内存条发展史
计算机内存发展史

计算机内存发展史在运算机产生初期并不存在内存条的概念,最早的内存是以磁芯的形式排列在线路上,每个磁芯与晶体管组成的一个双稳态电路作为一比特(BIT)的储备器,每一比特都要有玉米粒大小,能够想象一间的机房只能装下不超过百k字节左右的容量。
后来才出线现了焊接在主板上集成内存芯片,以内存芯片的形式为运算机的运算提供直截了当支持。
那时的内存芯片容量都专门小,最常见的莫过于256K×1bit、1M×4bit,尽管如此,但这相关于那时的运算任务来说却差不多绰绰有余了。
内存条的产生内存芯片的状态一直沿用到286初期,鉴于它存在着无法拆卸更换的弊病,这关于运算机的进展造成了现实的阻碍。
有鉴于此,内存条便应运而生了。
将内存芯片焊接到事先设计好的印刷线路板上,而电脑主板上也改用内存插槽。
如此就把内存难以安装和更换的问题完全解决了。
在80286主板公布之前,内存并没有被世人所重视,那个时候的内存是直截了当固化在主板上,而且容量只有64 ~256KB,关于当时PC所运行的工作程序来说,这种内存的性能以及容量足以满足当时软件程序的处理需要。
只是随着软件程序和新一代80286硬件平台的显现,程序和硬件对内存性能提出了更高要求,为了提高速度并扩大容量,内存必须以独立的封装形式显现,因而产生了“内存条”概念。
在80286主板刚推出的时候,内存条采纳了SIMM(Single In-lineMemory Modules,单边接触内存模组)接口,容量为30pin、256kb,必须是由8 片数据位和1 片校验位组成1 个bank,正因如此,我们见到的30pin SIMM一样是四条一起使用。
自1982年PC进入民用市场一直到现在,搭配80286处理器的30pin SIMM 内存是内存领域的开山鼻祖。
随后,在1988 ~1990 年当中,PC 技术迎来另一个进展高峰,也确实是386和486时代,现在CPU 差不多向16bit 进展,因此30pin SIMM 内存再也无法满足需求,其较低的内存带宽差不多成为急待解决的瓶颈,因此现在72pin SIMM 内存显现了,72pin SIMM支持32bit快速页模式内存,内存带宽得以大幅度提升。
计算机组成原理内存条历史

内存条发展历史一、内存诞生1982年PC进入民用市场,而搭配80286处理器的30pin SIMM 内存是内存领域的开山鼻祖。
80286主板上的内存条采用了SIMM(Single In-lineMemory Modules,单边接触内存模组)接口,容量为30pin、256kb,必须是由8 片数据位和1 片校验位组成1个bank,所以30pin SIM一般是四条一起使用。
1988 ~1990 年,也就是386和486时代,此时CPU 已经向16bit 发展,30pin SIMM 内存再也无法满足需求,所以此时72pin SIMM 内存出现了,72pin SIMM支持32bit快速页模式内存,内存带宽得以大幅度提升。
72pin SIMM内存单条容量一般为512KB ~2MB,而且仅要求两条同时使用。
1991 年到1995 年,盛行EDO DRAM(Extended Date Out RAM 外扩充数据模式存储器)内存条。
此时EDO DRAM有72 pin和168 pin并存的情况,事实上EDO 内存也属于72pin SIMM 内存的范畴,不过它采用了全新的寻址方式。
此时单条EDO 内存的容量已经达到4 ~16MB 。
EDO 内存条二、SDRAM时代第一代SDRAM 内存为PC66 规范,但很快由于Intel 和AMD的频率之争将CPU外频提升到了100MHz,所以PC66内存很快就被PC100内存取代,接着133MHz 外频的PIII 以及K7时代的来临,PC133规范也以相同的方式进一步提升SDRAM 的整体性能,带宽提高到1GB/sec以上。
由于SDRAM 的带宽为64bit,正好对应CPU 的64bit 数据总线宽度,因此它只需要一条内存便可工作,便捷性进一步提高。
在性能方面,由于其输入输出信号保持与系统外频同步,因此速度明显超越EDO 内存。
不可否认的是,SDRAM 内存由早期的66MHz,发展后来的100MHz、133MHz,尽管没能彻底解决内存带宽的瓶颈问题,但此时CPU超频已经成为DIY用户永恒的话题,所以不少用户将品牌好的PC100品牌内存超频到133MHz使用以获得CPU超频成功,值得一提的是,为了方便一些超频用户需求,市场上出现了一些PC150、PC166规范的内存。
内存条发展史

作为PC不可缺少的重要核心部件——内存,它伴随着DIY硬件走过了多年历程。
从286时代的30pin SIMM内存、486时代的72pin SIMM 内存,到Pentium时代的EDO DRAM内存、PII时代的SDRAM内存,到P4时代的DDR内存和目前9X5平台的DDR2内存。
内存从规格、技术、总线带宽等不断更新换代。
不过我们有理由相信,内存的更新换代可谓万变不离其宗,其目的在于提高内存的带宽,以满足CPU不断攀升的带宽要求、避免成为高速CPU运算的瓶颈。
那么,内存在PC领域有着怎样的精彩人生呢?下面让我们一起来了解内存发展的历史吧。
一、历史起源——内存条概念如果你细心的观察,显存(或缓存)在目前的DIY硬件上都很容易看到,显卡显存、硬盘或光驱的缓存大小直接影响到设备的性能,而寄存器也许是最能代表PC硬件设备离不开RAM的,的确如此,如果没有内存,那么PC将无法运转,所以内存自然成为DIY用户讨论的重点话题。
在刚刚开始的时候,PC上所使用的内存是一块块的IC,要让它能为PC服务,就必须将其焊接到主板上,但这也给后期维护带来的问题,因为一旦某一块内存IC 坏了,就必须焊下来才能更换,由于焊接上去的IC不容易取下来,同时加上用户也不具备焊接知识(焊接需要掌握焊接技术,同时风险性也大),这似乎维修起来太麻烦。
因此,PC设计人员推出了模块化的条装内存,每一条上集成了多块内存IC,同时在主板上也设计相应的内存插槽,这样内存条就方便随意安装与拆卸了(如图1),内存的维修、升级都变得非常简单,这就是内存“条” 的来源。
图1,内存条与内存槽的出现小帖士:内存(Random Access Memory,RAM)的主要功能是暂存数据及指令。
我们可以同时写数据到RAM 内存,也可以从RAM 读取数据。
由于内存历来都是系统中最大的性能瓶颈之一,因此从某种角度而言,内存技术的改进甚至比CPU 以及其它技术更为令人激动。
计算机内存发展史

现代的DRAM
1980年代
现代的DRAM出现,容量大幅增加,速度也有所提升。
1990年代至今
随着技术的不断进步,DRAM的容量和速度持续提升,同时成本也在逐渐降低。
DDR内存
1990年代
DDR内存出现,它是一种同步内存,具 有更高的运行速度和更低的功耗。
VS
2000年代至今
DDR内存逐渐成为计算机内存的主流选择 ,其技术不断升级,容量和速度持续提升 。
感谢您的观看
THANKS
),它们分别存储最近使用过的数据和指令,并按照访问速度和容量
逐渐增加。
03
CPU高速缓存的作用
CPU高速缓存能够提高CPU的执行效率,因为它可以减少CPU访问主
内存的次数,避免因为访问主内存而造成的延迟。
主存高速缓存
什么是主存高速缓存
主存高速缓存是位于主内存和硬盘之间的存储器,它能够暂时存储最近使用的数据和指令 ,以减少主内存访问硬盘的次数,提高内存的访问速度。
03
高速缓存(Cache)的引 入
CPU高速缓存
01
什么是CPU高速缓存
CPU高速缓存(Cache)是位于CPU和主内存之间的存储器,它能够
暂时存储最近使用的数据和指令,以减少CPU访问主内存的次数,提
高内存的访问速度。
02
CPU高速缓存的种类
CPU高速缓存分为一级缓存(L1)、二级缓存(L2)和三级缓存(L3
主存高速缓存的种类
主存高速缓存分为RAMDisk和RAMSan,它们分别使用部分RAM来模拟硬盘,以提供比 硬盘更高的访问速度。
主存高速缓存的作用
主存高速缓存能够提高系统的整体性能,因为它可以减少主内存访问硬盘的次数,避免因 为访问硬盘而造成的延迟。同时,它也可以作为系统的一部分,用于存储经常使用的数据 和程序,提高系统的响应速度。
DRAM的发展

DRAM的发展概述:动态随机存取存储器(DRAM)是一种常见的计算机内存类型,被广泛应用于个人电脑、服务器、挪移设备等各种计算设备中。
本文将详细介绍DRAM的发展历程、技术特点以及未来的发展趋势。
一、DRAM的历史发展:1. 早期DRAM的诞生:20世纪60年代末,美国IBM公司的研究人员发明了第一款DRAM芯片,其存储容量为1K位。
这标志着DRAM技术的诞生,为计算机存储领域带来了革命性的变革。
2. 发展阶段:1970年代,DRAM技术经历了多个发展阶段。
首先是DRAM存储容量的不断增加,从最初的几千位增加到了几十万位。
其次是DRAM存取时间的缩短,使得数据读写速度得到了显著提升。
此外,DRAM芯片的集成度也不断提高,从单片集成到多片集成,进一步提高了存储容量和性能。
3. 现代DRAM的发展:进入21世纪,DRAM技术继续取得了巨大的突破。
首先是DRAM存储容量的大幅增加,从几百兆字节增加到了数十兆字节。
其次是DRAM的能耗和成本的不断降低,使得DRAM成为了主流的计算机内存选择。
此外,DRAM的数据传输速率也得到了显著提升,满足了日益增长的计算需求。
二、DRAM的技术特点:1. 存储原理:DRAM采用电容存储原理,每一个存储单元由一个电容和一个开关构成,电容的充电状态表示存储的数据。
2. 数据刷新:由于电容会逐渐漏电,因此DRAM需要定期进行数据刷新,以保持数据的正确性。
数据刷新会带来额外的延迟,影响DRAM的访问速度。
3. 存取时间:DRAM的存取时间通常比静态随机存取存储器(SRAM)要长,这是由于DRAM需要经过一系列的行选通、列选通等操作才干读取或者写入数据。
4. 容量和集成度:DRAM的存储容量和集成度不断增加,目前已经发展到了数十兆字节的级别。
高集成度的DRAM芯片可以在较小的空间内实现更大的存储容量。
5. 数据传输速率:现代DRAM的数据传输速率已经达到了几千兆字节每秒的级别,可以满足高性能计算和大数据处理的需求。
计算机内存发展史

计算机内存发展史在计算机诞生初期并不存在内存条的概念,最早的内存是以磁芯的形式排列在线路上,每个磁芯与晶体管组成的一个双稳态电路作为一比特(BIT)的存储器,每一比特都要有玉米粒大小,可以想象一间的机房只能装下不超过百k字节左右的容量。
后来才出线现了焊接在主板上集成内存芯片,以内存芯片的形式为计算机的运算提供直接支持。
那时的内存芯片容量都特别小,最常见的莫过于256K×1bit、1M×4bit,虽然如此,但这相对于那时的运算任务来说却已经绰绰有余了。
内存条的诞生内存芯片的状态一直沿用到286初期,鉴于它存在着无法拆卸更换的弊病,这对于计算机的发展造成了现实的阻碍。
有鉴于此,内存条便应运而生了。
将内存芯片焊接到事先设计好的印刷线路板上,而电脑主板上也改用内存插槽。
这样就把内存难以安装和更换的问题彻底解决了。
在80286主板发布之前,内存并没有被世人所重视,这个时候的内存是直接固化在主板上,而且容量只有64 ~256KB,对于当时PC所运行的工作程序来说,这种内存的性能以及容量足以满足当时软件程序的处理需要。
不过随着软件程序和新一代80286硬件平台的出现,程序和硬件对内存性能提出了更高要求,为了提高速度并扩大容量,内存必须以独立的封装形式出现,因而诞生了“内存条”概念。
在80286主板刚推出的时候,内存条采用了SIMM(Single In-lineMemory Modules,单边接触内存模组)接口,容量为30pin、256kb,必须是由8 片数据位和1 片校验位组成1 个bank,正因如此,我们见到的30pin SIMM一般是四条一起使用。
自1982年PC进入民用市场一直到现在,搭配80286处理器的30pin SIMM 内存是内存领域的开山鼻祖。
随后,在1988 ~1990 年当中,PC 技术迎来另一个发展高峰,也就是386和486时代,此时CPU 已经向16bit 发展,所以30pin SIMM 内存再也无法满足需求,其较低的内存带宽已经成为急待解决的瓶颈,所以此时72pin SIMM 内存出现了,72pin SIMM支持32bit快速页模式内存,内存带宽得以大幅度提升。
DRAM的发展
DRAM的发展概述:动态随机存取存储器(DRAM)是一种常见的计算机内存类型,广泛应用于个人电脑、服务器和移动设备等领域。
本文将详细介绍DRAM的发展历程、技术特点以及未来的趋势。
发展历程:DRAM的发展可以追溯到上世纪60年代,当时的存储器主要采用磁芯存储器技术,但其成本高昂且容量有限。
1970年代初,Intel公司推出了第一款DRAM芯片,这标志着DRAM开始进入商业化阶段。
随着技术的不断进步,DRAM的容量不断增加,速度也得到了显著提升。
技术特点:1. 容量:DRAM的容量从最初的几千字节(KB)发展到现在的几十兆字节(MB)甚至几千兆字节(GB)。
这使得计算机能够同时处理更多的数据,提高了系统的性能。
2. 速度:DRAM的访问速度不断提高,从最初的几百纳秒(ns)到现在的几十纳秒甚至更低。
这使得计算机能够更快地读取和写入数据,提高了系统的响应速度。
3. 功耗:随着技术的进步,DRAM的功耗也得到了显著降低。
新一代的DRAM芯片采用了更低的电压供电,减少了能量消耗。
4. 可靠性:DRAM的可靠性也在不断提高。
新的错误检测和纠正技术使得DRAM能够自动检测和修复存储器中的错误,提高了系统的稳定性和可靠性。
未来趋势:1. 容量增加:随着计算机应用的不断扩大,对内存容量的需求也在不断增加。
未来的DRAM芯片将继续提高容量,以满足更多数据处理的需求。
2. 速度提升:随着计算机处理能力的不断提高,对内存访问速度的要求也越来越高。
未来的DRAM技术将继续提高速度,以满足系统对快速数据读写的需求。
3. 低功耗:随着节能环保意识的增强,DRAM芯片的功耗将继续降低。
新的低功耗技术将被应用于DRAM设计中,以减少能源消耗。
4. 新技术应用:未来的DRAM发展可能会涉及新的技术应用,如三维堆叠技术、非易失性存储器等。
这些技术将进一步提高DRAM的性能和可靠性。
总结:DRAM作为一种重要的计算机内存类型,经过多年的发展已经取得了显著的进步。
计算机内存发展史
计算机内存发展史在计算机技术的发展历程中,内存扮演着至关重要的角色。
它就像是计算机的“短期记忆库”,负责存储正在运行的程序和数据,以便CPU 能够快速访问和处理。
从早期简单而有限的内存形式,到如今高性能、大容量的内存技术,计算机内存经历了一系列令人瞩目的变革。
早期的计算机内存可以追溯到上世纪 50 年代。
那个时候,内存主要采用的是磁芯存储器。
磁芯存储器是由许多小磁环组成的,通过改变磁环的磁化方向来存储数据。
这种存储方式虽然在当时是一种创新,但它的存储容量非常有限,而且价格昂贵,操作也较为复杂。
随着技术的进步,半导体存储器逐渐崭露头角。
在 20 世纪 60 年代末和 70 年代初,动态随机存取存储器(DRAM)应运而生。
DRAM 的出现是计算机内存发展的一个重要里程碑。
它使用电容来存储数据,需要定期刷新以保持数据的有效性。
与磁芯存储器相比,DRAM 具有更高的存储密度和更低的成本,这使得计算机能够处理更复杂的任务和存储更多的数据。
在 DRAM 发展的过程中,不断有新的技术改进和升级。
例如,从最初的 SDRAM(同步动态随机存取存储器)到 DDR SDRAM(双倍数据速率同步动态随机存取存储器),再到 DDR2、DDR3 和 DDR4 等,数据传输速度不断提高,性能也越来越强大。
除了 DRAM,还有一种常见的内存类型是静态随机存取存储器(SRAM)。
SRAM 不需要像 DRAM 那样定期刷新,速度更快,但成本也更高,因此通常用于计算机的高速缓存中,以加速数据的访问。
在 20 世纪 90 年代,闪存(Flash Memory)开始广泛应用。
闪存具有非易失性的特点,即使断电也能保存数据。
这使得它在移动设备、数码相机和 USB 闪存驱动器等领域得到了广泛的应用。
随着技术的不断发展,闪存的容量不断增加,读写速度也在不断提高。
进入 21 世纪,计算机内存技术继续飞速发展。
DDR5 内存的出现进一步提升了数据传输速度和带宽,为高性能计算提供了更强大的支持。
计算机内存发展史
计算机内存发展史
计算机内存的发展可以追溯到1949年,当时贝尔实验室的工程师将磁性货币排列在一起,创造出了第一块存储计算机数据的记忆体,“磁针板”,并被称为“磁性登记簿”。
它可以实时存储几千个计算机指令,并有条件地执行它们。
磁针板的缺点是它存储的信息和指令有限,而且读取速度比较慢。
1951年,IBM推出了第一台使用硅片存储单元(SSU)的计算机,称为“701”。
硅片存储单元是以半导体技术构成的存储元件,可以存储多达18位的数字数据,其读取速度还比磁针板快得多。
但是,由于硅片存储单元费用昂贵,只有最大的计算机们才能拥有它。
1966年,Intel发明了第一块可编程只读存储器(PROM),它可以把数据固化到存储硅晶片上,而且不受环境影响,因此可以直接使用不用通过半导体技术。
只读存储器扩展了计算机的能力,使其可以存储大量的程序,并能够自动执行它们。
1970年,Intel发明了随机存取存储器(RAM),它以电容为介质,具有可编程和可擦除的特性,可以存储大量的计算机指令和数据。
它的主要缺点是被删除或注销数据的时间较长。
1971年,Intel发明了软盘,它是磁碟系统,可以用来存储大量数据和程序。
DRAM的发展
DRAM的发展概述:动态随机存取存储器(DRAM)是一种常用的计算机内存技术,它在计算机系统中起着至关重要的作用。
本文将详细介绍DRAM的发展历程,包括其原理、发展阶段和未来趋势。
一、DRAM的原理DRAM是一种基于电容的存储器技术,它通过电容的充放电来存储和读取数据。
每一个DRAM存储单元由一个电容和一个开关构成。
当电容被充电时,表示存储的是1;当电容被放电时,表示存储的是0。
为了保持数据的稳定性,DRAM需要定期进行刷新操作。
二、DRAM的发展阶段1. 早期DRAM早期的DRAM采用的是单个晶体管和电容的结构,存储密度较低,容量有限。
这种DRAM在20世纪60年代末至70年代初得到了广泛应用,但由于创造工艺的限制,无法进一步提高存储密度。
2. 高密度DRAM随着创造工艺的进步,高密度DRAM应运而生。
这种DRAM采用了多层结构,通过堆叠多个存储层来提高存储密度。
高密度DRAM在80年代初得到了商业化推广,并逐渐取代了早期的DRAM。
3. SDRAM同步动态随机存取存储器(SDRAM)是DRAM的一种改进型。
它在存储和读取数据时采用了同步时钟信号,提高了数据传输速度和带宽。
SDRAM在90年代初得到了广泛应用,成为主流的计算机内存技术。
4. DDR SDRAM双倍数据率同步动态随机存取存储器(DDR SDRAM)是SDRAM的进一步改进。
它在每一个时钟周期内能够传输两次数据,提高了数据传输速度和性能。
DDR SDRAM在2000年代初得到了广泛应用,成为主流的计算机内存技术。
5. DDR2、DDR3和DDR4随着技术的进步,DDR2、DDR3和DDR4相继问世。
这些新一代的DDR SDRAM在数据传输速度、能耗和稳定性方面都有所提升。
DDR4是目前最新的DDR SDRAM标准,已经广泛应用于高性能计算机和服务器领域。
三、DRAM的未来趋势1. 高带宽存储器随着数据中心、人工智能和大数据应用的快速发展,对存储器的带宽需求越来越高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内存发展的历史作为PC不可缺少的重要核心部件——内存,它伴随着DIY硬件走过了多年历程。
从286时代的30pin SIMM内存、486时代的72pin SIMM 内存,到Pentium 时代的EDO DRAM内存、PII时代的SDRAM内存,到P4时代的DDR内存和目前9X5平台的DDR2内存。
内存从规格、技术、总线带宽等不断更新换代。
不过我们有理由相信,内存的更新换代可谓万变不离其宗,其目的在于提高内存的带宽,以满足CPU不断攀升的带宽要求、避免成为高速CPU运算的瓶颈。
那么,内存在PC领域有着怎样的精彩人生呢?下面让我们一起来了解吧。
一、历史起源——内存条概念如果你细心的观察,显存(或缓存)在目前的DIY硬件上都很容易看到,显卡显存、硬盘或光驱的缓存大小直接影响到设备的性能,而寄存器也许是最能代表PC硬件设备离不开RAM的,的确如此,如果没有内存,那么PC将无法运转,所以内存自然成为DIY用户讨论的重点话题。
在刚刚开始的时候,PC上所使用的内存是一块块的IC,要让它能为PC服务,就必须将其焊接到主板上,但这也给后期维护带来的问题,因为一旦某一块内存IC 坏了,就必须焊下来才能更换,由于焊接上去的IC不容易取下来,同时加上用户也不具备焊接知识(焊接需要掌握焊接技术,同时风险性也大),这似乎维修起来太麻烦。
因此,PC设计人员推出了模块化的条装内存,每一条上集成了多块内存IC,同时在主板上也设计相应的内存插槽,这样内存条就方便随意安装与拆卸了(如图1),内存的维修、升级都变得非常简单,这就是内存“条”的来源。
图1,内存条与内存槽的出现小帖士:内存(Random Access Memory,RAM)的主要功能是暂存数据及指令。
我们可以同时写数据到RAM 内存,也可以从RAM 读取数据。
由于内存历来都是系统中最大的性能瓶颈之一,因此从某种角度而言,内存技术的改进甚至比CPU 以及其它技术更为令人激动。
二、开山鼻祖——SIMM 内存在80286主板发布之前,内存并没有被世人所重视,这个时候的内存是直接固化在主板上,而且容量只有64 ~256KB,对于当时PC所运行的工作程序来说,这种内存的性能以及容量足以满足当时软件程序的处理需要。
不过随着软件程序和新一代80286硬件平台的出现,程序和硬件对内存性能提出了更高要求,为了提高速度并扩大容量,内存必须以独立的封装形式出现,因而诞生了前面我们所提到的“内存条”概念。
在80286主板刚推出的时候,内存条采用了SIMM(Single In-lineMemory Modules,单边接触内存模组)接口,容量为30pin、256kb,必须是由8 片数据位和1 片校验位组成1 个bank,正因如此,我们见到的30pin SIMM一般是四条一起使用。
自1982年PC进入民用市场一直到现在,搭配80286处理器的30pin SIMM 内存是内存领域的开山鼻祖(如图2)。
图2,30pin SIMM 内存随后,在1988 ~1990 年当中,PC 技术迎来另一个发展高峰,也就是386和486时代,此时CPU 已经向16bit 发展,所以30pin SIMM 内存再也无法满足需求,其较低的内存带宽已经成为急待解决的瓶颈,所以此时72pin SIMM 内存出现了(如图3),72pin SIMM支持32bit快速页模式内存,内存带宽得以大幅度提升。
72pin SIMM内存单条容量一般为512KB ~2MB,而且仅要求两条同时使用,由于其与30pin SIMM 内存无法兼容,因此这个时候PC业界毅然将30pin SIMM 内存淘汰出局了。
图3,72pin SIMM内存小帖士:72线的SIMM内存引进了一个FP DRAM(又叫快页内存),在386时代很流行。
因为DRAM需要恒电流以保存信息,一旦断电,信息即丢失,其刷新频率每秒钟可达几百次,但由于FP DRAM使用同一电路来存取数据,所以DRAM 的存取时间有一定的时间间隔,这导致了它的存取速度并不是很快。
另外,在DRAM中,由于存储地址空间是按页排列,所以当访问某一页面时,切换到另一页面会占用CPU额外的时钟周期。
三、徘徊不前——EDO DRAM内存EDO DRAM(Extended Date Out RAM,外扩充数据模式存储器)内存,这是1991 年到1995 年之间盛行的内存条,EDO-RAM同FP DRAM极其相似,它取消了扩展数据输出内存与传输内存两个存储周期之间的时间间隔,在把数据发送给CPU的同时去访问下一个页面,故而速度要比普通DRAM快15~30%。
工作电压为一般为5V,带宽32bit,速度在40ns以上,其主要应用在当时的486 及早期的Pentium电脑上(如图4)。
图4,不同规格的EDO DRAM内存在1991 年到1995 年中,让我们看到一个尴尬的情况,那就是这几年内存技术发展比较缓慢,几乎停滞不前,所以我们看到此时EDO RAM有72 pin和168 pin并存的情况,事实上EDO 内存也属于72pin SIMM 内存的范畴,不过它采用了全新的寻址方式。
EDO 在成本和容量上有所突破,凭借着制作工艺的飞速发展,此时单条EDO 内存的容量已经达到4 ~16MB 。
由于Pentium及更高级别的CPU数据总线宽度都是64bit甚至更高,所以EDO RAM与FPM RAM都必须成对使用(如图5)。
图5,EDO DRAM内存四、一代经典——SDRAM 内存自Intel Celeron系列以及AMD K6处理器以及相关的主板芯片组推出后,EDO DRAM内存性能再也无法满足需要了,内存技术必须彻底得到个革新才能满足新一代CPU架构的需求,此时内存开始进入比较经典的SDRAM时代。
第一代SDRAM 内存为PC66 规范(如图6),但很快由于Intel 和AMD的频率之争将CPU外频提升到了100MHz,所以PC66内存很快就被PC100内存取代(如图7),接着133MHz 外频的PIII以及K7时代的来临,PC133规范也以相同的方式进一步提升SDRAM 的整体性能,带宽提高到1GB/sec以上(如图8)。
由于SDRAM 的带宽为64bit,正好对应CPU 的64bit 数据总线宽度,因此它只需要一条内存便可工作,便捷性进一步提高。
在性能方面,由于其输入输出信号保持与系统外频同步,因此速度明显超越EDO 内存。
图6,PC66 SDRAM内存图7,PC100 SDRAM内存图8,PC133 SDRAM内存不可否认的是,SDRAM 内存由早期的66MHz,发展后来的100MHz、133MHz,尽管没能彻底解决内存带宽的瓶颈问题,但此时CPU超频已经成为DIY用户永恒的话题,所以不少用户将品牌好的PC100品牌内存超频到133MHz使用以获得CPU超频成功,值得一提的是,为了方便一些超频用户需求,市场上出现了一些PC150、PC166规范的内存(如图9)。
图9,PC150 SDRAM内存五、曲高和寡——Rambus DRAM内存尽管SDRAM PC133内存的带宽可提高带宽到1064MB/S,加上Intel已经开始着手最新的Pentium 4计划,所以SDRAM PC133内存不能满足日后的发展需求,此时,Intel为了达到独占市场的目的,与Rambus联合在PC市场推广Rambus DRAM内存(称为RDRAM内存)。
与SDRAM不同的是,其采用了新一代高速简单内存架构,基于一种类RISC(Reduced Instruction Set Computing,精简指令集计算机)理论,这个理论可以减少数据的复杂性,使得整个系统性能得到提高(如图10)。
图10,Rambus DRAM内存在AMD与Intel的竞争中,这个时候是属于频率竞备时代,所以这个时候CPU的主频在不断提升,Intel为了盖过AMD,推出高频PentiumⅢ以及Pentium 4 处理器,因此Rambus DRAM内存是被Intel看着是未来自己的竞争杀手剑,Rambus DRAM内存以高时钟频率来简化每个时钟周期的数据量,因此内存带宽相当出色,如PC 1066 1066 MHz 32 bits带宽可达到4.2G Byte/sec,Rambus DRAM 曾一度被认为是Pentium 4 的绝配。
尽管如此,Rambus RDRAM 内存生不逢时,后来依然要被更高速度的DDR“掠夺”其宝座地位,在当时,PC600、PC700的Rambus RDRAM 内存因出现Intel820 芯片组“失误事件”、PC800 Rambus RDRAM因成本过高而让Pentium 4平台高高在上(如图11),无法获得大众用户拥戴,种种问题让Rambus RDRAM胎死腹中,Rambus曾希望具有更高频率的PC1066 规范RDRAM来力挽狂澜,但最终也是拜倒在DDR 内存面前。
图11,PC800 Rambus RDRAM内存六、再续经典——DDR内存DDR SDRAM(Dual Date Rate SDRAM)简称DDR,也就是“双倍速率SDRAM“的意思。
DDR可以说是SDRAM的升级版本, DDR在时钟信号上升沿与下降沿各传输一次数据,这使得DDR的数据传输速度为传统SDRAM的两倍。
由于仅多采用了下降缘信号,因此并不会造成能耗增加。
至于定址与控制信号则与传统SDRAM 相同,仅在时钟上升缘传输。
DDR 内存是作为一种在性能与成本之间折中的解决方案,其目的是迅速建立起牢固的市场空间,继而一步步在频率上高歌猛进,最终弥补内存带宽上的不足。
第一代 DDR200 规范并没有得到普及,第二代PC266 DDR SRAM(133MHz 时钟×2倍数据传输=266MHz带宽)是由PC133 SDRAM内存所衍生出的,它将DDR 内存带向第一个高潮,目前还有不少赛扬和AMD K7处理器都在采用DDR266规格的内存(如图12),其后来的DDR333内存也属于一种过度(如图13),而DDR400内存成为目前的主流平台选配(如图14),双通道DDR400内存已经成为800FSB处理器搭配的基本标准,随后的DDR533 规范则成为超频用户的选择对象(如图15)。
图12,DDR266内存图13,DDR333内存图14,DDR400内存图15,DDR533内存七、今日之星——DDR2内存随着CPU 性能不断提高,我们对内存性能的要求也逐步升级。
不可否认,紧紧依高频率提升带宽的DDR迟早会力不从心,因此JEDEC 组织很早就开始酝酿DDR2 标准,加上LGA775接口的915/925以及最新的945等新平台开始对DDR2内存的支持,所以DDR2内存将开始演义内存领域的今天。