作(n-3)条对角线,它们将n边形 分为(n-2)个三角形,所以n边形的内角和等于(n-2)×180°.
上一页 返回导航 下一页
数学·八年级 (上)·配人教
22
解:(1)∵∠ABC+∠DCB=360°-(α+β),∴∠ABC+(180° -∠DCE)=2∠FBC+(180°-2∠FCE)=180°-2(∠FCE-∠ FBC)=180°-2∠F=360°-(α+β),∴∠F=12(α+β)-90°. (2) 如图,∠F 即为所画.∵∠ABC+∠DCB=360°-(α+β),∴∠ ABC + (180°- ∠ DCE) = 2 ∠ GBC + (180°- 2 ∠ FCB) = 180°+ 2(∠GBC-∠FCB)=180°+2∠F=360°-(α+β),∴∠F=90°-12(α+β).
►如果我们不曾相遇,你的梦里就不会有我的出现,我们都在不断地 和陌生人擦肩;如果人生不曾相遇,我的生命里就不会有你的片段,我 们都在细数着自己的日子。 ►当离别的脚步声越来越清晰,我们注定分散两地,继续彼此未完的 人生,如果我说放不下,短短一个月的光景,你是否愿意相信,我的 真诚,我的执着,只源于内心深处那一份沉沉的不舍。
第十一章 三角形
上一页 返回导航 下一页
数学·八年级 (上)·配人教
4
【典例1】一个多边形除了一个内角外,其余各内角的和为2750°,那么这个 多边形的内角和是多少?
分析:利用多边形内角和公式,列式求解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二课时
(一)思考
三角形的内角和等于180°。
正方形、长方形的内角和都等于360°,其他四边形的内角和等于多少?
(二)探究
任意画一个四边形,量出它的4个内角,计算它们的和。
再画几个四边形,量一量,算一算。
你能得出什么结论?能否利用三角形内角和等于180°得出这个结论?
如图7.3—8,画出任意一个四边形的一条对角线,都能将这个四边形分为两个三角形。
这样,任意一个四边形的内角和,都等于两个三角形的内角和,即360°。
从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图7.3—9,请填空:
从五边形的一个顶点出发,可以引_______条对角线,它们将五边形分为_______个三角形,五边形的内角和等于180°×_________。
从六边形的一个顶点出发,可以引______条对角线,它们将六边形分为________个三角形,六边形的内角和等于180°×__________。
通过以上问题,你能发现多边形的内角和与边数的关系吗?
一般地,怎样求n边形的内角和呢?请填空:
从n边形的一个顶点出发,可以引______条对角线,它们将n边形分为________个三角形,n边形的内角和等于180°×______。
总结:过n边形的一个顶点可以做(n-3)条对角线,将多边形分成(n-2)个三角形,每个三角形内角和180°。
所以n边形内角和(n-2)×180°。
把一个多边形分成几个三角形,还有其他分法吗?由新的分法,能得出多边形内角和公式吗?
方法2:如图:7-3-3过n边形内任意一点与n边形各顶点连接,可得n个三角形,其内角和n×180°。
再减去以O为顶点的周角。
即得n边形内角和n·180°-360°。
得出了多边形内角和公式:n边形内角和等于(n-2)·180°。
(三)例题
例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?
解:如图7.3—10,四边形ABCD中,
∠A+∠C=180°。
因为∠A+∠B+∠C+∠D=(4—2)×180°=360°,
所以∠B+∠D=360°-(∠A+∠C)
=360°-180°=180°。
这就是说,如果四边形的一组对角互补,那么另一组对角也互补。
例2如图7.3—11,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和。
六边形的外角和等于多少?
分析:考虑以下问题:
(1)任何一个外角同与它相邻的内角有什么关系?
(2)六边形的6个外角加上与它们相邻的内角,所得总和是多少?
(3)上述总和与六边形的内角和、外角和有什么关系?
联系这些问题,考虑外角和的求法。
解:六边形的任何一个外角加上与它相邻的内角,都等于180°。
6个外角连同它们各自相邻的内角,共有12个角。
这些角的总和等于6×180°。
这个总和就是六边形的外角和加上内角和。
所以外角和等于总和减去内角和,即外角和等于6×180°-(6-2)×180°=2×180°=360°。
(四)探究
如果将例2中六边形换为n边形(n的值是不小于3的任意整数),可以得到同样结果吗?
思路:(用计算的方法)
设n边形的每一个内角为∠1,∠2,∠3,……,∠n,其相邻的外角分别为180°-∠1,180°-∠2,180°-∠3,…180°-∠n。
外角和为(180°-∠1)+(180°-∠2)+…+(180°-∠n)=n×180°-(∠1+∠2+∠3+……+∠n)=n×180°-(n-2)×180°=360°
注意:以上各推导方法体现将多边形问题转化为三角形问题来解决的基本思想。
由上面的探究可以得到:
多边形的外角和等于360°。
你也可以像以下这样理解为什么多边形的外角和等于360°。
如图7.3—12,从多边形的一个顶点A出发,沿多边形的各边走过各顶点,再回到点A,然后转向出发时的方向。
在行程中所转的各个角的和,就是多边形的外角和。
由于走了一周,所转的各个角的和等于一个周角,所以多边形的外角和等于360°。
(五)练习
一起学习课本89页的练习
(六)小结
引导学生总结本节所学的知识点。