瞬时变化率--导数

合集下载

瞬时变化率

瞬时变化率

瞬时变化率—导数教学目标:(1)理解并掌握曲线在某一点处的切线的概念(2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度(3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处 的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想一、复习引入1、什么叫做平均变化率;2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率3、如何精确地刻画曲线上某一点处的变化趋势呢?下面我们来看一个动画。

从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。

所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势二、新课讲解1、曲线上一点处的切线斜率不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0101)()(x x x f x f k PQ --=, 设x 1-x 0=△x ,则x 1 =△x +x 0, ∴xx f x x f k PQ ∆-∆+=)()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,xx f x x f k PQ ∆-∆+=)()(00无限趋近点Q 处切线斜率。

2、曲线上任一点(x 0,f(x 0))切线斜率的求法:(2) 位移的平均变化率:tt s t t s ∆-∆+)()(00 (3)瞬时速度:当无限趋近于0 时,tt s t t s ∆-∆+)()(00无限趋近于一个常数,这个常数称为t=t 0时的瞬时速度求瞬时速度的步骤: 1.先求时间改变量t ∆和位置改变量)()(00t s t t s s -∆+=∆2.再求平均速度ts v ∆∆=3.后求瞬时速度:当t ∆无限趋近于0,ts ∆∆无限趋近于常数v 为瞬时速度 (4)速度的平均变化率:tt v t t v ∆-∆+)()(00 (5)瞬时加速度:当t ∆无限趋近于0 时,t t v t t v ∆-∆+)()(00无限趋近于一个常数,这个常数称为t=t 0时的瞬时加速度注:瞬时加速度是速度对于时间的瞬时变化率三、数学应用例1、已知f(x)=x 2,求曲线在x=2处的切线的斜率。

高二数学选修课件第章瞬时变化率导数

高二数学选修课件第章瞬时变化率导数
优化问题中的近似计算
在求解一些优化问题时,可以利用微分进行近似计算,如求解最小 值、最大值等问题。
05
高阶导数及其性质探讨
Chapter
高阶导数定义及计算方法
高阶导数定义
高阶导数是指函数导数的导数,即多次求导得到的导数。例如,函数f(x)的一阶导数为f'(x),二阶导数 为f''(x),以此类推,n阶导数为f^n(x)。
最值
函数在某一区间内的最大值或最小值称为该函数在该区间内的最值。通过求导并 令导数为零,可以求得函数的驻点,进而判断驻点是否为最值点。
极值
函数在某一点处的极大值或极小值称为该函数在该点的极值。极值是函数局部性 质的一种表现,通过研究函数的极值可以了解函数的整体性质。
04
微分概念及其在近似计算中应 用
06
总结回顾与拓展延伸
Chapter
本章知识点总结回顾
导数的定义与几何意义
导数描述了函数在某一点处的瞬 时变化率,其几何意义是函数图 像在该点处的切线的斜率。
高阶导数
二阶及二阶以上的导数统称为高 阶导数,表示函数的变化率的变 化率。
01 02 03 04
导数的计算法则
包括基本初等函数的导数公式、 导数的四则运算法则、复合函数 的求导法则等。
若f(x) = log_a x(a > 0,a ≠ 1),则 f'(x) = 1 / (x ln a)
常数函数
若f(x) = c(c为常数 ),则f'(x) = 0
幂函数
指数函数
对数函数
三角函数
若f(x) = a^x(a > 0 ,a ≠ 1),则f'(x) = a^x ln a

瞬时变化率——导数课件

瞬时变化率——导数课件

随着数学与其他学科的交叉融 合,导数的应用将更加深入和 广泛,为解决实际问题提供更 加有效的工具。
THANKS
感谢观看
隐函数导数计算
总结词
掌握隐函数的求导方法
详细描述
隐函数的导数可以通过对等式两边同 时求导来获得,注意处理复合变量和 函数之间的关系。
高阶导数计算
总结词
理解高阶导数的概念和计算方法
详细描述
高阶导数表示导数在研究函数的极值、拐点等问题中有重 要应用。
导数的几何意义
总结词
导数的几何意义是切线的斜率。
详细描述
在二维平面坐标系中,函数图像上某一点的切线斜率即为该点的导数值。导数可 以用来判断函数在该点的增减性以及变化趋势。
导数与瞬时速度的关系
总结词
导数与瞬时速度之间存在密切联系。
详细描述
在物理和工程领域中,瞬时速度的概念常常用到。瞬时速度可以理解为物体在某一时刻的运动速度,这个速度是 通过物体在该点的加速度与时间的变化率来计算的,而加速度的变化率即为该点的导数。因此,导数可以用来描 述瞬时速度的变化趋势。
要点二
详细描述
在实际问题中,经常需要解决一些优化问题,如最大利润 、最小成本等。通过建立数学模型,将实际问题转化为数 学问题,并利用导数研究函数的性质,可以找到最优解, 为实际问题的解决提供有效的途径。
04
导数的物理意义与经济学意义
导数在物理中的应用
速度与加速度
导数可以用来描述物体运动的速度和 加速度,例如自由落体运动中,物体 的速度和加速度可以通过对高度关于 时间的函数求导得到。
导数在其他领域的应用
工程学
在工程学中,导数可以用来描述机械运动的 规律,例如在机械振动中,物体的振动频率 和振幅可以通过对位移关于时间的函数求导 得到。

02_瞬时变化率——导数

02_瞬时变化率——导数

一、瞬时速度
设物体运动所经过的路程为 s=s(t). 以 t0 为起始时刻,物体在 t 时 间内的平均速度为
(tt00 t) (t f( t) f (ft 0 )0 ) s s f v v 。。 tt tt
当t0时, v 常数 这个常数就是物体在t0时刻 的瞬时速度.
三、导函数
1.如果 f(x)在开区间(a,b)内每一点 x 都是可导的,则称 f(x)在区间(a,b)可导.这样,对开区间(a,b)内每个值 x,都 对应一个确定的导数 f′(x).于是,在区间(a,b)内,f′(x)构 成一个新的函数,这个函数称为 y=f(x)的导函数,记为 f′(x) 或 y′(或 y′x).导函数通常简称为导数.
实例:
小明去蹦极,假设小明下降的运动 1 2 符合方程 s gt ,请同学们计算 2 小明从3秒到5秒间的平均速度。
如何计算出在第3秒时的速度,即t=3时 的瞬时速度呢?
1 2 s gt (s表示位移,t表示时间) 2
解 : 先计算t 3到t 3 t时间内 的平均速度 , 1 1 2 2 g (3 t ) g 3 s 2 1 2 v g (6 t ) t (3 t ) 3 2 当t无限趋近于0时, v无限趋近于常数3g , 此即t 3秒时的瞬时时 速
重要结论:
平均变化率
x 0
瞬时变化率
二、瞬时变化率与导数
设函数 y=f(x)在 x0 附近有定义,当自变量在 x=x0 附近的 改变量为 Δx 时,函数值相应地改变 Δy=f(x0+Δx)-f(x0). Δy fx0+Δx-fx0 如果当 Δx 趋近于 0 时, 平均变化率 = 趋 Δx Δx 近于一个常数 l, 那么常数 l 称为函数 f(x)在点 x0 处的瞬时变化 率.记作: fx0+Δx-fx0 当 Δx→0 时, →l.上述过程通常也记作 Δx

3.1.2瞬时变化率——导数(一) 作业1 2017-2018学年高中数学选修1-1苏教版

3.1.2瞬时变化率——导数(一) 作业1 2017-2018学年高中数学选修1-1苏教版

3.1.2 瞬时变化率——导数(一)5分钟训练(预习类训练,可用于课前)1.已知f(x)=-x 2+10,则f(x)在x=23处的瞬时变化率是( ) A.3 B.-3 C.2 D.-2答案:B 解析:x y ∆∆=xx ∆+---+∆+-]10)23([10)23(22=-3-Δx. 当Δx 无限趋近于0时,xy ∆∆无限趋近于-3,选B. 2.曲线f(x)=x 3+1上对应于x=1处的切线的斜率为( )A.1B.-1C.3D.-3答案:C 解析:x y ∆∆=xx ∆+-+∆+)11(1)1(33=3+3Δx+Δx 2. 当Δx 无限趋近于0时,xy ∆∆无限趋近于3,选C. 3.求曲线y=x +1在点(1,2)处的切线的斜率.解:设在x=1处有改变量Δx ,则对应的函数的改变量为 Δy=1+221)1(1-∆+=+-∆++x x x . 则当Δx 无限趋近于0时,x y ∆∆=)22()22)(22(22+∆+∙∆+∆+-∆+=∆-∆+x x x x x x 221+∆+=x 无限趋近于42,即曲线y=x +1在(1,2)处的切线的斜率是42. 10分钟训练(强化类训练,可用于课中)1.在导数定义中,自变量的增量Δx ( )A.Δx >0B.Δx <0C.Δx=0D.Δx≠0答案:D解析:Δx 表示一个趋向于0的无穷小量,可以大于0,也可以小于0,但不能等于0.2.设函数y=f(x),当自变量x 由x 0改变到x 0+Δx 时,函数的改变量Δy 为( )A.f(x 0+Δx)B.f(x 0)+ΔxC.f(x 0)·ΔxD.f(x 0+Δx)-f(x 0) 答案:D解析:Δy 表示变量y 在区间[x 0,x 0+Δx ]上的增量.即Δy=f(x 0+Δx)-f(x 0).3.已知曲线y=2x 3上一点A(1,2),则A 处的切线的斜率为( )A.6B.4C.6+Δx+2(Δx)2D.2答案:A解析:求点A 处的切线的斜率即求f(x)在点A(1,2)处的导数.∵x y ∆∆=xx x f x f ∆⨯-∆+=∆-∆+3212)1(2)1()1(=6+6Δx+2(Δx)2, ∴Δx 趋向于0时,xy ∆∆趋向于6,所以f(x)在点A(1,2)处的导数为6,即点A 处切线的斜率为6. 4.已知某质点按规律s=2t 2+2t(米)作直线运动,质点在3秒时的瞬时速度为___________. 答案:14 m/s解析:求质点在3秒时的瞬时速度也就是求t=3时的导数.v=0lim →∆t t s ∆∆=0lim →∆t tt t t f t f ∆⨯+⨯-∆++∆+=∆-∆+)3232()]3(2)3(2[)3()3(22 =0lim →∆t (14+2Δt)=14(m/s). 5.已知y=x 3-2x+1,则y′|x=2=______________.答案:10解析:Δy=(2+Δx)3-2(2+Δx)+1-(23-2×2+1)=(Δx)3+6(Δx)2+10Δx,xy ∆∆=(Δx)2+6Δx+10, ∴y′|x=2=0lim →∆x [(Δx)2+6Δx+10]=10. 6.如图,曲线y=x 3在x 0=0处的切线是否存在?若存在,求出切线的斜率和切线方程;若不存在,请说明理由.插入图片F03;Z3mm解:Δy=f(0+Δ x)-f(0)=(Δx)3,x y ∆∆=(Δx)2.当Δx 无限趋近于0时,xy ∆∆无限趋近于常数0,这说明割线会无限趋近于一个极限位置,即曲线在x=0处的切线存在,此时切线的斜率为0(x y ∆∆无限趋近于0),又曲线过点(0,0),故切线方程为y=0.30分钟训练(巩固类训练,可用于课后)1.一质点按规律s=2t 3运动,则在t=2时的瞬时速度为( )A.4B.6C.24D.48答案:Ct s ∆∆=tt ∆⨯-∆+3322)2(2=24+12Δt+2Δt 2. 当Δt 无限趋近于0时,ts ∆∆无限趋近于24. 2.一物体的运动方程是s=5t+23t 2,则下述四个结论中正确的个数是( ) ①物体在时间段[0,1]内的平均速度是213m/s;②物体在t=1 s 时的瞬时速度是8 m/s;③物体在时间段[0,1]内经过的位移是8 m;④物体在时间段[0,1]内经过的位移是213m.A.1B.2C.3D.4答案:C只有③错,选C.3.物体运动方程为s=41t 4-3,则t=5时的瞬时速度为( ) A.5 B.25 C.125 D.625答案:C Δs=41(t+Δt )4-3-(41t 4-3) =41[t 4+4t 3·Δt+6t 2·(Δt )2+4t·(Δt )3+(Δt )4]-3-41t 4+3 =41·[(Δt )4+4t·(Δt )3+6t 2·(Δt )2+4t 3·Δt ]. ∴t s ∆∆=tt t t t t t t ∆∙∆∙+∆∙+∆∙+∆44)(6)(4)(32234 =41[(Δt )3+4t·(Δt )2+6t 2·Δt+4t 3]. ∴当Δt 无限趋近于0时, s′=41(0+0+0+4t 3)=t 3. ∴s′|t =5=53=125.∴t=5时的瞬时速度为125.4.曲线f(x)=x 在点(4,2)处的切线的斜率是_______________. 答案:41 解析:x y ∆∆=24124+∆+=∆-∆+x x x .当Δx 无限趋近于0时,x y ∆∆无限趋近于41. 5.如图,A,B 是抛物线y=2-x 2上的两点,则割线AB 的斜率是_____________,当Δx 无限趋于0时,可得抛物线上过点A 的切线的斜率为_______________.插入图片F04;S*2;X*2答案:-2-Δx -2解析:x y ∆∆=xx ∆--∆+-22)12()1(2=-2-Δx. 当Δx 无限趋近于0时,xy ∆∆无限趋近于-2. 6.曲线y=x 3-4x 在点(1,-3)处的切线的倾斜角为_______________.答案:43π解析:Δy=f(1+Δx)-f(1)=(1+Δx)3-4(1+Δx)-(1-4)=(Δx)3+3(Δx )2-Δx.xy ∆∆=(Δx)2+3Δx -1. 当Δx 无限趋近于0时,xy ∆∆无限趋近于-1,所以曲线y=x 3-4x 在点(1,-3)处的切线的斜率为-1. 因为直线的倾斜角α∈[0,π), 所以,所求切线的倾斜角α=43π. 7.抛物线y=x 2+bx+c 在点(1,2)处的切线平行于直线bx+y+c=0,求两条平行线间的距离.解:x y ∆∆=xc b c x b x ∆++-+∆++∆+)1()1()1(2 =2+Δx+b.当Δx 无限趋近于0时,xy ∆∆无限趋近于2+b ,即切线的斜率为2+b. ∴⎩⎨⎧=-=⎩⎨⎧++=-=+.2,1,12,2c b c b b b 切线方程为x-y+1=0, 平行直线方程为x-y-2=0,两平行直线间的距离为223. 8.若一物体的运动方程为s=⎪⎩⎪⎨⎧≥-+<≤+).3()3(32),30(1322t t t t 求此物体在t=1和t=4时的瞬时速度.解:当t=1时,s=3t 2+1,Δs=s (1+Δt )-s (1)=3(1+Δt )2+1-4=6Δt+3(Δt )2. ∴t s ∆∆=tt t ∆∆+∆2)(36=6+3Δt. 当Δt 无限趋近于0时,ts ∆∆无限趋近于常数6,即物体在t=1时的瞬时速度为6. 当t=4时,s=2+3(t-3)2.Δs=s(t+Δt)-s(t)=s(4+Δt)-s(4)=2+3(4+Δt -3)2-2-3(4-3)2=3[6Δt+3(Δt )2], ∴t s ∆∆=6+3Δt.当Δt 无限趋近于0时,ts ∆∆无限趋近于常数6,即物体在t=4时的瞬时速度为6. 9.已知x 轴是曲线y=x 3+bx+c 的一条切线,试求b 、c 满足的关系式.解:∵y=x 3+bx+c ,∴Δy=(x+Δx )3+b (x+Δx )+c-(x 3+bx+c )=3x 2Δx+3x·(Δx )2+(Δx )3+bΔx. ∴xy ∆∆=3x 2+b+3x·Δx+(Δx )2. ∴当Δx→0时,x y ∆∆→3x 2+b. ∴y′=3x 2+b.由于x 轴是曲线y=x 3+bx+c 的一条切线.设切点(x 0,0),则有⎪⎩⎪⎨⎧=++=+)2(.0)1(,0303020c bx x b x由②得x 0(x 02+b )=-c ,两边平方得:x 02(x 02+b )2=c 2,由①得x 02=3b -,将它代入上式得: 3b -(3b -+b )2=c 2, ∴2743b -=c 2,即27432b c -=. 10.已知自由落体的运动方程为s=21gt 2,求: (1)落体在t 0到t 0+Δt 这段时间内的平均速度;(2)落体在t 0时的瞬时速度;(3)落体在t 0=2秒到t 1=2.1秒这段时间内的平均速度;(4)落体在t=2秒时的瞬时速度.解:平均速度v =ts ∆∆,瞬时速度v=0lim →∆t t s ∆∆. (1)落体在t 0到t 0+Δt 这段时间内(即Δt 时间内)取得的路程增量为Δs=21g (t 0+Δt )2-21gt 02. 因此,落体在这段时间内的平均速度为:v =t s ∆∆=tt t t g t gt t t g ∆∆+∆=∆-∆+)2(2121)(2102020=21g(2t 0+Δt ). (2)落体在t 0时的瞬时速度为v=0lim →∆t v =0lim →∆t 21g(2t 0+Δt)=gt 0. (3)落体在t 0=2秒到t 1=2.1秒时,其时间增量Δt=t 1-t 0=0.1(秒),由(1)知平均速度为 v =21g(2×2+0.1)=2.05g≈2.05×9.8=20.09(米/秒). (4)由(2)知落体在t 0=2秒时的瞬时速度为v=g×2≈9.8×2=19.6(米/秒).。

1.1.2瞬时变化率-导数(二)学案

1.1.2瞬时变化率-导数(二)学案

1.1.2瞬时变化率-导数(二)瞬时速度与瞬时加速度一、教学目标(1)理解瞬时速度与瞬时加速度的定义,掌握如何由平均速度和平均加速度“逼近” 瞬时速度与瞬时加速度的过程。

理解平均变化率的几何意义;理解△x 无限趋近于0的含义;(2)运用瞬时速度与瞬时加速度的定义求解瞬时速度与瞬时加速度。

二、教学过程 (1)引入在高台跳水运动中,如果我们知道运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在关系()105.69.42++-=t t t h ,那么我们就会计算任意一段的平均速度v ,通过平均速度v 来描述其运动状态,但用平均速度不一定能反映运动员在某一时刻的瞬时速度,那么如何求运动员的瞬时速度呢?问题:2秒时的瞬时速度是多少?关于这些数据,下面的判断对吗?2.当t ∆趋近于0时,即无论t 从小于2的一边,还是t 从大于2的一边趋近于2时,平均速度都趋近于一个确定的值-13.1s m /。

3. 靠近-13.1且比-13.1大的任何一个数都可以是某一段[]2,2t ∆+上的平均速度; 4. 靠近-13.1且比-13.1小的任何一个数都可以是某一段[]t ∆+2,2上的平均速度; 5. -13.1表示在2秒附近,运动员的速度大约是-13.1s m /。

分析:2=t 秒时有一个确定的速度,2秒附近的任何一段上的平均速度都不等于瞬时速度,所以比-13.1大的数作为2秒的瞬时速度不合理,比-13.1小的数作为2秒的瞬时速度也不合理,因此,运动员在2秒时的瞬时速度是-13.1s m /。

(2)新课讲解瞬时速度和瞬时加速度(1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度。

(2) 位移的平均变化率:t t s t t s ∆-∆+)()(00(3)瞬时速度:当t ∆无限趋近于0时,t t s t t s ∆-∆+)()(00无限趋近于一个常数,这个常数称为0t t =时的瞬时速度。

瞬时变化率——导数(一)(含答案)

瞬时变化率——导数(一)(含答案)

1.1.2 瞬时变化率——导数(一)一、基础过关1.一质点运动的方程为s =5-3t 2,若该质点在时间段[1,1+Δt ](Δt >0)内相应的平均速度为-3Δt -6,则该质点在t =1时的瞬时速度是________.2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率的值为________.3.已知曲线y =12x 2-2上一点P ⎝⎛⎭⎫1,-32,则过点P 的切线的倾斜角为________. 4.曲线y =4x -x 3在点(-1,-3)处的切线方程为______________.(已知(a +b )3=a 3+3a 2b +3ab 2+b 3)二、能力提升5.一物体的运动方程为s =7t 2+8,则其在t =______时的瞬时速度为1.6.一物体的运动方程是s =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度为________. 7.已知物体运动的速度与时间之间的关系是:v (t )=t 2+2t +2,则在时间间隔[1,1+Δt ]内的平均加速度是________,在t =1时的瞬时加速度是________.8.已知直线x -y -1=0与曲线y =ax 2相切,则a =________.9.求曲线f (x )=3x 2-2x 在点(1,1)处切线的斜率.10.以初速度v 0 (v 0>0)垂直上抛的物体,t 秒时间的高度为s (t )=v 0t -12gt 2,求物体在时刻t 0处的瞬时速度.11.高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)之间的关系式为h (t )=-4.9t 2+6.5t +10,求运动员在t =6598s 时的瞬时速度,并解释此时的运动状况.三、探究与拓展12.若一物体运动方程如下:(位移单位:m ,时间单位:s)s =⎩⎪⎨⎪⎧3t 2+2 (t ≥3) ①29+3(t -3)2 (0≤t <3) ② 求:(1)物体在t ∈[3,5]内的平均速度;(2)物体的初速度v 0;(3)物体在t =1时的瞬时速度.答案1.-62.63.45°4.x -y -2=05.1146.at 07.4+Δt 48.149.解 ∵Δy Δx =f (1+Δx )-f (1)Δx=3(1+Δx )2-2(1+Δx )-(3×12-2×1)Δx=3(Δx )2+4Δx Δx=3Δx +4. ∵当Δx 无限趋近于0时,3Δx +4无限趋近于4, ∴曲线f (x )=3x 2-2x 在点(1,1)处切线的斜率为4.10.解 ∵Δs =v 0(t 0+Δt )-12g (t 0+Δt )2- ⎝⎛⎭⎫v 0t 0-12gt 20 =(v 0-gt 0)Δt -12g (Δt )2, ∴Δs Δt =v 0-gt 0-12g Δt , 当Δt 无限趋近于0时,Δs Δt无限趋近于v 0-gt 0. 故物体在时刻t 0处的瞬时速度为v 0-gt 0.11.解 令t 0=6598,Δt 为增量. 则h (t 0+Δt )-h (t 0)Δt= -4.9×⎝⎛⎭⎫6598+Δt 2+6.5×⎝⎛⎭⎫6598+Δt +10+4.9×⎝⎛⎭⎫65982-6.5×6598-10Δt=-4.9Δt ⎝⎛⎭⎫6549+Δt +6.5Δt Δt=-4.9⎝⎛⎭⎫6549+Δt +6.5,∴Δt →0.∴h (t 0+Δt )-h (t 0)Δt→0 即运动员在t 0=6598s 时的瞬时速度为0 m/s. 说明此时运动员处于跳水运动中离水面最高点处.12.解 (1)∵物体在t ∈[3,5]内的时间变化量为Δt =5-3=2,物体在t ∈[3,5]内的位移变化量为Δs =3×52+2-(3×32+2)=3×(52-32)=48,∴物体在t ∈[3,5]上的平均速度为Δs Δt =482=24 (m/s). (2)求物体的初速度v 0即求物体在t =0时的瞬时速度. ∵物体在t =0附近的平均变化率为Δs Δt =f (0+Δt )-f (0)Δt=29+3[(0+Δt )-3]2-29-3(0-3)2Δt=3Δt -18, ∵Δt 无限趋近于0时,Δs Δt=3Δt -18无限趋近于-18, ∴物体的初速度v 0为-18 m/s.(3)物体在t =1时的瞬时速度即为函数在t =1处的瞬时变化率. ∵物体在t =1附近的平均变化率为Δs Δt =s (1+Δt )-s (1)Δt=29+3[(1+Δt )-3]2-29-3(1-3)2Δt=3Δt -12. 当Δt 无限趋近于0时,Δs Δt=3Δt -12无限趋近于-12, ∴物体在t =1时的瞬时速度为-12 m/s.。

导数--函数在某一点处的瞬时变化率

导数--函数在某一点处的瞬时变化率

选修2-2 导数及其应用1.1.2 导 数 (总第49导学案)——函数在某一点处的瞬时变化率 一、【教学目标】1、理解并掌握导数的概念,会求函数在一点处的导数的方法。

2、了解导数的几何意义,会求函数在某点处的切线的斜率,进而求过此点的切线方程;3、能灵活运用导数的定义及导函数的定义求解有关问题。

二、【重点】 1、导数的概念及其几何意义; 2、导数的应用。

三、【难点】 导数概念及灵活应用 四、【知识梳理】 1、导数的概念:设函数)(x f y =在区间),(b a 上有定义,),(b a x ∈o ,若→∆x 时,A xx f x x f x y →∆-∆+=∆∆)()(o o (常数),则称)(x f 在o x x =处可导,并称该常数A 为函数)(x f 在o x x =处的导数,记作)(o x f ',即A x f =')(o2、求函数)(x f y =在点o x 处的导数的算法: S1 求函数的增量)()(o o x f x x f y -∆+=∆S2 求平均变化率xx f x x f x y ∆-∆+=∆∆)()(o o S3 求瞬时变化率,即0→∆x,A xy→∆∆,则A x f =')(o 3、导数的几何意义(作图分析): 就是曲线)(x f y =在点P )(,(o o x f x 处切线的斜率。

4、求函数)(x f y =在o x x =处切线方程的方法:(1) 求曲线在该点处的切线的斜率(即求导数)(o x f '(2) 点斜式写出方程))((o o o x x x f y y -'=-,并化成一般式或斜截式。

5、导函数的概念:若)(x f 对区间),(b a 内任一点可导,即o x 变化,则)(x f 在各点的导数也随着o x 的变化而变化,因而也是自变量x 的函数,该函数称为)(x f 的导函数,记作)(x f ',简称导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:瞬时变化率—导数
教学目标:
(1)理解并掌握曲线在某一点处的切线的概念
(2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度
(3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处 的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想
一、复习引入
1、什么叫做平均变化率;
2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率
3、如何精确地刻画曲线上某一点处的变化趋势呢?
下面我们来看一个动画。

从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。

所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势
二、新课讲解
1、曲线上一点处的切线斜率
不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0101)()(x x x f x f k PQ --=
, 设x 1-x 0=△x ,则x 1 =△x +x 0, ∴x
x f x x f k PQ ∆-∆+=)()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x
x f x x f k PQ ∆-∆+=)()(00无限趋近点Q 处切线斜率。

2、曲线上任一点(x 0,f(x 0))切线斜率的求法:
x
x f x x f k ∆-∆+=)()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的斜率。

3、瞬时速度与瞬时加速度
(1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度
(2) 位移的平均变化率:t
t s t t s ∆-∆+)()(00 (3)瞬时速度:当无限趋近于0 时,t
t s t t s ∆-∆+)()(00无限趋近于一个常数,这个常数称为t=t 0时的瞬时速度
求瞬时速度的步骤:
1.先求时间改变量t ∆和位置改变量)()(00t s t t s s -∆+=∆
2.再求平均速度t
s v ∆∆= 3.后求瞬时速度:当t ∆无限趋近于0,
t s ∆∆无限趋近于常数v 为瞬时速度 (4)速度的平均变化率:t
t v t t v ∆-∆+)()(00 (5)瞬时加速度:当t ∆无限趋近于0 时,
t t v t t v ∆-∆+)()(00无限趋近于一个常数,这个常数称为t=t 0时的瞬时加速度
注:瞬时加速度是速度对于时间的瞬时变化率
三、数学应用
例1、已知f(x)=x 2,求曲线在x=2处的切线的斜率。

变式:1.求2
1()f x x =过点(1,1)的切线方程 2.曲线y=x 3在点P 处切线斜率为k,当k=3时,P 点的坐标为_________
3.已知曲线()f x =
P(0,0)的切线斜率是否存在?
例2.一直线运动的物体,从时间t 到t t +∆时,物体的位移为s ∆,那么s t
∆∆为( ) A.从时间t 到t t +∆时,物体的平均速度; B.在t 时刻时该物体的瞬时速度; t ∆时物体的速度; D.从时间t 到t t +∆时物体的平均速度
例3.自由落体运动的位移s(m)与时间t(s)的关系为s=
22
1gt (1)求t=t 0s 时的瞬时速度
(2)求t=3s 时的瞬时速度
(3)求t=3s时的瞬时加速度
点评:求瞬时速度,也就转化为求极限,瞬时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景。

相关文档
最新文档