半导体工艺 干法刻蚀 铝刻蚀
八大半导体工艺顺序剖析

八大半导体工艺顺序剖析八大半导体工艺顺序剖析在现代科技领域中,半导体材料和器件扮演着重要的角色。
作为电子设备的基础和核心组件,半导体工艺是半导体制造过程中不可或缺的环节。
有关八大半导体工艺顺序的剖析将会有助于我们深入了解半导体制造的工作流程。
本文将从简单到复杂,逐步介绍这八大工艺的相关内容。
1. 排版工艺(Photolithography)排版工艺是半导体制造过程中的首要步骤。
它使用光刻技术,将设计好的电路图案转移到硅晶圆上。
排版工艺需要使用光刻胶、掩膜和曝光设备等工具,通过逐层叠加和显影的过程,将电路图案转移到硅晶圆上。
2. 清洗工艺(Cleaning)清洗工艺在排版工艺之后进行,用于去除光刻胶和其他污染物。
清洗工艺可以采用化学溶液或高纯度的溶剂,保证硅晶圆表面的干净和纯净。
3. 高分辨率电子束刻蚀(High-Resolution Electron BeamLithography)高分辨率电子束刻蚀是一种先进的制造技术。
它使用电子束在硅晶圆表面进行刻蚀,以高精度和高分辨率地制作微小的电路图案。
4. 电子束曝光系统(Electron Beam Exposure Systems)电子束曝光系统是用于制造高分辨率电子束刻蚀的设备。
它具有高能量电子束发射器和复杂的控制系统,能够精确控制电子束的位置和强度,实现微米级别的精细曝光。
5. 高能量离子注入(High-Energy Ion Implantation)高能量离子注入是半导体器件制造中的一项重要工艺。
通过将高能量离子注入到硅晶圆表面,可以改变硅晶圆的电学性质,实现电路中的控制和测量。
6. 薄膜制备与沉积(Film Deposition)薄膜制备与沉积是制造半导体器件的关键工艺之一。
这个工艺将薄膜材料沉积在硅晶圆表面,包括化学气相沉积、物理气相沉积和溅射等方法。
这些薄膜能够提供电介质、导电材料或阻挡层等功能。
7. 设备和工艺完善(Equipment and Process Optimization)设备和工艺完善的步骤是优化半导体制造工艺的关键。
金属铝刻蚀工艺简介

在金属铝中通常会加入少量的硅和铜来提
高电子器件的可靠性。硅和Cl反应生成挥发性的
SiCl ,很容易被带出反应腔。铜与Cl反应生成的 4
CuCl2 挥发性却不高,因此需要加大物理性的离 子轰击把铜原子去掉,一般可以通过加大 Ar 和
AlCl 被气流带出反应腔。BCl 一方面提供BCl +,
3
3
3
垂直轰击硅片表面,达到各向异性的刻蚀。另一
方面,由于铝表面极易氧化成氧化铝,这层自生
氧化铝在刻蚀的初期阻隔了 Cl 和铝的接触,阻 2
碍了刻蚀的进一步进行。添加 BCl 则利于将这 3
层氧化层还原(如方程式 1),促进刻蚀过程的继
续进行。
基础知识 HOW TO MAKE A CHIP
金属铝刻蚀工艺简介
在 集成电路的制造过程中,刻蚀就是利 用化学或物理方法有选择性地从硅片 表面去除不需要的材料的过程。从工
艺上区分,刻蚀可以分为湿法刻蚀和干法刻蚀。
前者的主要特点是各向同性刻蚀;后者是利用等
离子体来进行各向异性刻蚀,可以严格控制纵向
和横向刻蚀。
蚀和氮化钛刻蚀等。目前,金属铝作为连线材
料,仍然广泛用于 DRAM 和 flash 等存储器,以
及 0.13um 以上的逻辑产品中。本文着重介绍金
属铝的刻蚀工艺。
金属铝刻蚀通常用到以下气体:Cl 、BCl 、
2
3
Ar、 N 、CHF 和 C H 等。Cl 作为主要的刻蚀气
2
3
24
2
体,与铝发生化学反应,生成的可挥发的副产物
半导体八大工艺顺序

半导体八大工艺顺序半导体八大工艺顺序,是指半导体制造过程中的八个主要工艺步骤。
这些工艺步骤包括晶圆清洗、光刻、沉积、刻蚀、扩散、离子注入、退火和包封。
下面将逐一介绍这些工艺步骤的顺序及其作用。
1. 晶圆清洗晶圆清洗是半导体制造过程中的第一步。
在这一步骤中,晶圆将被放入化学溶液中进行清洗,以去除表面的杂质和污染物。
这样可以确保后续工艺步骤的顺利进行,同时也可以提高器件的质量和性能。
2. 光刻光刻是半导体制造中的关键工艺步骤之一。
在这一步骤中,将使用光刻胶覆盖在晶圆表面上,并通过光刻机将图形投射到光刻胶上。
然后,利用化学溶液将未曝光的光刻胶去除,从而形成所需的图形。
3. 沉积沉积是指在晶圆表面上沉积一层薄膜的工艺步骤。
这一层薄膜可以用于改变晶圆表面的性质,增加其导电性或绝缘性。
常用的沉积方法包括化学气相沉积和物理气相沉积。
4. 刻蚀刻蚀是将多余的材料从晶圆表面去除的工艺步骤。
在这一步骤中,利用化学溶液或等离子刻蚀机将不需要的材料去除,从而形成所需的图形和结构。
5. 扩散扩散是将杂质或掺杂物diffused 到晶圆中的工艺步骤。
这一步骤可以改变晶圆的电学性质,并形成PN 结等器件结构。
常用的扩散方法包括固体扩散和液相扩散。
6. 离子注入离子注入是将离子注入到晶圆中的工艺步骤。
这可以改变晶圆的导电性和掺杂浓度,从而形成电子器件的结构。
离子注入通常在扩散之前进行。
7. 退火退火是将晶圆加热至一定温度并保持一段时间的工艺步骤。
这可以帮助晶圆中的杂质扩散和掺杂物活化,从而提高器件的性能和稳定性。
8. 包封包封是将晶圆封装在外部保护材料中的工艺步骤。
这可以保护晶圆不受外部环境的影响,同时也可以方便晶圆的安装和使用。
半导体制造过程中的八大工艺顺序是一个复杂而精密的过程。
每个工艺步骤都起着至关重要的作用,只有严格按照顺序进行,才能生产出高质量的半导体器件。
希望通过本文的介绍,读者对半导体制造过程有了更深入的了解。
半导体七大核心工艺步骤

半导体七大核心工艺步骤
1. 晶圆生长,晶圆是制造芯片的基础,晶圆生长是指在高温下
将单晶硅材料生长成圆形晶圆。
2. 晶圆清洗,晶圆在生长过程中会附着各种杂质和污染物,因
此需要进行严格的清洗,以确保表面的干净和平整。
3. 晶圆扩散,在这一步骤中,通过高温处理将掺杂物质(如硼、磷等)扩散到晶圆表面,改变硅的导电性能。
4. 光刻,光刻技术是将光敏胶涂覆在晶圆表面,然后使用光刻
机将芯片图案投影到光敏胶上,形成光刻图案。
5. 蚀刻,蚀刻是利用化学反应将未被光刻覆盖的部分材料去除,从而形成芯片上的线路和结构。
6. 沉积,在芯片制造过程中,需要在特定区域沉积金属或者绝
缘材料,以形成导线、电容等元件。
7. 清洗和测试,最后一步是对芯片进行清洗和测试,确保芯片
的质量和性能符合要求。
这七大核心工艺步骤构成了半导体制造的基本流程,每一步都至关重要,任何一处的错误都可能导致芯片的失效。
半导体工艺的不断创新和完善,为现代电子技术的发展提供了坚实的基础。
半导体工艺流程顺序

半导体工艺流程顺序一、前处理半导体工艺流程的第一步是前处理,其目的是通过对硅片进行清洁和表面处理,以去除污染物和提高表面质量,为后续工艺步骤的进行提供良好的基础。
前处理包括以下几个步骤:1. 清洗:将硅片放入酸碱溶液中,去除表面的有机和无机污染物;2. 去背面处理:使用化学气相沉积或物理气相沉积技术,在硅片背面形成二氧化硅层,以防止背面的杂质对后续工艺步骤的影响;3. 质量检测:通过检测硅片的厚度、平整度、杂质含量等指标,判断前处理的效果是否符合要求。
二、沉积沉积是半导体工艺流程中的重要步骤,主要是在硅片表面形成各种薄膜层。
常见的沉积技术包括:1. 化学气相沉积(CVD):通过将气体在高温下分解并反应,使得反应产物沉积在硅片表面,形成所需的薄膜层;2. 物理气相沉积(PVD):通过将金属薄片蒸发或溅射,使得蒸发物或溅射物沉积在硅片表面;3. 电化学沉积(ECD):通过电化学反应,在硅片表面沉积所需的金属或合金薄膜。
三、光刻光刻是半导体工艺流程中的关键步骤,用于将芯片上的图案或结构转移到光刻胶上,以便进行后续的刻蚀或沉积。
光刻的步骤包括:1. 涂覆:将光刻胶均匀涂覆在硅片上,形成一层薄膜;2. 曝光:使用光刻机将芯片上的图案通过光掩膜投射到光刻胶上,形成曝光图案;3. 显影:将曝光后的光刻胶进行显影,去除未曝光的部分,留下所需的图案。
四、刻蚀刻蚀是半导体工艺流程中的重要步骤,用于去除不需要的材料或形成所需的结构。
常见的刻蚀技术包括:1. 干法刻蚀:通过将气体在高频电场下分解为活性物种,使其与硅片表面发生化学反应,从而去除材料;2. 湿法刻蚀:通过将湿液溶液浸泡在硅片上,使其与材料发生化学反应,从而去除材料。
五、清洗清洗是半导体工艺流程中的必要步骤,用于去除刻蚀产生的残留物和光刻胶。
清洗步骤包括:1. 溶剂清洗:将硅片浸泡在溶剂中,使其与残留物发生溶解反应,从而去除残留物;2. 酸碱清洗:将硅片浸泡在酸碱溶液中,通过化学反应去除残留物。
半导体干法蚀刻的介绍

半导体干法蚀刻的介绍《半导体干法蚀刻:新兴技术的应用与发展》引言:半导体干法蚀刻是一种关键的制造工艺,在半导体行业中有着广泛的应用。
本文将着重介绍半导体干法蚀刻的原理、特点以及其在新兴技术领域的应用与发展。
正文:一、半导体干法蚀刻的原理半导体干法蚀刻是利用气体或等离子体与半导体表面发生反应来实现物质的去除。
通过将气体或者气体混合物注入到真空环境中,让气体产生等离子体,利用等离子体中的活性粒子或自由基对半导体表面进行化学反应或破坏性物理反应,从而移除半导体表面的一层材料。
二、半导体干法蚀刻的特点1. 制程精度高:通过控制反应气体、温度、时间等参数,可以实现较高的制程精度,满足半导体器件的要求。
2. 制程可控性强:半导体干法蚀刻过程中可以精确控制蚀刻速率和选择性,从而实现对半导体的精确加工。
3. 无需接触:与湿法蚀刻相比,半导体干法蚀刻是一种无需接触半导体表面的加工方式,可以避免因接触引起的损伤和污染。
4. 适用性广:半导体干法蚀刻可以适用于各种材料,包括硅、氮化硅、氮化铝等,可满足不同材料的蚀刻需求。
5. 环保高效:半导体干法蚀刻是一种无废液产生的加工方式,不会对环境造成污染,同时也节约了大量的水资源。
三、半导体干法蚀刻在新兴技术的应用与发展1. 三维芯片制造:随着半导体器件的发展,传统的二维芯片逐渐无法满足需求。
半导体干法蚀刻可以实现对芯片表面的精确加工,为三维芯片制造提供了重要工艺支持。
2. 纳米加工:随着纳米科技的快速发展,半导体干法蚀刻在纳米加工中广泛应用。
通过控制蚀刻参数,可以实现纳米尺寸的结构制造,为纳米电子学和纳米光学等领域的研究提供了有力支持。
3. 新型材料加工:随着新型材料的涌现,传统的湿法蚀刻技术面临挑战。
半导体干法蚀刻可以适用于新型材料的加工,如氮化硅、氮化铝等,为新型材料的应用拓展提供了技术保障。
结论:半导体干法蚀刻是一种重要的制造工艺,具有制程精度高、制程可控性强、适用性广、环保高效等特点。
第二章干法刻蚀的介绍
第二章干法刻蚀的介绍第一篇:第二章干法刻蚀的介绍第二章干法刻蚀的介绍2.1刻蚀、干法刻蚀和湿法腐蚀 2.1.1关于刻蚀刻蚀,是指用化学或物理方法有选择地从硅片表面去除不需要的材料的过程。
刻蚀的基本目的,是在涂胶(或有掩膜)的硅片上正确的复制出掩膜图形[1]。
刻蚀,通常是在光刻工艺之后进行。
我们通常通过刻蚀,在光刻工艺之后,将想要的图形留在硅片上。
从这一角度而言,刻蚀可以被称之为最终的和最主要的图形转移工艺步骤。
在通常的刻蚀过程中,有图形的光刻胶层〔或掩膜层)将不受到腐蚀源显著的侵蚀或刻蚀,可作为掩蔽膜,保护硅片上的部分特殊区域,而未被光刻胶保护的区域,则被选择性的刻蚀掉。
2.1.2干法刻蚀与湿法刻蚀在半导体制造中有两种基本的刻蚀工艺:干法刻蚀和湿法腐蚀。
干法刻蚀,是利用气态中产生的等离子体,通过经光刻而开出的掩蔽层窗口,与暴露于等离子体中的硅片行物理和化学反应,刻蚀掉硅片上暴露的表面材料的一种工艺技术法[1]。
该工艺技术的突出优点在于,可以获得极其精确的特征图形。
超大规模集成电路的发展,要求微细化加工工艺能够严格的控制加工尺寸,要求在硅片上完成极其精确的图形转移。
任何偏离工艺要求的图形或尺寸,都可能直接影响产品性能或品质,给生产带来无法弥补的损害。
由于干法刻蚀技术在图形轶移上的突出表现,己成为亚微米尺寸下器件刻蚀的最主要工艺方法。
在特征图形的制作上,已基本取代了湿法腐蚀技术。
对于湿法腐蚀,就是用液体化学试剂(如酸、碱和溶剂等)以化学的方式去除硅片表面的材料。
当然,在通过湿法腐蚀获得特征图形时,也要通过经光刻开出的掩膜层窗口,腐蚀掉露出的表面材料。
但从控制图形形状和尺寸的准确性角度而言,在形成特征图形方面,湿法腐蚀一般只被用于尺寸较大的情况(大于3微米)。
由于这一特点,湿法腐蚀远远没有干法刻蚀的应用广泛。
但由于它的高选择比和批量制作模式,湿法腐蚀仍被广泛应用在腐蚀层间膜、去除干法刻蚀残留物和颗粒等工艺步骤中。
半导体工艺流程简介
半导体工艺流程简介
《半导体工艺流程简介》
半导体工艺流程是指在半导体器件制造过程中所采用的一系列工艺步骤。
它包括了晶圆加工、器件制造和封装测试三个主要环节,每个环节又包含了不同的工艺步骤。
首先是晶圆加工。
这个过程包括了晶圆的清洁、去除氧化层、光刻、蚀刻、离子注入、扩散和沉积等步骤。
光刻是把芯片上的线路图案印制到光敏胶上,蚀刻是把芯片上不需要的部分去除,离子注入是通过向晶圆注入掺杂物改变材料的电子性质,扩散是在晶圆中扩散掺杂物,沉积则是在晶圆上沉积导体或绝缘体材料。
接下来是器件制造。
这个过程包括了制造晶体管、电容器、电阻器等器件,并将它们连接成一个完整的电路。
这个过程需要通过光刻、蚀刻、金属沉积、刻蚀、退火、金属化、绝缘层沉积等一系列工艺步骤完成。
最后是封装测试。
在这一步骤中,芯片被封装成一个完整的器件,并通过测试来检测器件的性能和质量。
封装是将芯片封装在塑料或陶瓷封装体内,并连接上引脚;测试则是通过测试设备对器件进行功能、可靠性和一致性等方面的测试。
总的来说,半导体工艺流程包含了各种化学、物理和电子工艺步骤,它是半导体器件制造的基础,对器件的性能和可靠性有
着重要的影响。
随着半导体技术的不断发展,工艺流程也在不断地更新和改进,以适应新的器件制造需求。
半导体生产工艺流程
半导体生产工艺流程半导体生产工艺流程主要包括晶片制备、刻蚀、离子注入、金属沉积、封装等多个环节。
下面就来具体介绍一下这些环节的工艺流程。
首先是晶片制备。
晶片制备是整个半导体生产工艺流程的第一步,主要包括硅片清洗、切割、抛光和制程控制等环节。
首先,将硅单晶进行清洗,去除表面的杂质和氧化层。
然后,将单晶硅锯割成薄片,通常为几十微米至几百微米的厚度。
接下来,将薄片进行抛光,使其表面更加光滑。
最后,对晶片进行制程控制,包括清洗、添加掺杂剂和涂覆光刻胶等步骤,以便之后的刻蚀和离子注入工艺。
接下来是刻蚀。
刻蚀是将光刻胶和表面杂质进行精确刻蚀的过程。
首先,将光刻胶涂覆在晶片上,并利用光刻机对光刻胶进行曝光处理,形成所需的图案。
然后,将光刻胶暴露的部分进行刻蚀,暴露出晶片表面的部分。
最后,通过清洗将光刻胶残留物去除,完成刻蚀过程。
然后是离子注入。
离子注入主要用于掺杂半导体材料,改变半导体材料的导电性质。
首先,将晶片放置在注入机器中,然后加热晶片以提高其表面活性。
接下来,通过注射器向晶片上注入所需的掺杂剂,如硼、磷或砷等。
注入过程中,通过控制注射时间和注射剂量,可以实现精确的掺杂。
接下来是金属沉积。
金属沉积是将金属层覆盖在晶片表面的过程,用于电极的形成和电连接。
首先,将晶片放置在涂膜机中,然后将金属薄膜沉积在晶片表面。
金属薄膜的沉积可以通过物理气相沉积或化学气相沉积等方法实现。
接下来,通过光刻和刻蚀等工艺,将金属膜制成所需的形状和尺寸,形成电极和电连接。
最后是封装。
封装是将晶片封装在塑料壳体中,以保护晶片并提供外部电连接。
首先,将晶片固定在封装基板上。
然后,通过焊接或固化剂将晶片与基板连接。
接下来,将封装壳体放置在基板上,并使用胶水或焊接等方式密封。
最后,安装焊脚和引线等外部连接部件,完成封装过程。
以上就是半导体生产工艺流程的一般步骤。
当然,具体的工艺流程和步骤可能因产品类型和制造厂家而有所不同,但总体上都包括晶片制备、刻蚀、离子注入、金属沉积和封装等环节,每个环节都需要严格控制工艺参数和质量要求,以确保制造出高质量的半导体产品。
八个基本半导体工艺
八个基本半导体工艺随着科技的不断进步,半导体技术在各个领域得到了广泛的应用。
半导体工艺是半导体器件制造过程中的关键环节,也是半导体产业发展的基础。
本文将介绍八个基本的半导体工艺,分别是氧化、扩散、沉积、光刻、蚀刻、离子注入、热处理和封装。
一、氧化工艺氧化工艺是指在半导体晶片表面形成氧化层的过程。
氧化层可以增强晶片的绝缘性能,并且可以作为蚀刻掩膜、电介质、层间绝缘等多种用途。
常见的氧化工艺有湿法氧化和干法氧化两种。
湿法氧化是在高温高湿的环境中,通过将晶片浸泡在氧化液中使其表面氧化。
干法氧化则是利用高温下的氧化气体与晶片表面反应来形成氧化层。
二、扩散工艺扩散工艺是指将掺杂物质(如硼、磷等)通过高温处理,使其在晶片中扩散,从而改变晶片的导电性能。
扩散工艺可以用于形成PN结、调整电阻、形成源、漏极等。
扩散工艺的关键是控制扩散温度、时间和掺杂浓度,以确保所需的电性能。
三、沉积工艺沉积工艺是将材料沉积在半导体晶片表面的过程。
常见的沉积工艺有化学气相沉积(CVD)和物理气相沉积(PVD)两种。
CVD是利用化学反应在晶片表面沉积薄膜,可以实现高纯度、均匀性好的沉积。
而PVD则是通过蒸发、溅射等物理过程,在晶片表面形成薄膜。
四、光刻工艺光刻工艺是将光敏胶涂覆在晶片表面,然后通过光刻曝光、显影等步骤,将光敏胶图案转移到晶片上的过程。
光刻工艺是制造半导体器件的核心工艺之一,可以实现微米级甚至纳米级的图案制作。
五、蚀刻工艺蚀刻工艺是通过化学反应或物理过程将晶片表面的材料去除的过程。
蚀刻工艺可以用于制作电路的开关、互连线等。
常见的蚀刻方法有湿法蚀刻和干法蚀刻两种。
湿法蚀刻是利用化学溶液对晶片表面进行腐蚀,而干法蚀刻则是通过等离子体或离子束对晶片表面进行刻蚀。
六、离子注入工艺离子注入工艺是将掺杂离子注入晶片中的过程。
离子注入可以改变晶片的导电性能和材料特性,常用于形成源漏极、调整电阻等。
离子注入工艺需要控制注入能量、剂量和深度,以确保所需的掺杂效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
干法刻蚀之铝刻蚀
在集成电路的制造过程中,刻蚀就是利用化学或物理方法有选择性地从硅片表面去除不需要的材料的过程。
从工艺上区分,刻蚀可以分为湿法刻蚀和干法刻蚀。
前者的主要特点是各向同性刻蚀;后者是利用等离子体来进行各向异性刻蚀,可以严格控制纵向和横向刻蚀。
干法的各向异性刻蚀,可以用表面损伤和侧壁钝化两种机制来解释。
表面损伤机制是指,与硅片平行的待刻蚀物质的图形底部,表面的原子键被破坏,扩散至此的自由基很容易与其发生反应,使得这个方向的刻蚀得以持续进行。
与硅片垂直的图形侧壁则因为表面原子键完整,从而形态得到保护。
侧壁钝化机制是指,刻蚀反应产生的非挥发性的副产物,光刻胶刻蚀产生的聚合物,以及侧壁表面的氧化物或氮化物会在待刻蚀物质表面形成钝化层。
图形底部受到离子的轰击,钝化层会被击穿,露出里面的待刻蚀物质继续反应,而图形侧壁钝化层受到较少的离子轰击,阻止了这个方向刻蚀的进一步进行。
在半导体干法刻蚀工艺中,根据待刻蚀材料的不同,可分为金属刻蚀、介质刻蚀和硅刻蚀。
金属刻蚀又可以分为金属铝刻蚀、金属钨刻蚀和氮化钛刻蚀等。
目前,金属铝作为连线材料,仍然广泛用于DRAM和flash等存储器,以及以上的逻辑产品中。
本文着重介绍金属铝的刻蚀工艺。
金属铝刻蚀通常用到以下气体:Cl2、BCl3、Ar、 N2、CHF3和C2H4等。
Cl2作为主要的刻蚀气体,与铝发生化学反应,生成的可挥发的副产物AlCl3被气流带出反应腔。
BCl3一方面提供BCl3+,垂直轰击硅片表面,达到各向异性的刻蚀。
另一方面,由于铝表面极易氧化成氧化铝,这层自生氧化铝在刻蚀的初期阻隔了Cl2和铝的接触,阻碍了刻蚀的进一步进行。
添加BCl3 则利于将这层氧化层还原(如方程式1),促进刻蚀过程的继续进行。
Al2O3 + 3BCl3→ 2AlCl3 + 3BOCl (1)
Ar电离生成Ar+,主要是对硅片表面提供物理性的垂直轰击。
N2、CHF3和C2H4是主要的钝化气体,N2与金属侧壁氮化产生的AlxNy,CHF3和C2H4与光刻胶反应生成的聚合物会沉积在金属侧壁,形成阻止进一步反应的钝化层。
一般来说,反应腔的工艺压力控制在6-14毫托。
压力越高,在反应腔中的Cl2浓度越高,刻蚀速率越快。
压力越低,分子和离子的碰撞越少,平均自由程增加,离子轰击图形底部的能力增强,这样刻蚀反应速率不会降低甚至于停止于图形的底部。
目前金属刻蚀机台广泛采用双射频功率源设计,如应用材料公司DPS (decouple plasma source)金属刻蚀机台。
偏置功率用来加速正离子,提供垂直的物理轰击,源功率用来提高反应腔体内的等离子体的浓度。
这种双功率的设计可以实现对离子体的能量和浓度的独立控制,扩大了刻蚀工艺的工艺窗口和性能。
在金属铝的上下通常会淀积金属钛或氮化钛,形成氮化钛/铝/氮化钛/钛的结构。
用来刻蚀铝的Cl2与钛反应生成挥发性相对较低的TiCl4,刻蚀氮化钛的速率只有刻蚀铝的1/3-1/4,因此减少Cl2或是增加BCl3和偏置功率,都有利于提高氮化钛和钛的刻蚀速率。
在金属铝中通常会加入少量的硅和铜来提高电子器件的可靠性。
硅和Cl反应生成挥发性的SiCl4,很容易被带出反应腔。
铜与Cl反应生成的CuCl2挥发性却不高,因此需要加大物理性的离子轰击把铜原子去掉,一般可以通过加大Ar和增加偏置功率来实现。
当铝刻蚀完成之后,硅片表面、图形侧壁和光刻胶表面残留的Cl,会和铝反应生成AlCl3,继而与空气中的水分发生自循环反应(如方程式2),造成对铝的严重侵蚀(corrosion)。
因此,在刻蚀工艺完成后,一般会用H2O和O2的等离子体把氯和光刻胶去除, 并且在铝表面形成氧化铝来保护铝。