热电偶简介

合集下载

热电偶基本介绍

热电偶基本介绍

在工业生产过程中,温度是需要测量和控制的重要参数之一。

在温度测量中,热电偶的应用极为广泛,它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点,在温度测量中占有重要地位。

下面我来简单介绍下它的基本结构和测温原理。

热电偶是温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。

各种热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要部分组成,通常和显示仪表、记录仪表及电子调节器配套使用。

结构要求热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:1、组成热电偶的两个热电极的焊接必须牢固;2、两个热电极彼此之间应很好地绝缘,以防短路;3、补偿导线与热电偶自由端的连接要方便可靠;4、保护套管应能保证热电极与有害介质充分隔离。

热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。

两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。

根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。

安徽皖控自动化仪表有限公司成立于2012年,是专业从事工业自动化仪表研究开发、制造的专业厂家之一,注册资金5510万元。

自公司成立以来被评为高新技术企业、规模企业、成立有滁州市工业在线检测仪表工程技术研研究中心、获得青年文明号、民营科技企业的称号,市认定企业技术中心证书、高新技术产品认证证书、市科技进步奖。

展望未来,安徽皖控自动化仪表有限公司将会不断创新,通过提供具有国际水准的优质产品和卓越的服务为客户创造价值,在发展成为国内过程自动化仪表行业顶级企业的同时,促进中国自动化技术的应用与发展水平,为推动中国社会工业化的进程不断努力!。

热电偶简介

热电偶简介

热电阻及其温度测量原理姓名:王小亮学号:1090230113 班号:0902301一、热电偶工作原理:热电偶是一种感温元件 , 它把温度信号转换成热电动势信号 , 通过电气仪表转换成被测介质的温度。

热电偶测温的基本原理是两种不同成份的均质导体组成闭合回路 , 当两端存在温度梯度时 , 回路中就会有电流通过,此时两端之间就存在塞贝克电动势——热电动势,这就是所谓的塞贝克效应。

两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。

根据热电动势与温度的函数关系 , 制成热电偶分度表 ; 分度表是自由端温度在 0 ℃时的条件下得到的,不同的热电偶具有不同的分度表。

在热电偶回路中接入第三种金属材料时 , 只要该材料两个接点的温度相同 , 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。

因此 , 在热电偶测温时 , 可接入测量仪表 , 测得热电动势后 , 即可知道被测介质的温度。

热电偶优点:热电偶是工业中常用的温度测温元件,具有如下特点:①测量精度高:热电偶与被测对象直接接触,不受中间介质的影响。

②热响应时间快:热电偶对温度变化反应灵敏。

③测量范围大:热电偶从 -40~+ 1600℃均可连续测温。

④性能可靠,机械强度好。

⑤使用寿命长,安装方便。

热电偶的种类及结构:( 1 )热电偶的种类热电偶有 K 型(镍铬 - 镍硅) WRN 系列, N 型(镍铬硅 - 镍硅镁) WRM 系列, E 型(镍铬 - 铜镍) WRE 系列, J 型(铁 - 铜镍) WRF 系列, T 型(铜 - 铜镍) WRC 系列, S 型(铂铑 10- 铂) WRP 系列, R 型(铂铑 13- 铂) WRQ 系列, B 型(铂铑 30- 铂铑 6 ) WRR 系列等。

( 2 )热电偶的结构形式:热电偶的基本结构是热电极,绝缘材料和保护管;并与显示仪表、记录仪表或计算机等配套使用。

热电偶的基础知识

热电偶的基础知识

热电偶的基础知识常用热电偶分度号有S、B、K、E、T、J等,这些都是标准化热电偶。

其中K型也即镍铬-镍硅热电偶,它是一种能测量较高温度的廉价热偶。

由于这种合金具有较好的高温抗氧化性,可适用于氧化性或中性介质中。

它可长期测量1000度的高温,短期可测到1200度。

它不能用于还原性介质中,否则,很快腐蚀,在此情况下只能用于500度以下的测量。

它比S型热偶要便宜很多,它的重复性很好,产生的热电势大,因而灵敏度很高,而且它的线性很好。

虽然其测量精度略低,但完全能满足工业测温要求,所以它是工业上最常用的热电偶。

概述:作为工业测温中最广泛使用的温度传感器之一——热电偶,与铂热电阻一起,约占整个温度传感器总量的60%,热电偶通常和显示仪表等配套使用,直接测量各种生产过程中-40~1800℃范围内的液体、蒸气和气体介质以及固体的表面温度。

热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。

热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。

热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:(1)热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数;(2)热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;(3)当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。

热电偶的基本构造:工业测温用的热电偶,其基本构造包括热电偶丝材、绝缘管、保护管和接线盒等。

热电偶名词解释

热电偶名词解释

热电偶名词解释
热电偶是一种用于测量温度的传感器。

它由两种不同的金属线(或金属丝)组成,这两种金属线在一端接触,另一端接到测量温度的物体上。

当两种金属之间的接触点处于不同的温度环境中,两种金属之间就会产生电动势。

这个电动势的大小与接触点两侧温度的差有关,因此可以通过测量这个电动势来确定接触点两侧温度的差,从而得出温度值。

举个例子,常用的热电偶有热电偶J、K、T、E等类型。

热电偶J通常由铜和镍铬金属组成,其工作温度范围在0750°C 之间,常用于空气、气体、液体等测量。

热电偶K通常由铝和镍铬金属组成,其工作温度范围在-200+1300°C 之间,常用于高温测量。

热电偶T通常由铜和钨金属组成,其工作温度范围在-200~+350°C 之间,常用于低温测量。

热电偶E通常由铝和镍铬金属组成,其工作温度范围在-200~+1000°C 之间,常用于高精度测量。

初二物理热电偶测温原理

初二物理热电偶测温原理

初二物理热电偶测温原理热电偶是一种常见的温度测量设备,广泛应用于工业控制、实验室研究以及家用电器等领域。

本文将介绍初二物理课程中热电偶测温原理的相关知识。

一、热电偶测温原理简介热电偶是基于"塞贝克效应"原理的温度传感器。

它由两种不同材料的金属电极组成,当两个电极处于不同温度时,就会产生电动势。

通过测量这个电动势来推算温度。

这个原理建立在两个关键概念上:热电效应和温度梯度。

二、热电效应热电效应是指在不同温度之间产生的电压差。

具体来说,热电效应包括塞贝克效应、皮尔贝克效应和汤姆森效应。

其中,塞贝克效应是热电偶测温原理中最主要的效应。

塞贝克效应是指当两种不同金属之间形成回路,并且两端温度不同时,会形成一个热电势差。

这个差异的大小与温度差有关。

这种热电势差可以被测量和用来计算温度。

三、温度梯度热电偶中的温度梯度是指两端的温度差异。

这个温度差异使得热电偶金属之间的自由电子在一个金属中产生了高速运动,而在另一个金属中则产生了低速运动。

因此,电子的热运动造成了电压差。

四、热电偶的工作原理热电偶的工作原理可以概括为以下几个步骤:1. 将两个金属电极的一端焊接在一起,形成一个电极对。

2. 另一端与测量温度的物体或环境相接触,形成温度差异。

3. 温度差使得热电偶中的金属电极间产生电势差。

4. 通过测量电势差,可以计算出被测温度。

五、热电偶的优缺点热电偶作为一种温度传感器具有以下优点:1. 响应速度快,能够实时测量温度。

2. 测量范围广,可适用于高温和低温环境。

3. 结构简单,体积小巧,便于安装和维护。

4. 经济实用,价格相对较低。

然而,热电偶也存在一些缺点:1. 精度相对较低,对温度变化较小的测量要求较高。

2. 由于热电效应还受其他因素的影响,使用时需注意降低误差。

3. 线性范围窄,需要使用放大器等辅助设备提高测量精度。

六、使用注意事项在使用热电偶进行温度测量时,应注意以下几点:1. 热电偶金属电极的选择应根据被测温度范围和环境要求来确定。

医用热电偶

医用热电偶

医用热电偶简介医用热电偶是一种用于测量人体体温的医疗设备。

它利用热电效应原理,将热能转换为电能,通过测量电压差来确定人体的温度。

医用热电偶具有测量快速、准确度高、操作简便等优点,因此被广泛应用于临床医疗领域。

工作原理医用热电偶的工作原理基于热电效应,即当两种不同金属连接成回路时,如果两个连接点的温度不同,就会在回路中产生电动势。

这种现象被称为热电效应。

医用热电偶通常由两种不同金属的导线组成,其中一种金属为测温端,另一种金属为参考端。

当医用热电偶的测温端与人体接触时,由于人体温度的存在,测温端的温度会发生变化。

根据热电效应原理,测温端和参考端之间产生的电动势与温度差成正比。

通过测量电动势的大小,就可以确定人体的温度。

结构和特点医用热电偶通常由三个部分组成:测温端、连接线和显示器。

测温端是与人体接触的部分,它通常由金属制成,具有良好的热导性能,以确保温度能够迅速传递到热电偶上。

连接线用于将测温端与显示器连接起来,传输测温端产生的电信号。

显示器用于显示人体的温度值。

医用热电偶具有以下特点:1.测量快速:医用热电偶能够迅速响应温度变化,并在短时间内测量出准确的温度值,适用于需要快速测量体温的应用场景。

2.准确度高:医用热电偶采用高精度的传感器和电路设计,能够提供准确的温度测量结果,确保医生或护士能够准确判断患者的体温情况。

3.操作简便:医用热电偶使用简单,只需要将测温端与人体接触,然后读取显示器上的温度值即可。

无需复杂的设置或校准过程。

4.安全可靠:医用热电偶采用医疗级别的材料和工艺制造,符合相关的医疗标准和要求,确保使用过程中的安全可靠性。

应用领域医用热电偶广泛应用于临床医疗领域,具有以下应用场景:1.体温监测:医用热电偶可用于监测患者的体温,包括门诊、急诊和住院患者。

医生或护士只需将测温端贴近患者的皮肤表面,即可快速获得患者的体温数值,用于判断患者的健康状况。

2.术后监测:在手术后,医用热电偶可用于监测患者的体温变化,以确保患者的术后恢复情况良好。

热电偶工作原理及温度范围

热电偶工作原理及温度范围热电偶是一种常用的温度测量装置,其工作原理基于热电效应。

它由两种不同材料的导线组成,这两种导线的接触处形成了一个热电接头。

当热电接头的两端存在温度差时,就会产生一个电动势,这个电动势与温度差成正比。

通过测量这个电动势,我们可以间接地得到温度信息。

热电偶的工作原理基于两个重要的热电效应:塞贝克效应和泰贝克效应。

塞贝克效应是指当两个不同材料的接触点存在温度差时,会产生一个电动势。

而泰贝克效应是指当一个闭合回路中存在两个不同温度的接点时,会产生一个电动势。

热电偶通常由铂铑合金和铜铳合金两种材料组成。

铂铑合金具有良好的稳定性和高温性能,适用于高温测量。

铜铳合金则具有较低的成本和良好的导电性能,适用于低温测量。

这两种材料的导线被焊接在一起,形成一个热电接头。

热电偶的温度范围通常由其材料的特性决定。

铂铑合金热电偶可以测量的温度范围较宽,一般可达到-200℃至1800℃。

而铜铳合金热电偶的温度范围相对较窄,一般为-200℃至200℃。

根据不同的应用需求,我们可以选择适合的热电偶来进行温度测量。

热电偶的测量原理是通过测量热电接头产生的电动势来间接测量温度。

热电偶的工作过程可以分为三个步骤:温度差产生、电动势生成和电信号测量。

热电偶的两端存在温度差。

这个温度差可以是热电偶的一端与环境的温度差,也可以是热电偶的两端分别与不同物体的温度差。

接下来,温度差会导致热电接头产生一个电动势。

这个电动势的大小与温度差成正比。

热电偶的热敏感部分就是热电接头,它是根据材料的热电特性设计的,可以将温度变化转化为电信号。

热电偶的电动势会通过导线传输到测量仪器中进行测量。

测量仪器会将电动势转化为与温度成正比的数字或模拟信号。

通过这个信号,我们可以得到温度的数值。

总结一下,热电偶是一种基于热电效应的温度测量装置。

它由两种不同材料的导线组成,利用热电接头产生的电动势来间接测量温度。

热电偶的温度范围通常由其材料的特性决定,一般可达到-200℃至1800℃。

热电偶概述解读

热电偶概述1.1 热电偶工作原理用热电偶测温是基于1821年西贝克(T.J.Seebeck)发现的热电效应,1826年贝克雷尔(A.C.Becquerel)第一个根据热电效应来测量温度。

将两种不同的均质导体(或叫热电极也叫偶丝)焊接在一起,另一端连接电流计构成闭合回路,当焊接端(或叫测量端)与电流计端(或叫参比端)温度不一致时,回路中就会有电流通过,这种现象称为西贝克效应,又称热电效应。

热电特性是物质具有的一种普遍特性,热电偶是应用最为广泛的测温仪表。

热电偶回路中的热电动势由温差电势和接触电势两部分组成。

实验与计算表明,热电偶回路中的总热电动势E AB(t,to)可以用下面的数学表达式得出:式中k、e为常数,Na和Nb分别是A、B热电极的电子密度,由热电极本身的化学成分和组织结构决定,与环境条件和外形尺寸无关。

在A、B电极确定的情况下,如将参比端温度保持恒定(一般为0℃或室温),那么回路中的热电动热大小就只与测量端温度相关了。

这种以测量热电动热的方法来测量温度的一对金属导体,称为热电偶。

1.2 热电偶的结构热电偶的结构可以用“两端五部”来概括。

从热电偶的测温原理可知,构成最基本的热电偶除了两根热电极材料外,还必须在热电极的两端按照要求作成测量端和参比端,俗称“热端”和“冷端”,这就是所谓的“两端”。

根据热电偶的不同用途和附加结构,热端有绝缘型、多支分离绝缘型、接壳型、露头型四种形式,冷端有密封和非密封两种形式。

热电偶一般由五部分构成,两根热电极(或叫偶丝)是构成热电偶的核心部分(第一部分测温元件),其它部分都是围绕它展开;为了保证回路中热电动势不损失以准确传递被测温度信号,必须用绝缘材料使两热电极除两端点之外的其余部分之间,及其与外界之间有可靠的绝缘(第二部分绝缘材料);为了保护绝缘材料和偶丝,延长热电偶的使用寿命,一般还设计有保护套管(第三部分保护管);为了安装接线使用方便,同时适应各种使用场合,一般还设计有第四部分接线装置和第五部分安装固定装置。

热电偶

热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。

其优点是:①测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。

当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。

热电偶就是利用这一效应来工作的。

常用的热电偶材料有:热电偶分度号热电极材料正极负极S 铂铑10 纯铂R 铂铑13 纯铂B 铂铑30 铂铑6K 镍铬镍硅T 纯铜铜镍J 铁铜镍N 镍铬硅镍硅E 镍铬铜镍2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。

所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。

标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。

热电偶测温原理及其应用及分度表大全

热电偶测温原理及其应用重点1、掌握热电偶测温原理2、了解热电偶测量电路及其补偿方法3、了解热电偶应用一、热电偶简介热电温度记录仪常以热电偶作为测温元件.它广泛用来测量 -200 ℃ ~1300 ℃范围内的温度,特殊情况下,可测至2800 ℃的高温或 4K 的低温。

它具有结构简单,价格便宜,准确度高,测温范围广等特点。

由于热电偶将温度转化成电量进行检测,使温度的测量、控制、以及对温度信号的放大变换都很方便,适用于远距离测量和自动控制。

在接触式测温法中,热电温度计的应用最普遍。

二、热电偶测温原理1.定义:由两种导体组合而成,将温度转化为热电动势的传感器叫做热电偶。

2. 测温原理 : 热电偶的测温原理基于热电效应。

将两种不同材料的导体 A 和 B 串接成一个闭合回路,当两个接点 1 和 2 的温度不同时,如果 T > T0(如上图 12-1热电效应),在回路中就会产生热电动势,在回路中产生一定大小的电流,此种现象称为热电效应。

热电动势记为 E AB,导体 A 、 B 称为热电极。

接点 1 通常是焊接在一起的,测量时将它置于测温场所感受被测温度,故称为测量端(或工作端,热端)。

接点 2 要求温度恒定,称为参考端(或冷端)。

3.热电效应导体 A 和 B 组成的热电偶闭合电路在两个接点处分别由e AB(T) 与e AB(T0)两个接触电势,又因为 T > T0,在导体 A 和 B 中还各有一个温差电势。

所以闭合回路总热电动势 E AB (T,T0 ) 应为接触电动势和温差电势的代数和,即:4.闭合回路总热电动势在实际测温时,必须在热电偶闭合回路中引入连接导线和仪表。

三、有关热电偶测温的基本原则由一种均质导体组成的闭合回路,不论导体的横截面积,长度以及温度分布如何均不产生热电动势。

如果热电偶的两根热电极由两种均质导体组成,那么,热电偶的热电动势仅与两接点的温度有关,与热电偶的温度分布无关;如果热电极为非均质电极,并处于具有温度梯度的温场时,将产生附加电势,如果仅从热电偶的热电动势大小来判断温度的高低就会引起误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热电阻及其温度测量原理
姓名:王小亮学号:1090230113 班号:0902301
一、热电偶工作原理:
热电偶是一种感温元件 , 它把温度信号转换成热电动势信号 , 通过电气仪表转换成被测介质的温度。

热电偶测温的基本原理是两种不同成份的均质导体组成闭合回路 , 当两端存在温度梯度时 , 回路中就会有电流通过,此时两端之间就存在塞贝克电动势——热电动势,这就是所谓的塞贝克效应。

两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。

根据热电动势与温度的函数关系 , 制成热电偶分度表 ; 分度表是自由端温度在 0 ℃时的条件下得到的,不同的热电偶具有不同的分度表。

在热电偶回路中接入第三种金属材料时 , 只要该材料两个接点的温度相同 , 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。

因此 , 在热电偶测温时 , 可接入测量仪表 , 测得热电动势后 , 即可知道被测介质的温度。

热电偶优点:
热电偶是工业中常用的温度测温元件,具有如下特点:
①测量精度高:热电偶与被测对象直接接触,不受中间介质的影响。

②热响应时间快:热电偶对温度变化反应灵敏。

③测量范围大:热电偶从 -40~+ 1600℃均可连续测温。

④性能可靠,机械强度好。

⑤使用寿命长,安装方便。

热电偶的种类及结构:
( 1 )热电偶的种类
热电偶有 K 型(镍铬 - 镍硅) WRN 系列, N 型(镍铬硅 - 镍硅镁) WRM 系列, E 型(镍铬 - 铜镍) WRE 系列, J 型(铁 - 铜镍) WRF 系列, T 型(铜 - 铜镍) WRC 系列, S 型(铂铑 10- 铂) WRP 系列, R 型(铂铑 13- 铂) WRQ 系列, B 型(铂铑 30- 铂铑 6 ) WRR 系列等。

( 2 )热电偶的结构形式:
热电偶的基本结构是热电极,绝缘材料和保护管;并与显示仪表、记录仪表或计算机等配套使用。

在现场使用中根据环境,被测介质等多种因素研制成适合各种环境的热电偶。

热电偶简单分为装配式热电偶,铠装式热电偶和特殊形式热电偶;按使用环境细分有耐高温热电偶,耐磨热电偶,耐腐热电偶,耐高压热电偶,隔爆热电偶,铝液测温用热电偶,循环硫化床用热电偶,水泥回转窑炉用热电偶,阳极焙烧炉用热电偶,高温热风炉用热电偶,汽化炉用热电偶,渗碳炉用热电偶,高温盐浴炉用热电偶,铜、铁及钢水用热电偶,抗氧化钨铼热电偶,真空炉用热电偶,铂铑热电偶等。

二、测温原理
热电阻(如Pt100)是利用其电阻值随温度的变化而变化这一原理制成的将
温度量转换成电阻量的温度传感器。

温度变送器通过给热电阻施加一已知激励电流测量其两端电压的方法得到电阻值(电压/ 电流),再将电阻值转换成温度值,从而实现温度测量。

热电阻和温度变送器之间有三种接线方式:二线制、三线制、四线制。

二线制
如图1。

变送器通过导线L1、L2给热电阻施加激励电流I,测得电势V1、V2。

图1
计算得Rt:
由于连接导线的电阻RL1、RL2无法测得而被计入到热电阻的电阻值中,使测量结果产生附加误差。

如在100℃时Pt100热电阻的热电阻率为0.379Ω/℃,这时若导线的电阻值为2Ω,则会引起的测量误差为5.3 ℃。

三线制
是实际应用中最常见的接法。

如图2,增加一根导线用以补偿连接导线的电阻引起的测量误差。

三线制要求三根导线的材质、线径、长度一致且工作温度相同,使三根导线的电阻值相同,即RL1=RL2=RL3。

通过导线L1、L2给热电阻施加激励电流I,测得电势V1、V2、V3。

导线L3接入高输入阻抗电路,IL3=0。

图2
热电阻的阻值Rt:
由此可得三线制接法可补偿连接导线的电阻引起的测量误差。

四线制
是热电阻测温理想的接线方式。

如图3,通过导线L1、L2给热电阻施加激励电流I,测得电势V3、V4。

导线L3、L4接入高输入阻抗电路,IL3=0,IL4=0,因此V4-V3等于热电阻两端电压。

图3
热电阻的电阻值:
R t=R4−R3
I
由此可得,四线制测量方式不受连接导线的电阻的影响。

三、温度补偿
由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。

必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。

因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。

在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度差不能超过100℃。

相关文档
最新文档