蜂窝网络

蜂窝网络
蜂窝网络

一.蜂窝移动通信技术的发展历程

蜂窝移动通信技术从发展到现在主要经历了三个阶段,即第一代、第二代和第三代蜂窝移动通信技术。第一代蜂窝移动通信技术是模拟蜂窝移动通信技术,以美国贝尔实验室开发的先进移动电话系统AMPS为典型代表。第一代蜂窝移动通信技术由于采用模拟技术和FDMA多址接入方式,在使用中暴露出很多弊端,如频谱利用率比较低、保密性差、只能提供低速语音业务、设备体积大成本高等,在实际中已经基本不再使用。

第二代移动通信技术是数字移动通信系统,采用数字调制技术,具有频谱利用率高,保密性好的特点,不仅可以支持话音业务,也可以支持低速数据业务,因而又称为窄带数字通信系统。第二代数字移动通信系统典型代表有美国的DAMPS系统、IS-95系统和欧洲GSM系统,其中DAMPS和GSM都采用TDMA多址接入方式,而IS-95采用则采用CDMA多址接入方式,系统容量比GSM和DAMPS要大的多。第二代数字移动通信技术是目前广泛应用的蜂窝移动通信技术,但由于只能提供窄带业务,已经不能满足人们越来越多的对于移动宽带多媒体业务的需求。

第三代移动通信系统是宽带数字通信系统,它的目标是提供移动宽带多媒体通信,多址方式基本都采用CDMA多址接入,属于宽带CDMA移动通信技术。第三代移动通信系统能提供多种类型的高质量多媒体业务,能实现全球无缝覆盖,具有全球漫游能力并与固定网络相兼容。它可以实现小型便携式终端在任何时候、任何地点进行任何种类的通信。第三代移动通信技术的标准化工作由3GPP和3GPP2两个标准化组织来推动和实施。目前,在世界范围内应用最为广泛的第三代移动通信系统体制为WCDMA和CDMA2000。

二.蜂窝网络物理模型的选择原因

2.1蜂窝网络模型简介

蜂窝网络或移动网络是一种移动通信硬件架构,把移动电话的服务区分为一个个正六边形的子区,每个小区设一个基站,形成了形状酷似“蜂窝”的结构,因而把这种移动通信方式称为蜂窝移动通信方式。蜂窝网络分为模拟蜂窝网络系统(把通信总频率段分为若干个频点,然后把每个频点分配给一个用户使用。该系

统中用户使用频率是固定的,且为模拟信号传输;因此极易被盗打,保密性较差。)以及数字蜂窝网络系统(通信时间分为若干个时帧,每个时帧又分为若干个时隙;;把然后把每个用户分配在不同时隙内使用。该系统中用户使用频率是不固定的,且为数字化信号传输;因此保密性较好)。

简单来说,蜂窝网络被广泛采用的原因是源于一个数学结论,三个半径相同的圆两两相交,以圆心为顶点的三角形是正三角形且正三角形边长是圆半径的根号3倍时, 圆域的面积最大,相交部分最小, 如图 1 所示。这是三个圆两两相交面积最大的极限情况, 也就是说, 在这种情况下, 三个圆构成的无缝拓扑面积为最大。即以相同半径的圆形覆盖平面, 当圆心处于正六边形网格的各正六边形中心,也就是当圆心处于正三角网格的格点时所用圆的数量最少。虽然使用最少个结点可以覆盖最大面积的图形即使要求结点在一个如同晶格般有平移特性的网格上也仍是有待求解的未知问题,但在通讯中,使用圆形来表述实践要求通常是合理的,因此出于节约设备构建成本的考虑,正三角网格或者也称为简单六角网格是最好的选择。这样形成的网络覆盖在一起,形状非常象蜂窝,因此被称作蜂窝网络。

2.2感知、通信和连通覆盖的数学模型

(1)感知模型

节点的感知覆盖区域和通信覆盖区域一般被看作是圆域,传感器节点的感知能力包括监测范围和信号特征。设传感器节点的感知半径为rs,d(Si, Pj)为部署区域中某点j 离其最近传感器节点i的距离,点j是否被覆盖取决于rs和d(Si, Pj)之间的大小关系。用Pi表示点i是否被感知,被感知为1,否则为0,则有:

其中,α是与传感器节点物理性能和感知环境有关的参数。

(2)通信模型

根据电磁波传播理论,电磁波在自由空间的传播,若发射机和接收机在视距范围内,可用自由空间传播模型预测接收信号的强度。若发射功率(信源强度)为PT,d为收发天线之间的距离,则可由Friis自由空间模型公式得到收发节点之间的信号功率关系为:

其中,PR为接收功率(接受强度);λ为载波波长;GT 和GR分别是发送天线和接收天线的增益;n为信道衰落系数,在自由空间n=2,在金属建筑物中n=6,在大部分情况下n取值范围为2-4。

(3)连通模型

由于连通覆盖反映的是节点发送的信号在网络中的传播能力,因此节点的连

通模型指基于某种网络拓扑结构,网络中节点周围分布的邻居节点数量(节点连通度)及分布状态。

一般来说,为了保证无漏洞重复最少的覆盖,对于一维区域覆盖应采用圆盘节点覆盖模型,对于二维区域覆盖应采用正六边形节点覆盖模型,对于三维区域覆盖应采用正方体节点覆盖模型。

2.3正六边形节点覆盖模型

在传感器网络应用中,对于某一监测区域,如何做到“毫无遗漏”的监测即是无漏洞覆盖问题。按照节点覆盖的圆盘模型,这个问题可抽象为:对于面积为A 的图形F ,如果用半径为r 的圆去覆盖,如何拼接这些圆,至少需要多少个这样的圆才能完全覆盖图形F 。可以设想,无论用多么小的半径为r 的圆对某一区域进行覆盖都不可能是无重复无漏洞覆盖。问题的解决只能退让到用最少个数的正多边形完成重复最小的无漏洞覆盖,这个问题的解有如下的定理。

定理:用感知半径为r 的圆,以它的内接正六边形对区域进行覆盖,可得到重复覆盖最少的无漏洞覆盖。

证明:用正多边形无漏洞覆盖某一区域,事实上只要求把若干个全等正多边形的角顶在一个点上即可实现,因为每

个正n 边形的一个内角为(n-2)180°/n ,所以在一个顶点处集结的x 个正n 边形满足方程: ?=?-360180)2(n

n x (3) 解得: 242-+=n x (4) 为使x 是正整数,只能取n=3, x3=6; n=4, x4=4; n=6, x6=3,即可以用全等正三角形、全等正四边形或全等正六边形无重复无漏洞覆盖全域,如图所示。 所示。

以节点感知圆域的内接正多边形对区域进行覆盖,无漏洞覆盖后一个节点圆域的

重复覆盖面积AC 是节点圆域面积AL 与内接正多边形面积AS 之差,即: n

nr r A A A S L c ππ2sin 22^2^-==- (5) 以节点感知圆域的内接正多边形对区域进行覆盖,无漏洞覆盖后一个节点圆域的重复覆盖面积AC 是节点圆域面积AL 与内接正多边形面积AS 之差,即: 2^)2

33(m i n r A C -=π (6) 因此,当节点的感知半径为r 时,以它的内接正六边形对区域进行覆盖,可得到感知覆盖重复最少的无漏洞覆盖,这就是正六边节点覆盖模型。

对于部署在监测区域内部的节点,每一个节点的感知覆盖率ηs 为感知圆域内接正六边形面积AS 与感知圆域面积AL 之比,即: %1002

^2/2^33?==

r r A A l s s πη (7)

2.3蜂窝网络模型与其他多边形模型的对比

无线传感器节点的传感覆盖范围是以节点为圆心, 以传感半径r 为半径的圆。按照以上理论, 对传感器节点的位置进行排列。在一个给定的区域S(L*W)内, 把传感器节点按照如图2 所示排列, ×代表的传感器节点是每个圆的圆心, 圆代表以传感半径r 为半径的辐射圆。由以上理论可知, 相邻传感器节点之间的距离都是其传感半径 r 的3倍。相邻节点的以 r 为半径的辐射圆相交, 每三个两两相交的圆相交于一点, 相交部分最小; 它们的圆心, 即传感器节点构成边长为3r 的等边三角形。每个辐射圆的面积都充分利用, 且区域S(L*W)实现无缝覆盖。

正三角形,正方形,正六边形均可以覆盖整个平面,那么为何无线传感器网络使用的是六边形而非其他多边形呢?下面进行正六边形和正方形网络的比较。在无线传感器网络中,传统的正方形网格划分是以节点的传感半径为依据划分的,网格变长为2r 。由图1所示,三个圆两两相交,相交部分是最小圆域最大的极限情况,所以正方形网格中辐射圆相交部分大于正六边形网格中辐射圆的相交部分,前者较后者的辐射圆的有效利用面积小。也就是说,正方形网格划分的

辐射圆相交部分面积大,有效利用面积小,所需节点数更多。在同样是S (L*W )的区域内,由于网格边长是2r ,鼓网格划分所需要的节点数是]2][2[

r W r L N 。 3.结束语

《蜂窝移动通信的认识》

《蜂窝移动通信的认识》 通信行业的发展使人们的交流方便,使各地联系密切,取代了古时的飞鸽传书或快马加鞭的送信方式。从单工寻呼机、笨重的大哥大到现在小巧的手机、街机iphone,无线移动通信技术运用广泛,超过了固定通信,而蜂窝移动通信作为移动通信的一种,它是把覆盖的小区划分成若干个类似蜂窝的小区,每个小区中设立基站为用户提供服务,当用户运动时,通过基站和移动交换中心传输语音、数据、视频等进行越区切换以保障通话的畅通等的手机基本功能。 蜂窝系统的发展经历了1g以模拟通信为特征的移动通信时代到2g数字蜂窝移动通信时代到3g多媒体业务时代以及如今吵得沸沸扬扬但未实现的4g广带移动,一些技术的引入如频率复用等使频带利用率提高,用户可以迅速切换、享受高速的数据传输速度,也是蜂窝系统发展的象征。蜂窝移动通信的特点是用户容量大,服务性能较好,频谱利用率较高,用户终端小巧而且电池使用时间长,辐射小等等。蜂窝移动通信系统可分为宏蜂窝、微蜂窝和智能蜂窝。宏蜂窝的小区覆盖半径较大,但会因为障碍物引起较多“盲区”,而微蜂窝解决了宏蜂窝的缺陷,使“盲区”减少,频率复用使话务量大的“热点”地区通信质量有所改进,增加了通信的容量,但是同时带来了经济成本和网络复杂性等问题。微蜂窝主要服务对象为低速运动的移动台,因为对于高速移动台若使用微蜂窝,必定会导致移动台频繁地切换为其服务的基站而造成掉话,通话无法正常进行,所以由宏蜂窝来服务较合理。

如今的蜂窝移动通信市场中,gsm是当前应用最为广泛的移动电话标准。全球超过200个国家和地区超过10亿人正在使用gsm电话,它的信令和语音信道都是数字式的,因此gsm被看作2g移动电话系统。3g并没有想象中的深入人心,其网络建设速度慢,我认为在短期内,gsm仍然是通信的主导力量。3g手机接收数据速度快,但其普及需一定时间,价格也是一个关键因素。cdma码分多址技术手机通话品质比gsm好,且可把用户对话时周围环境噪音降低,使通话更清晰,而且cdma用码来区分用户,防止被人盗听的能力大大增强。其辐射小,是环保手机,它虽然使用人数并不大,但技术成熟并具有潜力。4g时代的到来还需要很长时间,因为3g的建设都没有完成,最高100mbps的速度遥遥无期,4g的灵活性和智能化也是未来发展的趋势,人们可以通过手机流畅的看电视节目,订阅信息等,不过我认为与其过快的加大数据传输速率,不如放更多精力在网络的稳定性和覆盖面积,容量等问题上,通信时代的变更需要更多设备支持,如何使基站安放合理,如何减少盲区,使任何地方都有无线通信,而同时又要做到绿色环保都是需要改进和考虑的问题。 蜂窝移动通信未来的路很漫长也艰巨,更多人追求流畅的上网以获取信息和不同环境下通话质量的提高。通信拉近了人们的交流,其未来也让人期待。 第二篇:蜂窝移动通信业务蜂窝移动通信业务 进入80年代,国内外移动通信的发展十分迅速,各类移动通信业务争奇斗艳,新技术层出不穷,一派兴旺景象,其中以蜂窝移动通

蜂窝网络

一.蜂窝移动通信技术的发展历程 蜂窝移动通信技术从发展到现在主要经历了三个阶段,即第一代、第二代和第三代蜂窝移动通信技术。第一代蜂窝移动通信技术是模拟蜂窝移动通信技术,以美国贝尔实验室开发的先进移动电话系统AMPS为典型代表。第一代蜂窝移动通信技术由于采用模拟技术和FDMA多址接入方式,在使用中暴露出很多弊端,如频谱利用率比较低、保密性差、只能提供低速语音业务、设备体积大成本高等,在实际中已经基本不再使用。 第二代移动通信技术是数字移动通信系统,采用数字调制技术,具有频谱利用率高,保密性好的特点,不仅可以支持话音业务,也可以支持低速数据业务,因而又称为窄带数字通信系统。第二代数字移动通信系统典型代表有美国的DAMPS系统、IS-95系统和欧洲GSM系统,其中DAMPS和GSM都采用TDMA多址接入方式,而IS-95采用则采用CDMA多址接入方式,系统容量比GSM和DAMPS要大的多。第二代数字移动通信技术是目前广泛应用的蜂窝移动通信技术,但由于只能提供窄带业务,已经不能满足人们越来越多的对于移动宽带多媒体业务的需求。 第三代移动通信系统是宽带数字通信系统,它的目标是提供移动宽带多媒体通信,多址方式基本都采用CDMA多址接入,属于宽带CDMA移动通信技术。第三代移动通信系统能提供多种类型的高质量多媒体业务,能实现全球无缝覆盖,具有全球漫游能力并与固定网络相兼容。它可以实现小型便携式终端在任何时候、任何地点进行任何种类的通信。第三代移动通信技术的标准化工作由3GPP和3GPP2两个标准化组织来推动和实施。目前,在世界范围内应用最为广泛的第三代移动通信系统体制为WCDMA和CDMA2000。 二.蜂窝网络物理模型的选择原因 2.1蜂窝网络模型简介 蜂窝网络或移动网络是一种移动通信硬件架构,把移动电话的服务区分为一个个正六边形的子区,每个小区设一个基站,形成了形状酷似“蜂窝”的结构,因而把这种移动通信方式称为蜂窝移动通信方式。蜂窝网络分为模拟蜂窝网络系统(把通信总频率段分为若干个频点,然后把每个频点分配给一个用户使用。该系

数字蜂窝移动通信网技术规范

YD/T xxx-xxxx 900/1800MHz TDMA数字蜂窝移动通信网 CAMEL应用部分(CAP)技术规范 (第二时期)

900/1800MHz TDMA Digital Cellular Mobile Telecommunication Network Technical Specification of CAMEL Application Part(CAP) (Phase 2)

19xx-xx-xx 公布 19xx-xx-xx 实施中华人民共和国信息产业部公布

前言 随着GSM网络的迅速进展,移动用户关于业务的需求越来越高。因此在GSM Phase2+ 时期引入了CAMEL业务(Customised Applications for Mobile Network Enhanced logic)。CAMEL 业务是一种网络特性而不是补充业务,它采纳智能网的原理,通过增加智能网的功能模块,使得即使当用户漫游出HPLMN,网络运营者也能够为用户提供运营者特定的业务。 CAMEL业务的引入,在原有GSM功能结构基础上增加了与CAMEL业务相关的功能实体,包括gsmSSF,gsmSCF和gsmSRF。为此增加了这几个功能实体之间的信令规程CAP (CAMEL应用部分),并在移动应用部分(MAP)中增加了与CAP配合的操作和信息单元。本标准规定了gsmSSF,gsmSCF和gsmSRF之间CAP的相关操作,信息单元等。 本标准的预研依据ETSI GSM02.78,GSM03.78,GSM09.78 CAMEL 业务Phase2的标准提出,等效采纳GSM09.78 (version6.2.1),联系中国INAP的有关要求编制。 CAP Phase2的标准化工作差不多差不多稳定,与CAP Phase1不同的是,CAP Phase2的能力差不多能够提供许多运营者所需

移动蜂窝网络架构说明

INFO-H-507 Mobile and Wireless Networks Cellular Systems Engineering

Cellular Concept ?Proposed by Bell Labs in 1971?Geographic Service divided into smaller cells ?Neighboring cells do not use same set of frequencies to prevent interference ?Often approximate coverage area of a cell by an idealized hexagon ?Increase system capacity by frequency reuse Cellular Concept !?Proposed by Bell Labs in 1971 !?Geographic Service divided into smaller “cells” !?Neighboring cells do not use same set of frequencies to prevent interference !?Often approximate coverage area of a cell by an idealized hexagon !?Increase system capacity by frequency reuse 2 Less colours as possible -> the available BW is ?xed -> BW of each div is limited modular -> extendable the capacity can be expressed: bps/cell | bps/km^2 | Erlang/cell | Erlang/km^2

移动通信系统中蜂窝的几个概念

移动通信系统中蜂窝的几个概念 宏蜂窝小区 传统的蜂窝式网络由宏蜂窝小区(macrocell)构成,每小区的覆盖半径大多为1km~25km。由于覆盖半径较大,所以基站 的 发射功率较强,一般在10W以上,天线也做得较高。图1是由宏蜂窝组成的移动通信系统示意图。如图所示,每个小区分别设有一个基站,它与处于其服务区内的 移动台建立无线通信链路。若干个小区组成一个区群(蜂窝),区群内各个小区的基站可通过电缆、光缆或微波链路与移动交换中心(MSC)相连。移动交换中心 通过PCM电路与市话交换局相连接。 图1 宏蜂窝移动通信系统示意图 点击此处查看全部新闻图片 在实际的宏蜂窝内,通常存在着两种特殊的微小区域。一是“盲点”,由于网络漏覆盖 或电波在传播过程中遇到障碍物而造成阴影区域等原因,使得该区域的信号 强度极弱,通信质量低劣;二是“热点”,由于客观存在商业中心或交通要道等业务繁忙区域,造成空间业务负荷的不均匀分布。以上两“点”问题,往往通过设置 直放站、分裂小区等办法来加以解决。但从原理上讲,这两种办法也不能无限制地使用:直放站实质是一个宽带放大器,设置不合理(包括选址及安装等)或设置得过多,都极易造成对周围信号的干扰;小区分裂实质就是采用使宏基站变密的办法(即将覆盖面大的基站分裂成覆盖面较小的基站)来增加系统

的容量 ,但当基站小到一定程度时,由于干扰和基站接入等问题,这种办法将难以再进行。特别是近几年来,随着移动通信的迅速发展和业务需求的剧增,这些方法更是难奏其效,这样便产生了微蜂窝小区(microcell)技术。 微蜂窝小区 微蜂窝小区(microcell)是在宏蜂窝小区的基础上发展起来的一门技术。它的覆盖半径大约为30m~300m;发射功率较小,一般在1W以下;基 站天线置于相对低的地方,如屋顶下方,高于地面5m~10m,传播主要沿着街道的视线进行,信号在楼顶的泄露小。因此,微蜂窝最初被用来加大无线电覆盖, 消除宏蜂窝中的“盲点”。同时由于低发射功率的微蜂窝基站允许较小的频率复用距离,每个单元区域的信道数量较多,因此业务密度得到了巨大的增长,且RF干 扰很低,将它安置在宏蜂窝的“热点”上,可满足该微小区域质量与容量两方面的要求。在实际设计中,微蜂窝作为无线覆盖的补充,一般用于宏蜂窝 覆盖不到又有较大话务量的地点,如地下会议室、娱乐室、地铁、隧道等。作为热点应用的场合一般是话务量比较集中的地区,如购物中心、娱乐中心、会议中心、 商务楼、停车场等地。而在话务量很高的商业街道等地则可采用多层网形式进行连续覆盖,即分级蜂窝结构:不同尺寸的小区重叠起来,不同发射功率的基站紧密相 邻并同时存在,使得整个通信网络呈现出多层次的结构。相邻微蜂窝的切换都回到所在的宏蜂窝上,宏蜂窝的广域大功率覆盖可看成是宏蜂窝上层网络,并作为移动用户在两个微蜂窝区间移动时的“安全网”,而大量的微蜂窝则构成微蜂窝下层网络。 微微蜂窝小区 随着容量需求进一步增长,运营者可按同一规则安装第三或第四层网络,即微微蜂窝小区(picocell)。微微蜂窝实质就是微蜂窝的一种,只是它的覆盖 半径更小,一般只有10m~30m;基站发射功率更小,大约在几十毫瓦左右;其天线一般装于建筑物内业务集中地点。微微蜂窝也是作为网络覆盖的一种补充形 式而存在的,它主要用来解决商业中心、会议中心等室内“热点”的通信问题。 在目前的蜂窝式移动通信系统中,我们主要通过在宏蜂窝下引入微蜂窝和微 微蜂窝以提供更多的“内含”蜂窝,形成分级蜂窝结构,从而解决网络内的“盲点”和“热点”,提高网络容量的。因此,一个多层次网络,往往是由

5G-无线通信网络蜂窝结构体系和关键技术

5G无线通信网络 蜂窝结构体系和关键技术 一、摘要 第4代无线通信系统已经部署或即将被部署在许多国家。然而,随着无线移动设备和服务爆炸式的发展,它们仍然面临着甚至4G不能调解的一些挑战,例如,频谱危机和高能耗。无线系统设计人员面临着不断增长的高数据率和移动性要求的需求的新的无线应用。因此,已经开始研究第五代无线系统,预计将在2020年部署。在本文中,我们提出一个潜在的蜂窝体系结构,分室内场景和室外场景,并讨论5G无线通信系统各种有前途的技术,比如,大规模MIMO,节能高效通信,认知无线电网络和可见光通信。还讨论了未来面对这些潜在的技术的挑战。 二、介绍 创新和有效的利用信息和通信技术(ICT)已在提高世界经济中变得越来越重要。无线通信网络在全球ICT战略中可能是最关键的因素,是许多其他工业的支柱。它是世界上发展最快、最具活力的行业之一。欧洲移动天文台报道称:移动通信业在2010年有总计1740亿欧元收入。一举超过了航空工业和制药业。无线技术的发展大大提高了人们的沟通能力、在商业活动和社交活动中的生活。 无线移动通信显著的成就反映技术更新快速步调。从第2代移动通信系统(2G)在1991年的初次露面到3G系统在2001年首次着手进行,无线移动系统从一个单纯的电话系统已经变换成一个能传输丰富多媒体内容的网络。4G无线系统设计满足高级国际移动通信(IMT-A)的需求,利用IP协议提供所有服务。在4G系统,采用一种高级无线电接口,是利用正交频分复用(OFDM),多输入多输出(MIMO)和链路适配(或自适应)技术。4G无线网络可以支持在低速移动中1Gb/s速率,例如漫游/本地无线接入;在高速移动中最高100Mb/s,例如移动接入。长期演进(LTE)和它的延伸,先进的长期演进系统,作用可实现的4G系统,最近已部署或很快将在全球部署。 然而,订制移动宽带系统的用户数量每年都在以引人关注的增加。越来越多的人渴望更快的移动互联网接入服务,时尚的手机,总的来说,与他人或获取信息的即时通信。当今更强大的智能手机和便携式电脑越来越受欢迎,它追求先进的多媒体功能。这导致了无线移动设备和服务的爆发。EMO指出,从2006年以来移动宽带每年以92%的速度增长。它已被无线世界研究论坛的预测(WWRF)到2017年时有7万亿无线设备服务于7亿人口;换句话说,连接网络的无线设备将达到世界人口的1000倍。随着越来越多的设备无线上网,很多研究需要面临解决的挑战。 最关键性的挑战之一是物理上为蜂窝通信分配的射频(RF)频谱十分稀缺。蜂窝频率使用超高频段的手机,通常范围从几百MHz到几GHz。这些频谱大量被使用,使运营商获得更多的频谱很困难。另一个挑战是,先进的无线技术的部署是以高能耗为代价。在无线

蜂窝网络技术

计算机网络 - 线下讨论 名称:蜂窝网络的技术和应用 学院:计算机学院 班级: 姓名: 学号:实验日期:2015年5月8日 负责模块:第三代蜂窝网络技术(第五部分) 小组成员:

蜂窝网络历史 移动通信的发展历史可以追溯到19世纪。1864年麦克斯韦从理论上证明了电磁波的存在;1876年赫兹用实验证实了电磁波的存在;1900年马可尼等人利用电磁波进行远距离无线电通信取得了成功,从此世界进入了无线电通信的新时代。 现今我们每天用到的移动通信技术开始于20世纪20年代的初期。最初美国Purdue大学学生发明了工作频率为2MHz的无线电接收机,并很快在底特律的警察局的车载无线电系统中投入使用,这成为了世界上首个可以有效工作的移动通信系统;20世纪30年代初,第一部调幅制式的双向移动通信系统在美国新泽西的警察局投入使用;20世纪30年代末,第一部调频制式的移动通信系统诞生,实验表明调频制式的移动通信系统要比调幅制式的移动通信系统更加有效。在随后的10几年间,调频制式的移动通信系统占据主导地位,也是在这个时期中,通信实验和电磁波传输的实验等工作完成了,在短波波段上实现了小容量专用移动通信系统。然而此时的移动通信系统存在诸多的缺陷,难以与公众网络互通。 第二次世界大战期间,由于军事上的需求,极大的促进了移动通信技术的快速发展。战后,军事移动通信技术逐渐被应用于民用领域,到20世纪50年代,美国和欧洲部分国家相继成功研制了公用移动电话系统,在技术上实现了移动电话和公众电话网络的互通,并且得到了广泛的应用。不过当时这种移动电话系统仍然采用人工接入方式,存在局限性,系统容量小。 从20 世纪60 年代中期至70年代中期,美国推出了改进型移动电话系统,它使用150MHz和450MHz频段,采用大区制、中小容量,实现了无线频道自动选择及自动接入公用电话网。20世纪70 年代中期,随着民用移动通信用户数量的不断增加,以及业务范围的扩大,可用频道数要求递增与有限的频谱供给之间的矛盾日益尖锐。为了更有效地利用有限的频谱资源,美国贝尔实验室提出了在移动通信发展史上具有里程碑意义的AMPS,它为移动通信系统在全球的广泛应用开辟了新的道路。 冲80年代中期开始,移动通信蓬勃发展,走向成熟,开发了新一代的数字蜂窝移动通信系统。由于数字无线传输的频谱利用率高,系统的容量得到大大地提升。除此之外,数字网能够同时提供语音,数据等多种业务。

蜂窝网络

蜂窝网络 --无线局域网课程报告 班级:08041203 学号:2012302014 姓名:杨笑天

前言 在本学期《无线局域网》课程中,我初步了解到了无线网络的优势劣势以及其的一些关键技术,例如CSMA/CA,RTS/CTS机制等。然而课程中介绍的是无线网络的一个分支无线局域网(WLAN、WiFi),虽然在家庭或者公司等场合使用起来很方便,适用于数据量较大的服务,但它覆盖范围较小,限制了使用;而无线网络另一重要分支的蜂窝移动通信网络的覆盖范围则更加广阔,在我们使用手机通话、上网时,使用的便是蜂窝移动网络。在充分理解无线局域网的基础上,我选择了研究蜂窝移动网络作为对这门课程的扩展,期间我在图书馆查阅了不少相关书籍对蜂窝网络的关键技术有了基本的了解。 早期的移动通信采用大区制的场强覆盖,即由一个基站覆盖一个较大的服务区,半径约为30~50km的范围。为了满足电波场强覆盖的要求,通常需要很大的发射功率和很高的天线塔。这种通信方式固然简单,但它的缺点也很明显:覆盖范围有限,数据容量有限频道利用率低,硬件设备受限等。 为了克服大区制移动通信的缺点,提高系统容量和有效地利用频率资源,人们从蜂巢中受到启发并应用的实际中,提出了小区制蜂窝移动网络的概念。蜂窝移动网络从最初单纯的语音通话发展到现在的高速的视频点播,其中的技术改进显而易见。然而,蜂窝网络最基本的思想却并未改变。作为通信工程专业的一名学生,在把握行业先进技术的同时,了解通信行业的过去也是一件十分有必要的事。如今蜂窝网络发展到第四代LTE,但本文由于篇幅限制,选择2G作为研究对象,只求对其关键技术做简单的阐述。 蜂窝通信系统 蜂窝网络结构 蜂窝网络被广泛采用的原因是源于一个数学结论,即以相同半径的圆形覆盖平面, 当圆心处于正六边形网格的各正六边形中心,也就是当圆心处于正三角网格的格点时所用圆的数量最少。虽然使用最少个结点可以覆盖最大面积的图形即使要求结点在一个如同晶格般有平移特性的网格上也仍是有待求解的未知问题,但在通讯中,使用圆形来表述实践要求通常是合理的,因此出于节约设备构建成本的考虑,正三角网格或者也称为简单六角网格是最好的选择。这样形成的网络覆盖在一起,形状非常象蜂窝,因此被称作蜂窝网络。

蜂窝移动通信系统组成

蜂窝移动通信系统主要是由交换网路子系统(NSS)、无线基站子系统(BSS)和移动台(MS)三大部分组成,如图2-1所示。其中NSS与BSS之间的接口为“A”接口,BSS与MS之间的接口为“Um”接口。在模拟移动通信系统中,TACS规范只对Um接口进行了规定,而未对A接口做任何的限制。因此,各设备生产厂家对A接口都采用各自的接口协议,对Um接口遵循TACS规范。也就是说,NSS系统和BSS系统只能采用一个厂家的设备,而MS可用不同厂家的设备。 图2-1 蜂窝移动通信系统的组成 由于GSM规范是由北欧一些运营公司“炒”出的规范,运营公司当然喜欢花最少的投资,用最好的设备来建最优良的通信网,因此GSM规范对系统的各个接口都有明确的规定。也就是说,各接口都是开放式接口。 GSM系统框图如图2-2,A接口往右是NSS系统,它包括有移动业务交换中心(MSC)、拜访位置寄存器(VLR)、归属位置寄存器(HLR)、鉴权中心(AUC)和移动设备识别寄存器(EIR),A接口往左Um 接口是BSS系统,它包括有基站控制器(BSC)和基站收发信台(BTS)。Um接口往左是移动台部分(MS),其中包括移动终端(MS)和客户识别卡(SIM)。 图2-2 GSM系统框图 在GSM网上还配有短信息业务中心(SC),即可开放点对点的短信息业务,类似数字寻呼业务,实现全国联网,又可开放广播式公共信息业务。另外配有语音信箱,可开放语音留言业务,当移动被叫客户暂不能接通时,可接到语音信箱留言,提高网路接通率,给运营部门增加收入。 2.2 交换网路子系统

交换网路子系统(NSS)主要完成交换功能和客户数据与移动性管理、安全性管理所需的数据库功能。 NSS 由一系列功能实体所构成,各功能实体介绍如下: MSC:是GSM系统的核心,是对位于它所覆盖区域中的移动台进行控制和完成话路交换的功能实体,也是移动通信系统与其它公用通信网之间的接口。它可完成网路接口、公共信道信令系统和计费等功能,还可完成BSS、MSC之间的切换和辅助性的无线资源管理、移动性管理等。另外,为了建立至移动台的呼叫路由,每个MS、还应能完成入口MSC(GMSC)的功能,即查询位置信息的功能。 VLR:是一个数据库,是存储MSC为了处理所管辖区域中MS(统称拜访客户)的来话、去话呼叫所需检索的信息,例如客户的号码,所处位置区域的识别,向客户提供的服务等参数。 HLR:也是一个数据库,是存储管理部门用于移动客户管理的数据。每个移动客户都应在其归属位置寄存器(HLR)注册登记,它主要存储两类信息:一是有关客户的参数;二是有关客户目前所处位置的信息,以便建立至移动台的呼叫路由,例如MSC、VLR地址等。 AUC:用于产生为确定移动客户的身份和对呼叫保密所需鉴权、加密的三参数(随机号码RAND,符合响应SRES,密钥Kc)的功能实体。 EIR:也是一个数据库,存储有关移动台设备参数。主要完成对移动设备的识别、监视、闭锁等功能,以防止非法移动台的使用。 2.3 无线基站子系统 BSS系统是在一定的无线覆盖区中由MSC控制,与MS进行通信的系统设备,它主要负责完成无线发送接收和无线资源管理等功能。功能实体可分为基站控制器(BSC)和基站收发信台(BTS)。 BSC:具有对一个或多个BTS进行控制的功能,它主要负责无线网路资源的管理、小区配置数据管理、功率控制、定位和切换等,是个很强的业务控制点。 BTS:无线接口设备,它完全由BSC控制,主要负责无线传输,完成无线与有线的转换、无线分集、无线信道加密、跳频等功能。 2.4 移动台 移动台就是移动客户设备部分,它由两部分组成,移动终端(MS)和客户识别卡(SIM)。 移动终端就是“机”,它可完成话音编码、信道编码、信息加密、信息的调制和解调、信息发射和接收。 SIM卡就是“身份卡”,它类似于我们现在所用的IC卡,因此也称作智能卡,存有认证客户身份所需的所有信息,并能执行一些与安全保密有关的重要信息,以防止非法客户进入网路。SIM卡还存储与网路和客户有关的管理数据,只有插入SIM后移动终端才能接入进网,但SIM卡本身不是代金卡。 2.5 操作维护子系统

蜂窝移动通信的认识解析

蜂窝移动通信的认识 通信行业的发展使人们的交流方便,使各地联系密切,取代了古时的飞鸽传书或快马加鞭的送信方式。从单工寻呼机、笨重的大哥大到现在小巧的手机、街机iphone,无线移动通信技术运用广泛,超过了固定通信,而蜂窝移动通信作为移动通信的一种,它是把覆盖的小区划分成若干个类似蜂窝的小区,每个小区中设立基站为用户提供服务,当用户运动时,通过基站和移动交换中心传输语音、数据、视频等进行越区切换以保障通话的畅通等的手机基本功能。 蜂窝系统的发展经历了1G以模拟通信为特征的移动通信时代到2G数字蜂窝移动通信时代到3G多媒体业务时代以及如今吵得沸沸扬扬但未实现的4G广带移动,一些技术的引入如频率复用等使频带利用率提高,用户可以迅速切换、享受高速的数据传输速度,也是蜂窝系统发展的象征。蜂窝移动通信的特点是用户容量大,服务性能较好,频谱利用率较高,用户终端小巧而且电池使用时间长,辐射小等等。蜂窝移动通信系统可分为宏蜂窝、微蜂窝和智能蜂窝。宏蜂窝的小区覆盖半径较大,但会因为障碍物引起较多“盲区”,而微蜂窝解决了宏蜂窝的缺陷,使“盲区”减少,频率复用使话务量大的“热点”地区通信质量有所改进,增加了通信的容量,但是同时带来了经济成本和网络复杂性等问题。微蜂窝主要服务对象为低速运动的移动台,因为对于高速移动台若使用微蜂窝,必定会导致移动台频繁地切换为其服务的基站而造成掉话,通话无法正常进行,所以由宏蜂窝来服务较合理。 如今的蜂窝移动通信市场中,GSM是当前应用最为广泛的移动电话标准。全球超过200个国家和地区超过10亿人正在使用GSM电话,它的信令和语音信道都是数字式的,因此GSM被看作2G移动电话系统。3G并没有想象中的深入人心,其网络建设速度慢,我认为在短期内,GSM仍然是通信的主导力量。3G手机接收数据速度快,但其普及需一定时间,价格也是一个关键因素。CDMA码分多址技术手机通话品质比GSM好,且可把用户对话时周围环境噪音降低,使通话更清晰,而且CDMA用码来区分用户,防止被人盗听的能力大大增强。其辐射小,是环保手机,它虽然使用人数并不大,但技术成熟并具有潜力。4G时代的到来还需要很长时间,因为3G的建设都没有完成,最高100Mbps的速度遥遥无期,4G的灵活性和智能化也是未来发展的

蜂窝网络服务功能介绍

蜂窝网络服务功能介绍 蜂窝网络蜂窝网络或移动网络(Cellular network)是一种移动通信硬件架构,把移动电话的服务区分为一个个正六边形的小子区,每个小区设一个基站,形成了形状酷似蜂窝的结构,因而把这种移动通信方式称为蜂窝移动通信方式。 蜂窝网络又可分为模拟蜂窝网络和数字蜂窝网络,主要区别于传输信息的方式。 蜂窝网络组成部分 蜂窝网络组成主要有以下三部分:移动站,基站子系统,网络子系统。移动站就是网络终端设备,比如手机或者一些蜂窝工控设备。基站子系统包括移动基站(大铁塔)、无线收发设备、专用网络(一般是光纤)、无线的数字设备等等的。基站子系统可以看作是无线网络与有线网络之间的转换器。 蜂窝和频率重用 蜂窝网络 蜂窝:将一块大的区域划分为多个小的蜂窝,使用多个小功率发射器代替一个大功率发射机。一般使用正六边形来描述蜂窝形状。 频率复用:每一个蜂窝使用一组频道。如果两个蜂窝相隔足够远,则可以使用同一组频道。簇(cluster):由N个蜂窝组成的蜂窝组,使用了全部的频率资源频率复用因子(reusefactor):1/N对于正六边形的蜂窝,N=i +i*j+j ,i》=1,j》=1,当i》1时,j0或当j》1时,i0.因此,N=3,4,7,9,12.。。 蜂窝的几何表示 蜂窝通常使用正六边形来表示。为什么是正六边形而不是圆?顶点到几何中心等距的多边形中,能够完整(无重叠)地覆盖某一区域可能的几何形状有:正方形、等边三角形和正六边形三种形状。在正方形、等边三角形和正六边形中,正六边形的面积最大。 蜂窝坐标系 使用(i,j)表示某一蜂窝的坐标。例如:蜂窝A的坐标为(2,1)

GSM蜂窝移动移动通信系统的网络结构

GSM网络结构 GSM系统主要由移动台(MS)、移动网子系统(NSS)、基站子系统(BSS)和操作支持子系统(OSS)四部分组成,如图所示: 基站子系统(BSS)在移动台(MS)和移动网子系统(NSS)之间提供和管理传输通路,特别是包括了MS与GSM系统的功能实体之间的无线接口管理。NSS是整个GSM系统的控制和交换中心,它负责所有与移动用户有关的呼叫接续处理、移动性管理、用户设备及保密性等功能,并提供GSM系统与其他网络之间的连接。MS、BSS和NSS组成GSM系统的实体部分,操作支持子系统(OSS)则提供运营部门一种手段来控制和维护这些实际运行部分。 网络子系统分为六个功能单元,即移动交换中心(MSC)、归属位置寄存器(HLR)、拜访位置寄存器(VLR)、鉴权中心(AUC)、设备识别寄存器(EIR)、操作与维护中心(OMC)。 (1)移动交换中心(MSC)MSC是网络核心,它具有交换功能,能使移动用户之间,移动用户与固定用户之间互相连接。它提供了与其它的MSC互连接口,和与固定网(如PSTN,ISDN等)的接口。MSC从三种数据库――归属位置寄存器(HLR),拜访位置寄存器(VLR),鉴权中心(AUC)――取得处理用户呼叫请求所需的全部数据,MSC也跟据最新数据更新数据库。 (2)归属位置寄存器(HLR)归属位置寄存器是系统的中央数据库,它存储着归属用户的所有数据,包括用户的接入验证、漫游能力、补充业务等。另外,HLR还为MSC提供关于移动台实际漫游所在的MSC区域的信息(动态数据),这样使任何入局呼叫立即按选择的路径送到被呼用户。 (3)拜访位置寄存器(VLR)VLR存储进入其覆盖区的移动用户的全部有关信息,它是动态用户数据库,它需要与有关的HLR进行大量数据交换。如果用户进入另一个VLR区,那么在VLR中存储的数据就会被删除。 (4)鉴权中心(AUC)AUC存储保护移动用户通信不受侵犯的必要信息。由于空中接口易受到窃听,因此在GSM系统规范中要求有保护移动用户不受侵

蜂窝网络详解(1)

蜂窝网络详解 业界一般把这张网叫做“蜂窝移动通信网”。如果你手边有苹果手机话,打开设置,就能看到关于“蜂窝网络”的相关选项,点进去之后,还能看到“蜂窝数据”相关的选项。下文将会经常出现的“网络”这个词,就是指的由多个基站组成的蜂窝网络。手机,又称“移动电话”,和固定电话最大的区别就在于手机可以被人随身携带,到处移动。这个过程就叫做“小区选择”。 单个基站的力量是非常渺小的,因此,需要把多个基站紧密地连接起来,组成一张蜂窝移动通信网,才能正常提供服务。 看完本篇内容,你将会了解: ① 什么是蜂窝网? ② 蜂窝网实现移动性管理? ③ 2345G的通信网络架构有何不同? 01、让我们开始吧! 单个基站的力量其实是非常渺小的。看似一个个复杂的庞然大物,也就只能覆盖方圆几百米的范围。在密集城区,一个1800MHz频段的4G基站,覆盖半径也就是300米左右。 如果你边打电话边走路,不知不觉地从一个基站的覆盖范围跑到了另外一个基站的覆盖范围,那么对你的服务就必须在这两个基站间无缝交接,才能保证电话不断。 因此,一个个孤立的基站单打独斗是没法提供良好服务的,需要让众多的基站联合起来,遵守相同的规则,互通有无,协同工作才能满足移动通信需求。 这大量的基站联合起来,再加上其他的一些传输,控制节点,就组成了一张“网”。业界一般把这张网叫做“蜂窝移动通信网”。 不难看出,“蜂窝移动通信网”这个词中包含了3个概念:“蜂窝”,“移动”和“通信网”。下面将进行逐一介绍。 02、啥是蜂窝? 说到蜂窝可以理解为蜜蜂的蜂巢,如果我们深入到蜂巢的内部,就会发现它们是由许多个完美的正六边形组成。这些正六边形无缝衔接起来,组成了一张大网,并且还会随着蜂群的壮大而不断地扩张。 虽然单个基站的覆盖范围很有限,但如果我们让每一个基站的覆盖都是一个完美的正六边形,多个基站联合起来,不就能实现大面积的无缝覆盖了吗?

蜂窝通信原理

第一章 蜂窝通信原理

蜂窝通信原理 概述 蜂窝电话系统用于为移动台MS(Mobile Station)与公共电话系统之间,或者和另一个蜂窝系统的移动台之间建立连接。 移动台MS与蜂窝网络之间的信息通过无线电波传送,这样省去了传统电话中的电话线,因此,移动用户可以自由移动,比如在车上,或步行。 蜂窝通信的优点 蜂窝电话网络与“陆地”电话网络相比,有许多优点,不仅对于移动用户,对于网络运营商来说也是一样的。

概述对于移动用户的优点 移动性 灵活性 便利性 对于网络运营商的优点 易于扩容 高收益率 频谱利用率高 易于重新配置

网络组成 GSM网络包括移动业务交换中心MSC(Mobile Services Switching Centres),基站系统BSS(Base Station System),以及移动台MS(Mobile Station)。这三种网络实体各自都还可以划分成更小的实体,比如在BSS中有基站控制器BSC(Base Station Controller),基站收发信台BTS(Base Transceiver Station)和压缩编码器XCDR(Transcoder)。对于这些更小的网络实体,在后面将会具体讨论到。 在MSC,BSS和MS组成的蜂窝系统中,移动用户可以发起呼叫,接收呼叫,系统会相应的计费,就如同一般的PSTN网络能完成的功能一样。唯一存在的问题是,MS只能同其它的MS之间进行呼叫,为了使移动台也能与市话用户之间进行呼叫,所以有必要把GSM 网络连到PSTN。 蜂窝网络中的移动台处在“小区”中,这些小区由BSS提供,每个BSS能提供一个或多个小区,这取决于厂商的设备。 小区一般被画作六边形,但实际上小区是不规则形状,这主要是受周围地形干扰的影响或是取决于网络规划者的设计。 实际的小区覆盖

蜂窝移动通信发展展望

蜂窝移动通信发展展望

蜂窝移动通信发展展望

蜂窝移动通信发展展望 王建—102542 移动通信是指移动用户之间,或移动用户与固定用户之间的通信。随着电子技术的发展,特别是半导体、集成电路和计算机技术的发展,移动通信得到了迅速的发展。随着其应用领域的扩大和对性能要求的提高,促使移动通信在技术上和理论上向更高水平发展。20世纪80年代以来,蜂窝移动通信已成为现代通信网中不可缺少并发展最快的通信方式之一。 回顾移动通信的发展历程,蜂窝移动通信的发展大致经历了这样几个发展阶段:第一代移动通信技术主要指蜂窝式模拟移动通信,技术特征是蜂窝网络结构克服了大区制容量低、活动范围受限的问题。第二代移动通信是蜂窝数字移动通信。使蜂窝系统具有数字传输所能提供的综合业务等种种优点。第三代移动通信的主要特征是除了能提供第二代移动通信系统所拥有的各种优点,克服了其缺点外,还能够提供宽带多媒体业务,能提供高质量的视频宽带多媒体综合业务,并能实现全球漫游。 3G( 3rd-generation)是第三代移动通信技术的简称是指支持高速数据传输的蜂窝移动通讯技术。3G服务能够同时传送声音(通话)及数据信息。3G与2G 的主要区别是在传输声音和数据的速率上的提升,它能够在全球范围内更好地实现无线漫游,并处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务,同时也要考虑与已有第二代系统的良好兼容性。作为一名生活在3G移动通信逐渐发展成熟的时代里,我对3G的直观理解是这样的:可以视频通话;全国无漫游,接听免费,不区分长途和市话;

上网速度很快,联通无线网卡的上行速率是7.4M;可以将语音和数据同步进行等。 现在用的大多还是第二代技术,第三代技术还不成熟。21世纪移动通信技术和市场飞速发展,在新技术和市场需求的共同作用下,未来移动通信技术将呈现以下几大趋势:网络业务数据化、分组化,移动互联网逐步形成;网络技术数字化、宽带化;网络设备智能化、小型化;应用于更高的频段,有效利用频率;移动网络的综合化、全球化、个人化;各种网络的融合;高速率、高质量、低费用。这正是第四代(4G)移动通信技术发展的方向和目标。 第四代移动通信技术的概念可称为宽带接入和分布网络,具有非对称的超过2Mbit/s的数据传输能力。它包括宽带无线固定接入、宽带无线局域网、移动宽带系统和交互式广播网络。第四代移动通信标准比第三代标准拥有更多的功能,它可以在不同的无线平台和跨越不同频带的网络中提供无线服务,可以在任何地方用宽带接入互联网,能够提供定位定时、数据采集、远程控制等综合功能。目前正在开发和研制中的4G通信将具有以下特征:通信速度更快;网络频谱更宽;各种业务的完美融合;智能性更高;兼容性能更平滑;实现更高质量的多媒体通信;通信费用更加便宜等。 对于现在的人来说,未来的4G通信显得很神秘,不少人都认为第四代无线通信网络系统是人类有史以来最复杂的技术系统。总的来说,要顺利、全面地实施4G通信,还将可能遇到一些困难。首先,人们对未来的4G通信的需求是它的通信传输速度将会得到极大提升,从理论上说最高可达到100Mbit/s,但手机的速度将受到通信系统容量的限制。据有关行家分析,4G手机将很难达到其

蜂窝通信网络定位技术简介

移动定位技术 蜂窝通信网络定位

移动定位技术类型 ?基于GPS的定位技术 ?基于北斗导航系统的定位技术 ?蜂窝通信网络定位 ?基于Wi-Fi的无线网络定位 ?基于ZigBee的网络定位 ?基于UWB(Ultra-Wide Band,超宽带)的的定位?混合定位 ?… …

移动定位技术分类 技术特征 卫星定位:GPS定位、北斗导航卫星定位等 网络定位:分为局域网定位和广域网定位 覆盖范围 室内定位:WLAN定位、RFID、ZigBee、UWB、蓝牙等 室外定位:广域网GSM、卫星定位、蜂窝等 定位原理基于ID定位:移动通信网络定位、RFID等 基于几何定位:TOA、TDOA、RTOF、POA、RSS、AOA等参数基于位置指纹定位:TOA、TDOA、POA、RSS、信噪比等参数

特点 技术特征 卫星定位:最广泛、技术最成熟无法提供室内定位 网络定位:室内室外定位均可与网络覆盖有关覆盖范围 室内定位:定位精度高小范围局部定位 室外定位:范围广整体精度不高 定位原理基于ID定位:简单,成本低精度取决于ID的密度基于几何定位:精度较高受NLOS影响很大 基于位置指纹定位:平台独立计算量很大,精度一般

蜂窝网络定位技术 基于移动台确定移动台与收发信号机之间的几何位置关系,计算移动台的位置估计值。 基于网络 由多个固定位置接收机同时检测移动台发射的信号,由网络移动定位中心估计位置。 GPS 辅助 GPS 接收机模块获取近似位置数据,传给移动通信网络,由网络定位服务器计算位置。 蜂窝网无线定位技术是基于 ?全球移动通信系统GSM (Global System for Mobile Communications)、?封包无线数据业务GPRS (General Packet Radio Service)、?码分多址CDMA (Code division Multiple Access)等移动通信系统的基础上,对移动终端和基站之间的特征参数进行检测, 这些特征参数包括:?信号场强、?传播时间或者?时间差、 ?信号入射角等信息,对移动台的位置进行估计。

第1章 蜂窝移动通信基础

第一章蜂窝移动通信的发展历程 现代移动通信技术始于20世纪20年代,发展到现在,大约经历了六个发展阶段。 第一阶段的标志是早期移动通信系统的应用,从20世纪20年代到40年代,是移动通信的早期发展阶段。 从20世纪40年代中期到60年代初期,早期的公用移动通信系统开始应用,这是现代移动通信技术的第二阶段。这个阶段移动通信技术逐渐应用到大众通信,系统采用人工接续方式,网络容量较小。 第三阶段从20世纪60年代中期到70年代中期。在此期间,美国推出了改进型移动电话系统(IMTS),德国推出了B网。这个阶段的系统采用大区制,容量有较大的提高。 第四阶段从20世纪70年代中期到80年代中期,这个阶段小区制的蜂窝移动通信系统得到了大规模应用,采用的是模拟技术,代表是美国的AMPS系统和欧洲的TACS系统。 第五阶段从20世纪80年代中期到21世纪初,这个阶段的特点是数字移动通信系统得到了大规模应用,代表技术是欧洲的GSM和美国的CDMA,也就是通常所说的第二代移动通信技术(2G)。数字蜂窝网络相对模拟蜂窝网,频谱利用率和系统容量得到了很大的提高。这个阶段的移动通信系统已经可以提供数据业务,业务类型大大丰富。 第六个阶段从20世纪90年代末开始,标志是第三代移动通信技术的发展和应用。1999年11月5日在芬兰赫尔新基召开的ITU TG8/1第18次会议上,最终确定了3类(TDMA、CDMA-FDD、CDMA-TDD)共5种技术作为第三代移动通信的基础,其中WCDMA、CDMA2000和TD-SCDMA是3G的3个主流标准。目前,WCDMA和CDMA2000在部分地区已经正式商用。这个阶段的特征是系统容量和载频利用率得到了较大的提高。第三代移动通信系统可以提供高速数据业务,承载的业务类型得到了极大的丰富。 表1-1给出了三种3G的主流标准的主要区别。 注:1Mchip/s表示每秒传输1M码片。 中国在移动通信技术的研究和应用上起步都比较晚,但发展很快。从20世纪80年代开始,我国开始蜂窝移动通信的建设,最早于1987年在广东建成了TACS制式的模拟移动通信系统。到1990年,我国有10个城市开通了模拟移动通信网络,用户达到2万人。1994年,邮电部决定引入GSM技术后,移动通信在我国获得了更加快速的应用。2001年,中国联通开始了CDMA网络的建设,这样两个主流的2G技术在我国都得到了商用。2002年开始,我国的GSM万里过和CDMA网络逐渐升级为2.5G的GPRS和CDMA2000 1x。从1987

蜂窝通信原理解析

第一章蜂窝通信原理 第一章 蜂窝通信原理 1 of 18 第一章蜂窝通信原理 蜂窝通信原理 概述 蜂窝电话系统用于为移动台 MS (Mobile Station 与公共电话系统之间,或者和另一个蜂窝系统的移动台之间建立连接。 移动台 MS 与蜂窝网络之间的信息通过无线电波传送, 这样省去了传统电话中的电话线, 因此, 移动用户可以自由移动, 比如在车上, 或步行。 蜂窝通信的优点 蜂窝电话网络与“陆地”电话网络相比,有许多优点,不仅对于移动用户,对于网络运营商来说也是一样的。 2 of 18 第一章蜂窝通信原理 概述 对于移动用户的优点 移动性 灵活性

便利性 对于网络运营商的优点 易于扩容 高收益率 频谱利用率高 易于重新配置 3 of 18 第一章蜂窝通信原理 4 of 18 网络组成 GSM 网络包括移动业务交换中心 MSC (Mobile Services Switching Centres ,基站系统 BSS (Base Station System ,以及移动台 MS (Mobile Station 。这三种网络实体各自都还可以划分成更小的实体,比如在 BSS 中有基站控制器 BSC (Base Station Controller , 基站收发信台 BTS (Base Transceiver Station 和压缩编码器 XCDR (Transcoder 。对于这些更小的网络实体,在后面将会具体讨论到。

在 MSC , BSS 和 MS 组成的蜂窝系统中,移动用户可以发起呼叫, 接收呼叫, 系统会相应的计费, 就如同一般的 PSTN 网络能完成的功能一样。唯一存在的问题是, MS 只能同其它的 MS 之间进行呼叫, 为了使移动台也能与市话用户之间进行呼叫, 所以有必要把 GSM 网络连到 PSTN 。 蜂窝网络中的移动台处在“小区”中,这些小区由 BSS 提供, 每个 BSS 能提供一个或多个小区,这取决于厂商的设备。 小区一般被画作六边形, 但实际上小区是不规则形状, 这主要是受周围地形干扰的影响或是取决于网络规划者的设计。 实际的小区覆盖 第一章蜂窝通信原理

相关文档
最新文档