干法刻蚀工艺

合集下载

干法刻蚀工艺介绍

干法刻蚀工艺介绍

关键词:干法刻蚀工艺介绍
今天老师给我们讲了一个特别的知识,叫“干法刻蚀工艺”。

我听得目瞪口呆,心里想,这是什么神奇的东西呢?
老师说,这种工艺就像在给小小的电路板做美容。

嘿嘿,想象一下,电路板就像我的玩具,它需要好好的修整才能发光发亮。

老师说,干法刻蚀用的不是水,而是一种气体,像在空气中飞舞的小精灵,轻轻地把不需要的部分去掉。

哇,听起来真酷!
我想象着那些气体在电路板上飞来飞去,嘻嘻,像小鸟在树枝上跳跃。

然后,电路板变得干干净净,变成一个个闪闪发光的小机器人,真是太神奇了!
老师还说,这种工艺特别重要,可以让我们的手机、电脑都运行得更好。

我的心里咕噜咕噜地想着,以后我也要学会这个本领,做一个会修理电子玩具的超级小能手!
放学回家的路上,我一直在想,干法刻蚀工艺真好玩!我希望有一天,能亲手做一次,感受那种飞舞的气体在我手中跳舞的感觉。

太期待了!
—— 1 —1 —。

第8章-干刻工艺

第8章-干刻工艺

第八章干刻工艺8.1 Dry Etch工序的目的广义而言,所谓的刻蚀技术,是将显影后所产生的光阻图案忠实地转印到光阻下的材质上,形成由光刻技术定义的图形。

它包含了将材质整面均匀移除及图案选择性部分去除,可分为湿式刻蚀(wet etching)和干式刻蚀(dry etching)两种技术。

第五章中已经对湿式刻蚀进行了较详细的介绍。

湿式刻蚀具有待刻蚀材料与光阻及下层材质良好的刻蚀选择比(selectivity)。

然而,由于化学反应没有方向性,因而湿式刻蚀是各向同性刻蚀。

当刻蚀溶液做纵向刻蚀时,侧向的刻蚀将同时发生,进而造成底切(Undercut)现象,导致图案线宽失真,如下图所示。

图8.1 底切现象自1970年以来,元件制造首先开始采用电浆刻蚀技术(也叫等离子体刻蚀技术),人们对于电浆化学性的了解与认识也就越来越深。

在现今的半导体集成电路或LCD制造过程中,要求精确地控制各种材料尺寸至次微米大小,而且还必须具有极高的再现性,电浆刻蚀是现今技术中唯一能极有效率地将此工作在高良率下完成的技术,因此电浆刻蚀便成为半导体制造以及TFT LCD Array制造中的主要技术之一。

干式刻蚀通常指利用辉光放电(glow discharge)方式,产生包含离子、电子等带电粒子以及具有高度化学活性的中性原子、分子及自由基的电浆,来进行图案转印(pattern transfer)的刻蚀技术。

干法刻蚀是亚微米尺寸下刻蚀器件的最主要方法,广泛应用于半导体或LCD 前段制程。

在本章节中,将针对干刻蚀技术加以说明。

8.2 Dry Etch 的分类及工艺的基本原理8.2.1蚀刻技术中的术语1.各向同性与各向异性蚀刻( Isotropic and Anisotropic Etching)不同的蚀刻机制将对蚀刻后的轮廓(Profile)产生直接的影响。

如图8.2所示,纯粹的化学蚀刻通常没有方向选择性,上下左右刻蚀速度相同,蚀刻后将形成圆弧的轮廓,并在遮罩(Mask)下形成底切(Undercut),这种刻蚀被称为各向同性蚀刻。

干法刻蚀工艺总结

干法刻蚀工艺总结

干法刻蚀工艺总结离子束刻蚀机(IBE-150A)背景:利用辉光放电原理将氩气分解为氩离子,氩离子经过阳极电场的加速对样品表面进行物理轰击,以达到刻蚀的作用。

把Ar、Kr或Xe之类惰性气体充入离子源放电室并使其电离形成等离子体,然后由栅极将离子呈束状引出并加速,具有一定能量的离子束进入工作室,射向固体表面撞击固体表面原子,使材料原子发生溅射,达到刻蚀目的,属纯物理过程。

技术指标:装片:一片六英寸衬底、或1片四英寸,向下兼容。

抽气速度:30min由ATM到1.0×10-3Pa极限真空度:2×10-4Pa离子能量:300eV-400eVICP刻蚀机(OXFORD ICP 180)背景:通入反应气体使用电感耦合等离子体辉光放电将其分解,产生的具有强化学活性的等离子体在电场的加速作用下移动到样品表面,对样品表面既进行化学反应生成挥发性气体,又有一定的物理刻蚀作用。

因为等离子体源与射频加速源分离,所以等离子体密度可以更高,加速能力也可以加强,以获得更高的刻蚀速率,以及更好的各向异性刻蚀。

另外,由于该系统使用了Cl基和Br基的刻蚀气体,因此该ICP系统适合于对Ⅲ-Ⅴ族化合物材料进行刻蚀。

技术指标:ICP离子源:0~3000WRF射频源:0~600W装片:1片四英寸,向下兼容基底刻蚀温度:0℃-200℃可调。

刻蚀气体:BCl3、Cl2、HBr、Ar、O2可刻蚀材料包括:GaN、GaAs、InP等Ⅲ-Ⅴ族化合物材料ICP刻蚀机(STS HRM)背景:通入反应气体使用电感耦合等离子体辉光放电将其分解,产生的具有强化学活性的等离子体在电场的加速作用下移动到样品表面,对样品表面既进行化学反应生成挥发性气体,又有一定的物理刻蚀作用。

因为等离子体源与射频加速源分离,所以等离子体密度可以更高,加速能力也可以加强,以获得更高的刻蚀速率,以及更好的各向异性刻蚀。

该系统使用了F基的刻蚀气体,具有Bosch工艺,适合于对硅材料进行大深宽比刻蚀。

第10章 干法刻蚀

第10章 干法刻蚀

25
反应离子束刻蚀
• 聚焦离子束(FIB):经过透镜聚焦形成的、束径在0.1 m以 下的极微细离子束。 • FIB的离子源主要有液态金属离子源(LMIS,常选用金属 Ga)和电场电离型气体离子源(FI,常选用H2、He、Ne等) 两大类。
26
反应离子束刻蚀
• 大束径离子束刻蚀:束径10~20 cm,效率高,质量均匀。 常用大束径离子束设备有两种:
9
刻蚀参数
6. 聚合物
• 聚合物是在刻蚀过程中由光刻胶中的碳与刻蚀气体和刻蚀生成物 结合在一起而形成的;能否形成侧壁聚合物取决于所使用的刻蚀 气体类型。 • 聚合物的形成有时是为了在刻蚀图形的侧壁上形成抗腐蚀膜从而 防止横向刻蚀,这样能形成高的各向异性图形,增强刻蚀的方向 性,从而实现对图形关键尺寸的良好控制。
刻蚀工艺分类:干法刻蚀和湿法刻蚀 干法刻蚀:通过气体放电,使刻蚀气体分解、电离,由产 生的活性基及离子对基板进行刻蚀的工艺过程;刻蚀精度: 亚微米。 湿法刻蚀:把要腐蚀的硅片放在化学腐蚀液里去除表面层 材料的工艺过程;刻蚀精度刻蚀参数:
• • • • • • •
12
干法刻蚀
刻蚀类型 湿法腐蚀 侧壁剖面 各向同性 示意图
各向同性(与设备和参数有关)
各向异性 (与设备和参数有关) 干法刻蚀 各向异性– 锥形
硅槽

湿法刻蚀是各向同性腐蚀, 不能实现图形的精确转移, 一般用于特征尺寸较大的 情况(≥3μm) 。

干法刻蚀有各向同性腐蚀,也 有各向异性腐蚀。各向异性腐 蚀能实现图形的精确转移,是 集成电路刻蚀工艺的主流技术。
19
等离子体刻蚀
• 圆桶式等离子体刻蚀机
刻蚀系统的射频电场平行于硅片表面,不存在反应离子轰击, 只有化学作用(仅在激发原子或活性气氛中进行刻蚀)。

sinx干法刻蚀工艺

sinx干法刻蚀工艺

sinx干法刻蚀工艺一、引言干法刻蚀工艺是一种常用于微电子制造中的重要工艺,被广泛应用于半导体器件、光电子器件以及微纳加工领域。

其中,sinx干法刻蚀工艺是一种常见且重要的技术,本文将对其原理、工艺流程以及应用进行介绍。

sinx干法刻蚀工艺是基于化学气相刻蚀技术实现的。

其主要原理是通过将硅表面暴露于含有氟气和氧气的刻蚀气体环境中,形成硅氧化物(SiOx)层,而后使用氟气将其刻蚀去除。

由于刻蚀速率与刻蚀气体的浓度、温度、压力等因素相关,因此可以通过调节这些参数来控制刻蚀速率和刻蚀深度,从而实现对硅表面的精确刻蚀。

三、sinx干法刻蚀工艺流程sinx干法刻蚀工艺主要包括前处理、刻蚀和后处理三个步骤。

1. 前处理:首先需要对待刻蚀的硅表面进行清洗,以去除表面的杂质和有机物。

常用的清洗方法包括酸洗、碱洗和超声清洗等。

清洗后,将硅片放入刻蚀室中,进行真空抽取和预热处理。

2. 刻蚀:在刻蚀室中,加入刻蚀气体,常用的刻蚀气体有氟化氢(HF)和氟化氮(NF3)等。

调节刻蚀气体的流量、温度和压力等参数,控制刻蚀速率和刻蚀深度。

刻蚀过程中,通过监测刻蚀速率以及表面形貌等参数,进行实时调节和控制。

3. 后处理:刻蚀完成后,需要对刻蚀后的硅片进行清洗和去除刻蚀残留物。

然后,进行表面抛光和再清洗等步骤,以保证硅片表面的光洁度和无尘污。

最后,进行检测和质量控制,确保刻蚀工艺的稳定性和一致性。

四、sinx干法刻蚀工艺应用sinx干法刻蚀工艺在微电子制造中有着广泛的应用。

主要应用于制备硅氧化物(SiOx)薄膜,用于制作MOS场效应晶体管、光电子器件和微纳加工等领域。

此外,sinx干法刻蚀工艺还可以用于制备硅纳米线、纳米孔洞和微纳结构等,用于研究和应用于纳米器件和生物传感器等领域。

五、总结sinx干法刻蚀工艺是一种重要的微电子制造工艺,通过调节刻蚀气体的浓度、温度和压力等参数,可以实现对硅表面的精确刻蚀。

该工艺应用广泛,可用于制备硅氧化物薄膜和制作各种微纳器件。

金属干法蚀刻工艺研究报告

金属干法蚀刻工艺研究报告

金属干法蚀刻工艺研究报告金属干法蚀刻工艺研究报告摘要:金属干法蚀刻作为一种精密加工工艺,近年来在制造领域得到广泛应用。

本文通过实验研究,探究了金属干法蚀刻的工艺原理、工艺参数及其影响因素,并对金属干法蚀刻的优势和应用前景进行了讨论。

1. 引言金属干法蚀刻是一种不使用溶液的蚀刻工艺,通过控制高能粒子束以及粒子束的扫描轨迹,实现对金属材料表面进行高精度的刻蚀。

与传统的湿法蚀刻相比,金属干法蚀刻具有无废水排放、环保节能、刻蚀速度快、加工精度高等优势。

然而,金属干法蚀刻的工艺参数及其对加工结果的影响尚需进一步研究。

2. 实验与结果本实验选择了不同金属材料进行金属干法蚀刻实验,分别对刻蚀速度、刻蚀深度和刻蚀质量进行了测试和分析。

实验结果表明,金属干法蚀刻的刻蚀速度与激光功率、扫描速度以及材料的热导率密切相关,其中激光功率对刻蚀速度影响最为显著。

刻蚀深度和刻蚀质量与激光功率和扫描速度呈正相关,但与热导率呈负相关。

此外,不同金属材料的刻蚀效果也有所差异,高热导率的金属材料刻蚀速度较快,但刻蚀质量相对较差。

3. 工艺参数与影响因素3.1 激光功率激光功率是金属干法蚀刻的重要工艺参数,它决定了刻蚀速度和刻蚀深度。

较高的激光功率可以获得较快的刻蚀速度,但过高的激光功率会导致材料表面产生氧化、溶蚀等问题。

3.2 扫描速度扫描速度对金属干法蚀刻的刻蚀深度和刻蚀质量具有一定影响。

较高的扫描速度可以增加刻蚀厚度,但过高的扫描速度会导致表面粗糙度增加。

3.3 材料热导率材料的热导率对金属干法蚀刻的刻蚀速度和刻蚀深度有显著影响。

热导率越高,刻蚀速度越快,但刻蚀质量相对较差。

4. 优势与应用前景金属干法蚀刻相比传统的湿法蚀刻具有一系列优势,如无废水排放、精度高等。

这使得金属干法蚀刻在微电子制造、微机械加工等领域具有广阔应用前景。

同时,随着激光技术和粒子束技术的不断发展,金属干法蚀刻的加工效率还将进一步提升,应用领域也将不断拓展。

纳米刻蚀工艺中的干法刻蚀与湿法刻蚀比较

纳米刻蚀工艺中的干法刻蚀与湿法刻蚀比较

纳米刻蚀工艺是纳米制造中的一项关键技术,它通过物理或化学方法去除材料,以达到制造纳米级别结构的目的。

在纳米刻蚀工艺中,干法刻蚀和湿法刻蚀是两种主要的刻蚀方法,它们各自具有不同的特点,也适用于不同的应用场景。

首先,让我们来看看干法刻蚀。

在干法刻蚀中,我们通常使用物理手段如离子刻蚀、反应离子刻蚀(RIE)、机械研磨等。

这些方法的主要优点是刻蚀速度快,对材料的兼容性好,能够处理各种不同类型的材料。

然而,这种方法也存在一些缺点。

首先,它对设备的要求较高,需要专门的设备和技术支持。

其次,由于其刻蚀过程中可能产生微小碎片,因此在处理敏感材料时需要特别小心。

此外,干法刻蚀对于深宽比的保持相对较差,即对同一尺寸的图形,干法刻蚀可能需要更大的实际面积。

接下来是湿法刻蚀,这种方法主要利用化学反应来去除材料。

常见的湿法刻蚀技术包括化学腐蚀、等离子体腐蚀等。

与干法刻蚀相比,湿法刻蚀对许多材料具有更强的兼容性,特别是在高分子材料和绝缘材料上。

此外,湿法刻蚀在处理大面积样品时更具优势,因为它不需要精确的定位和设备支持。

然而,湿法刻蚀也存在一些问题,如腐蚀液的选择和配比需要严格控制,以及对一些材料可能产生过敏反应的风险。

而且,湿法刻蚀的刻蚀深度较浅,对于深结构可能无法达到预期的刻蚀效果。

总的来说,干法刻蚀和湿法刻蚀各有优缺点,适用于不同的应用场景。

在选择使用哪种方法时,我们需要考虑待处理材料的性质、刻蚀速度的需求、设备的可用性以及成本等因素。

而且,随着技术的进步,我们期待在未来看到更多创新的纳米刻蚀方法出现,以满足更复杂、更高精度的纳米制造需求。

Metal干法刻蚀工艺介绍

Metal干法刻蚀工艺介绍
硅片在被腐蚀的时候腔体内维持一个稳定的反应气氛所探测的物质波长发射密度基本不变当硅片快要腐蚀结束时即到达终点位置密度会发生突变这样经过光电信号转换即可探测到终点位置
Metal腐蚀工艺介绍
ETCH 2012-3
目录:
• 简介 • Metal结构、成分 • Metal腐蚀工艺 • 常见异常介绍
IC结构:
Time(s)
20
55 External(7) 120 80*
5
10
EMP5K:
• 在EMP5K设备中,引入了磁场的设置,磁场在腐蚀工艺中 的作用: – 利于等离子体的形成; – 提高腐蚀均匀性; – 减小等离子损伤;
• Step6 圆 片 在 流 水 腔 (APM)中
• Step7 圆片传到下料片盒。
TCP9600:
设备特性:
• 耦合的等离子区; • 独立控制的可自动调谐的双射频功率源; • 受控的等离子浓度、能量; • 低压力高速率.
TCP9600:
recipe:
Description Cl2 (sccm) BCl3 (sccm) N2(sccm) O2(sccm) Ar(sccm) Pressure(mT) TCP Power(W) Bottom Power(w) He pressure(T) / He Flow MAX(sccm) End Point MODE Max Time(S) Delay Time(S) Normal Time(S) Trigger(%) DSQ RF Power(W) H2O(sccm) O2(sccm) COLD DIW COLD N2 SPIN Speed(RPM)
等离子腐蚀是依靠高频辉光放电形成的化学活性游离基 与被腐蚀材料发生化学反应的一种选择性腐蚀方法。气 体中总存在微量的自由电子,在外电场的作用下,电子 加速运动。当电子获得足够的能量后与气体分子发生碰 撞,使气体分子电离发出二次电子,二次电子进一步与 气体分子发生碰撞电离,产生更多的电子和离子。当电 离与复合过程达到平衡时,出现稳定的辉光放电现象, 形成稳定的等离子体(PLASMA)。等离子体中包括有 电子、离子、还有处于激发态的分子,原子及各种原子 团(统称游离基)。游离基具有高度的化学活性,正是 游离基与被腐蚀材料的表面发生化学反应,形成挥发性 的产物,使材料不断被腐蚀。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

干法刻蚀工艺
干法刻蚀工艺可分为物理性刻蚀与化学性刻蚀两种方式。

物理性刻蚀是利用辉光放电将气体(如氩)电离成带正电的离子,再利用偏压将离子加速,溅击在被刻蚀物的表面而将被刻蚀物的原子击出,该过程完全是物理上的能量转移,故称为物理性刻蚀。

其特色在于,具有非常好的方向性,可获得接近垂直的刻蚀轮廓。

但是由于离子是全面均匀地溅射在芯片上,所以光刻胶和被刻蚀材料同时被刻蚀,造成刻蚀选择性偏低。

同时,被击出的物质并非挥发性物质,这些物质容易二次沉积在被刻蚀薄膜的表面及侧壁上。

因此,在超大规模集成化制作工艺中,很少使用完全物理方式的干法刻蚀方法。

化学性刻蚀或称为等离子体刻蚀( PLASMA Etching,PE),是利用等离子体将刻蚀气体电离并形成带电离子、分子及反应性很强的原子团,它们扩散到被刻蚀薄膜表面后与被刻蚀薄膜的表面原子反应生成具有挥发性的反应产物,并被真空设备抽离反应腔。

因这种反应完全利用化学反应,故称为化学性刻蚀。

这种刻蚀方式与前面所讲的湿法刻蚀类似,只是反应物与产物的状态从液态改为气态,并以等离子体来加快反应速率。

因此,化学性干法刻蚀具有与湿法刻蚀类似的优点与缺点,即具有较高的掩膜/底层的选择比及等向性。

鉴于化学性刻蚀等向性的缺点,在半导体工艺中,只在刻蚀不需要图形转移的步骠(如光刻胶的去除)中应用纯化学刻蚀方法。

最为广泛使用的方法是结合物理性的离子轰击与化学反应的反应离子刻蚀( RIE)。

这种方式兼具非等向性与高刻蚀选择比的双重优点。

刻蚀的进行主要靠化学反应来实现,加入离子轰击的作用有两方面。

1)破坏被刻蚀材质表面的化学键以提高反应速率。

2)将二次沉积在被刻蚀薄膜表面的产物或聚合物打掉,以使被刻蚀表面能充分与刻蚀气体接触。

由于在表面的二次沉积物可被离子打掉,而在侧壁上的二次沉积物未受到离子的轰击,可以保留下来阻隔刻蚀表面与反应气体的接触、使得侧壁不受刻蚀,所以采用这种方式可以获得非等向性的刻蚀效果。

当应用于法刻蚀时,主要应注意刻蚀速率、均匀度、选择比及刻蚀轮廓等因素。

1)刻蚀速率越快,则设备的产能越大,有助于降低成本及提升企业竞争力。

刻蚀速率通常可利用气体的种类、流量、等离子体源及偏压功率控制,在其他因素尚可接受的条件下越快越好。

2)均匀度是表征晶片上不同位置的刻蚀速率差异的一个指标。

较好的均匀度意味着晶片有较好的刻蚀速率和优良成品率。

晶片从80mm、lOOmm发展到200mm,面积越来越大,故均匀度的控制就显得越来越重要。

3)选择比是被刻蚀材料的刻蚀速卒与掩膜或底层的刻蚀速率的比值,选择比的控制通常与气体种类、比例、等离子体的偏压功率、反应温度等有关系。

4)刻蚀轮廓,一般而言越接近90。

越好,只有在少数特例(如在接触孔或走线孔的制作)中,为了使后续金属溅镀工艺能有较好的阶梯覆盖能力而故意使其刻蚀轮廓小于900。

通常,刻蚀轮廓可利用气体的种类、比例和偏压功率等方面的调节进行控制。

相关文档
最新文档