瞬时变化率——导数(一)(含答案)

合集下载

高中数学(苏教版)选修22配套课件:1.1.2 瞬时变化率——导数(1)

高中数学(苏教版)选修22配套课件:1.1.2  瞬时变化率——导数(1)
3.已知 f (x) 1 x2 ,求曲线 y f (x) 在 x 1 处的切线斜率和切线方程. 2
课堂练习:
练习:已知 f (x) x ,求曲线 y f (x) 在
x 1 处的切线Байду номын сангаас率和切线方程. 2
小 结:
1.曲线上一点P处的切线是过点P的所有直线中最接 近P点附近曲线的直线,则P点处的变化趋势可以由 该点处的切线反映 (局部以直代曲).
所以xQ=x+2
=xQ+2
kPQ=
(2+x) x
2-4
= 4x+x2 x
=4+x
当xQ无限趋近于2时, kPQ无限趋近于常数4, 从而曲线f(x)=x2 在点(2,4)处的切线 斜率为4.
当Δx无限趋近于0时, kPQ无限趋近于常数4, 从而曲线f(x)=x2 在点(2,4)处的切线 斜率为4.
线 Q
切线 l
x
如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线. 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当 点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的
直线l,这条直线l也称为曲线在点P处的切线.这种方法叫割线逼
近切线.
y
P为已知曲线C上的一点,
Q
如何求出点P处的切线方程?
=2+ x
当△x无限趋近于
0时,割线逼近切线, 割线斜率逼近切线斜 率.
当Δx无限趋近于0时, kPQ无限趋近于常数2, 从而曲线f(x)=x2+1 在点x=1处的切线斜率为2.
y
割线
Q
切线
y=f(x) P(x0,f(x0))
y = f(x)
f (x0+x) f (x0) Q(x0+△x,f(x0+ △x))

高中数学第一章导数及其应用1.1.2瞬时变化率--导数学案苏教版选修2

高中数学第一章导数及其应用1.1.2瞬时变化率--导数学案苏教版选修2

1.1.2 瞬时变化率——导数导数定义求函数的导函数.1.瞬时速度(1)在物理学中,运动物体的位移与所用时间的比称为__________.(2)一般地,如果当Δt __________0时,运动物体位移s (t )的平均变化率s (t 0+Δt )-s (t 0)Δt无限趋近于一个______,那么这个______称为物体在t =t 0时的__________,也就是位移对于时间的____________.预习交流1做一做:如果质点A 按规律s =3t 2运动,则在t =3 s 时的瞬时速度为__________. 2.瞬时加速度一般地,如果当Δt __________时,运动物体速度v (t )的平均变化率v (t 0+Δt )-v (t 0)Δt无限趋近于一个_______,那么这个________称为物体在t =t 0时的_________,也就是速度对于时间的____________.3.导数(1)设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx无限趋近于一个______A ,则称f (x )在x =x 0处______,并称该______A 为函数f (x )在x =x 0处的______,记为______.(2)导数f ′(x 0)的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处切线的________. (3)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的________,记作________.预习交流2做一做:设函数f (x )可导,则当Δx →0时,f (1+Δx )-f (1)3Δx等于__________.预习交流3做一做:函数y =x +1x在x =1处的导数是__________.预习交流4利用导数求曲线切线方程的步骤有哪些?预习导引1.(1)平均速度 (2)无限趋近于 常数 常数 瞬时速度 瞬时变化率预习交流1:提示:s (3+Δt )=3(3+Δt )2=3[9+6Δt +(Δt )2]=27+18Δt +3(Δt )2.s (3)=3×32=27.Δs =s (3+Δt )-s (3)=18Δt +3(Δt )2, ∴Δs Δt =18+3Δt ,当Δt →0时,ΔsΔt→18. 2.无限趋近于0 常数 常数 瞬时加速度 瞬时变化率3.(1)常数 可导 常数 导数 f ′(x 0) (2)斜率 (3)导函数 f ′(x )预习交流2:提示:f (1+Δx )-f (1)3Δx =13·f (1+Δx )-f (1)Δx,当Δx →0时,f (1+Δx )-f (1)Δx =f ′(1),∴原式=13f ′(1).预习交流3:提示:∵函数y =f (x )=x +1x,∴Δy =f (1+Δx )-f (1)=1+Δx +11+Δx -1-1=(Δx )21+Δx.∴Δy Δx =Δx 1+Δx ,当Δx →0时,Δy Δx →0,即y =x +1x在x =1处的导数为0. 预习交流4:提示:利用导数的几何意义求曲线的切线方程的步骤: (1)求出函数y =f (x )在点x 0处的导数f ′(x 0);(2)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)(x -x 0); (3)将所得切线方程化为一般式.一、求瞬时速度一辆汽车按规律s =at 2+1做直线运动,当汽车在t =2 s 时的瞬时速度为12 m/s ,求a .思路分析:先根据瞬时速度的求法得到汽车在t =2 s 时的瞬时速度的表达式,再代入求出a 的值.1.一个物体的运动方程为s =1-t +t 2.其中s 的单位是m ,t 的单位是s ,那么物体在3 s 末的瞬时速度是__________.2.子弹在枪筒中运动可以看作是匀变速运动,如果它的加速度是a =5×105 m/s 2,子弹从枪口射出时所用的时间为t 0=1.6×10-3s .求子弹射出枪口时的瞬时速度.根据条件求瞬时速度的步骤:(1)探究非匀速直线运动的规律s =s (t );(2)由时间改变量Δt 确定路程改变量Δs =s (t 0+Δt )-s (t 0);(3)求平均速度v =ΔsΔt;(4)运用逼近思想求瞬时速度,当Δt →0时,ΔsΔt→v (常数).二、利用导数的定义求函数的导数已知f (x )=x 2-3.(1)求f (x )在x =2处的导数; (2)求f (x )在x =a 处的导数.思路分析:根据导数的定义进行求解.深刻理解概念是正确解题的关键.1.若函数f (x )=ax -2在x =3处的导数等于4,则a =__________.2.(1)求函数f (x )=1x +1在x =1处的导数;(2)求函数f (x )=2x 的导数.结合函数,先求出Δy =f (x 0+Δx )-f (x 0),再求ΔyΔx=f (x 0+Δx )-f (x 0)Δx ,当Δx →0时,求ΔyΔx 的值,即f ′(x 0).三、导数的几何意义已知y =2x 3上一点A (1,2),求点A 处的切线斜率.思路分析:为求得过点(1,2)的切线斜率,可以从经过点(1,2)的任意一条直线(割线)入手.1.抛物线y =14x 2在点Q (2,1)处的切线方程为__________.2.已知曲线y =3x 2-x ,求曲线上一点A (1,2)处的切线的斜率及切线方程.1.导数的几何意义是指:曲线y =f (x )在(x 0,y 0)点处的切线的斜率就是函数y =f (x )在x =x 0处的导数,而切线的斜率就是切线倾斜角的正切值.2.运用导数的几何意义解决曲线的切线问题时,一定要注意所给的点是否是在曲线上,若点在曲线上,则该点的导数值就是该点处的曲线的切线的斜率;若点不在曲线上,则该点的导数值不是切线的斜率.3.若所给的点不在曲线上,应另设切点,然后利用导数的几何意义建立关于所设切点横坐标的关系式进行求解.1.若一物体的运动方程为s =2-12t 2,则该物体在t =6时的瞬时速度为__________.2.已知曲线y =12x 2-2上一点P ⎝⎛⎭⎪⎫1,-32,则过点P 的切线的倾斜角为__________. 3.函数f (x )=1-3x 在x =2处的导数为__________.4.一质点按规律s =2t 3运动,则t =2时的瞬时速度为__________.5.如图,函数y =f (x )的图象在点P 处的切线是l ,则f (2)+f ′(2)=__________.答案:活动与探究1:解:∵s =at 2+1,∴s (2+Δt )=a (2+Δt )2+1=4a +4a ·Δt +a ·(Δt )2+1.于是Δs =s (2+Δt )-s (2)=4a +4a ·Δt +a ·(Δt )2+1-(4a +1)=4a ·Δt +a ·(Δt )2,∴Δs Δt =4a ·Δt +a ·(Δt )2Δt=4a +a ·Δt . 当Δt →0时,ΔsΔt→4a ,依题意有4a =12,∴a =3. 迁移与应用:1.5 m/s 解析:s (3+Δt )=1-(3+Δt )+(3+Δt )2=(Δt )2+5Δt +7,所以s (3+Δt )-s (3)=(Δt )2+5Δt , 故s (3+Δt )-s (3)Δt=Δt +5,于是物体在3 s 末的瞬时速度,即Δt →0时,ΔsΔt→5(m/s).2.解:运动方程为s =12at 2.∵Δs =12a (t 0+Δt )2-12at 20=at 0·Δt +12a ·(Δt )2,∴Δs Δt =at 0+12a ·Δt ,∴Δt →0时,ΔsΔt→at 0. 由题意知a =5×105(m/s 2),t 0=1.6×10-3(s),故at 0=8×102=800(m/s).即子弹射出枪口时的瞬时速度为800 m/s.活动与探究2:解:(1)因为Δy Δx =f (2+Δx )-f (2)Δx=(2+Δx )2-3-(22-3)Δx=4+Δx ,当Δx 无限趋近于0时,4+Δx 无限趋近于4, 所以f (x )在x =2处的导数等于4.(2)因为Δy Δx =f (a +Δx )-f (a )Δx=(a +Δx )2-3-(a 2-3)Δx=2a +Δx ,当Δx 无限趋近于0时,2a +Δx 无限趋近于2a , 所以f (x )在x =a 处的导数等于2a .迁移与应用:1.4 解析:由题意知f ′(3)=4,而f ′(3)=Δy Δx =a (3+Δx )-2-(3a -2)Δx=a ,当Δx →0时,ΔyΔx→a ,故a =4.2.解:(1)(导数定义法)∵Δy =f (1+Δx )-f (1)=12+Δx -12=-Δx 2(2+Δx ),∴ΔyΔx=-12(2+Δx ),从而Δx →0时,2+Δx →2,∴f (x )在x =1处的导数等于-14.(导函数的函数值法)∵Δy =1x +Δx +1-1x +1=-Δx (x +Δx +1)(x +1),∴ΔyΔx=-1(x +Δx +1)(x +1),从而Δx →0时,Δy Δx →-1(x +1)2,于是f ′(1)=-1(1+1)2=-14.(2)∵Δy =f (x +Δx )-f (x )=2x +Δx -2x ,∴Δy Δx =2x +Δx -2x Δx =(2x +Δx -2x )(x +Δx +x )Δx (x +Δx +x )=2x +Δx +x,从而Δx →0时,Δy Δx →1x.活动与探究3:解:设A (1,2),B (1+Δx,2(1+Δx )3),则割线AB 的斜率为k AB =2(1+Δx )3-2Δx =6+6Δx +2(Δx )2,当Δx 无限趋近于0时,k AB 无限趋近于常数6,从而曲线y =2x 3在点A (1,2)处的切线斜率为6.迁移与应用:1.x -y -1=0 解析:∵y =14x 2,Δy =14(2+Δx )2-14×22=Δx +14(Δx )2,Δy Δx=1+14Δx , ∴当Δx →0时,Δy Δx →1,即f ′(2)=1,由导数的几何意义得抛物线y =14x 2在点Q (2,1)处的切线的斜率为1.∴切线方程为y -1=x -2,即x -y -1=0.2.解:因为Δy Δx =3(1+Δx )2-(1+Δx )-(3×12-1)Δx=5+3Δx ,当Δx 无限趋近于0时,5+3Δx 无限趋近于5,所以曲线y =3x 2-x 在点A (1,2)处的切线斜率是5.切线方程为y -2=5(x -1),即5x -y -3=0. 当堂检测1.-6 解析:Δs Δt =s (6+Δt )-s (6)Δt =2-12(6+Δt )2-(-16)Δt =-12Δt -6,∴当Δt →0时,ΔsΔt→-6.2.45° 解析:∵Δy Δx =12(1+Δx )2-2-12×1+2Δx =Δx +12(Δx )2Δx =1+12Δx ,当Δx无限趋近于0时,1+12Δx 无限趋近于1,∴曲线y =12x 2-2在点P ⎝⎛⎭⎪⎫1,-32处的切线斜率为1,∴倾斜角为45°.3.-3 解析:Δy =f (2+Δx )-f (2)=-3Δx ,Δy Δx =-3,则Δx 趋于0时,ΔyΔx=-3.∴f (x )在x =2处的导数为-3.4.24 解析:Δs =s (2+Δt )-s (2)=2(2+Δt )3-2×23=2×[8+6(Δt )2+12Δt +(Δt )3]-16=24Δt +12(Δt )2+2(Δt )3, ∴Δs Δt =24+12Δt +2(Δt )2,则当Δt →0时,Δs Δt →24. 5.98解析:由题图可知,直线l 的方程为9x +8y -36=0. 当x =2时,y =94,即f (2)=94.又切线斜率为-98,即f ′(2)=-98,∴f (2)+f ′(2)=98.欢迎您的下载,资料仅供参考!。

3.1.2-3.1.3 瞬时速度与导数 导数的几何意义全面版

3.1.2-3.1.3 瞬时速度与导数 导数的几何意义全面版

3.“Δx→0”的意义. 剖析:Δx与0的距离要多近有多近,即|Δx-0|可以小于给定的任意 小的正数,但始终有Δx≠0.
题型一
题型二
题型三
题型四
导数的定义
【例1】 已知函数y=f(x)在点x0处可导,试求下列各极限的值.
(1) lim
Δ ������ →0
f(x0-���������x���x)-f(x0);
f(x0+������������xx)-f(x0)=l”.
名师点拨(1)运动的瞬时速度就是路程函数y=s(t)的瞬时变化率.
(2)运动的瞬时加速度就是速度函数y=v(t)的瞬时变化率.
【做一做1】 一质点作直线运动,其位移s与时间t的关系是s=3t-
t2,则质点的初速度为
.
解析:质点的初速度即为s=3t-t2在t=0处的瞬时变化率.
答案:4
1.如何求函数y=f(x)在点x0处的导数? 剖析:(1)求函数值的改变量Δy;
(2)求平均变化率ΔΔ������������; (3)取极限得导数 f'(x0)=Δl���i���m→0 ������������yx.
2.“函数在一点处的导数”“导函数”“导数”三者之间有何区别与联
系?
剖析(1)函数在一点处的导数f'(x0)是一个常数,不是变量. (2)函数的导数是针对某一区间内任意点x而言的.函数f(x)在区间
【做一做4】 曲线y=x2在点(2,4)处的切线的斜率为
.
解析:曲线y=x2在点(2,4)处的切线的斜率就是函数y=x2在x=2处
的导数.
因此其斜率
k= lim
Δ ������ →0
(2+������x)2-22 ������x

导数的概念及运算【题集】-讲义(教师版)

导数的概念及运算【题集】-讲义(教师版)

导数的概念及运算【题集】1. 函数的平均变化率A. B. C. D.1.如图,函数在,两点间的平均变化率是( ).【答案】B 【解析】由图可知,,所以,所以函数在,两点间的平均变化率是.故选B .【标注】【知识点】求平均变化率(1)(2)2.求下列函数在区间和上的平均变化率...【答案】(1)(2)在区间和上的平均变化率均为.在区间上的平均变化率,在区间上的平均变化率.【解析】(1)(2)在区间上的平均变化率为,在区间上的平均变化率为.在区间上的平均变化率为,在区间上的平均变化率为.【标注】【知识点】函数的平均变化率、瞬时速度与瞬时变化率【素养】数学运算A.B.C.D.3.在函数的图象上取一点及邻近一点,则等于().【答案】C【解析】,.【标注】【知识点】求平均变化率A. B. C. D.4.函数的图象如图,则函数在下列区间上平均变化率最大的是().【答案】C【解析】函数在区间上的平均变化率为,由函数图象可得,在区间上,,即函数在区间上的平均变化率小于;在区间、、上时,且相同,由图象可知函数在区间上的最大,所以函数在区间上的平均变化率最大.故选:.【标注】【知识点】求平均变化率2. 瞬时变化率与导数(1)(2)5.利用导数的定义求下列函数的导数...【答案】(1)(2)..【解析】(1)(2).从而,当时,,∴.∵∴,∴当时,,∴.【标注】【知识点】导数的定义A.B.C.D.6.若,则( ).【答案】D 【解析】.故选:.【标注】【知识点】导数的定义A. B. C. D.7.设是可导函数,且,则().【答案】C【解析】,故选 C.【标注】【知识点】导数的定义;导数的几何意义的实际应用;函数的极限A. B.C. D.8.若函数在区间内可导,且,则的值为().【答案】C【解析】因为在可导,所以,.【标注】【知识点】导数的定义;函数的平均变化率、瞬时速度与瞬时变化率3. 基本初等函数的导数A.B.C.D.9.下列求导数运算正确的是().【答案】C【解析】根据导数的四则运算以及基本初等函数运算法则,故有选项,故错误.选项,故错误.选项,故正确.选项,故错误.故选.【标注】【素养】数学运算【知识点】利用公式和四则运算法则求导A.B.C.D.10.下列导数运算错误的是( ).【答案】C 【解析】选项:.故选.【标注】【知识点】利用公式和四则运算法则求导11.如果函数,那么 .【答案】【解析】由题意可知,∴,,∴.故答案为:.【标注】【知识点】利用公式和四则运算法则求导;计算任意角的三角函数值A. B.C.D.12.已知,则的值为( ).【答案】A 【解析】,【标注】【知识点】复合函数的求导法则4.导数的四则运算13.函数的导数是 .【答案】【解析】,.【标注】【知识点】利用公式和四则运算法则求导A.B.C.D.14.函数在处的导数等于( ).【答案】A 【解析】∵,∴.【标注】【知识点】利用公式和四则运算法则求导15.的导数 .【答案】【标注】【知识点】利用公式和四则运算法则求导(1)16.求下列函数的导数:.(2)(3)(4)(5)(6)(7)......【答案】(1)(2)(3)(4)(5)(6)(7)......【解析】(1)(2)(3)(4)(5)(6)(7)....先使用三角公式进行化简.∴.【标注】【素养】数学运算A. B. C. D.17.已知函数的导数为,且满足,则().【答案】C【解析】由函数,∴,∴当时,则有,解得.故选:.【标注】【知识点】利用公式和四则运算法则求导A. B. C. D.18.已知,则().【答案】B【解析】∵,∴,∴,∴,∴.故选.【标注】【知识点】利用公式和四则运算法则求导A. B.C. D.19.已知函数的导函数为且满足,则().【答案】B【解析】,.故选.【标注】【知识点】利用公式和四则运算法则求导A. B. C. D.20.已知函数的导函数为,且满足,则().【答案】B 【解析】,令,即,解得.【标注】【知识点】利用公式和四则运算法则求导5. 复合函数求导法则(1)(2)(3)(4)(5)(6)21.求下列函数的导数.......【答案】(1)(2)(3)(4)(5)(6)......【标注】【知识点】复合函数的求导法则;利用公式和四则运算法则求导(1)(2)(3)(4)(5)(6)(7)(8)22.求下列函数的导数.........(9)(10)..【答案】(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)..........【解析】(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)略.略.略.略.略.略.略.略.略.略.【标注】【知识点】复合函数的求导法则;利用公式和四则运算法则求导23.已知函数,且,则的值为.【答案】【解析】,.【标注】【知识点】复合函数的求导法则A.B.C. D.24.已知函数,是函数的导函数,则函数的部分图象是( ).【答案】D 【解析】因为,所以,可知为奇函数,故排除,;又因为,,排除选,故选.【标注】【知识点】函数图象的识别问题;根据奇偶性确定图象;利用公式和四则运算法则求导6. 导数的几何意义A. B.C.D.25.曲线在点处的切线的斜率为( ).【答案】B【解析】∵,∴,∴.故选.【标注】【知识点】导数的几何意义A.B.C.D.26.设曲线在点处的切线斜率为,则点的坐标为( ).【答案】B【标注】【知识点】导数的几何意义;导数的几何意义的实际应用(1)(2)(3)27.导数等于切线斜率.如图,直线是曲线在处的切线,则.如图,曲线在点处的切线方程是, .设是偶函数.若曲线在点处的切线的斜率为,则该曲线在点处的切线的斜率为 .【答案】(1)(2)(3)【解析】(1)(2)(3)直线的斜率为,所以.时,,∵的斜率为,故,∴.由偶函数的图象关于轴对称知,在对称点处的切线也关于轴对称,故所求切线的斜率为.也可由特殊函数得到此题答案.【标注】【知识点】导数的几何意义的实际应用;已知切线方程求参数;导数的几何意义;斜率计算28.若曲线上点处的切线平行于直线,则点的坐标是.【答案】【解析】函数的定义域为,函数的导数为,直线的斜率,∵曲线上点处的切线平行与直线,∴,即,解得,此时,故点的坐标是,故答案为:.【标注】【知识点】求在某点处的切线方程;导数的几何意义29.曲线在点处的切线方程为.【答案】【解析】因为,所以,所以该切线方程为,即.故答案为:.【标注】【知识点】导数的几何意义A.B. C. D.30.曲线在点处的切线方程是().【答案】A【解析】,故,所以曲线在处的切线斜率为,切线方程为,化简整理得,故选.【标注】【知识点】求在某点处的切线方程31.已知函数,求过点的切线方程.【答案】和.【解析】,因为点在曲线上.①若点为切点,则此时切线斜率为,则切线方程为,即;②若点不是切点,则设切点为,有,切线方程满足,(*)整理得,因为点满足方程(*),则是方程的一个根,即,即,所以或(舍,因为切点不为),即,,则此时切线的方程为,即,综上所述,过点的切线方程为和.【标注】【知识点】求过某点的切线方程;求在某点处的切线方程;导数的几何意义A. B.C.或D.或32.过点的切线方程是( ).【答案】C【解析】设切点坐标为,,切线斜率,则,解得或,∴所求切线方程为或.【标注】【知识点】求过某点的切线方程;导数的几何意义(1)(2)33.已知曲线.求曲线在点处的切线方程.求曲线过点的切线方程.【答案】(1)(2)或【解析】方法一:方法二:(1)(2)∵,∴在点处的切线的斜率,∴曲线在点处的切线方程为,即.∵点在曲线上,且,∴在点处的切线的斜率为,∴曲线在点处的切线方程为,即.设曲线与过点的切线相切于点,则切线的斜率为,∴切线方程为,即,∵点在切线上,∴,即,∴,即,∴,解得或,故所求的切线方程为或.【标注】【知识点】求在某点处的切线方程;导数的几何意义;求过某点的切线方程34.若直线是曲线的切线,也是曲线的切线,则.【答案】【解析】方法一:方法二:设直线与曲线和曲线的切点分别为和.由导数的几何意义可得,即,由切点也在各自的曲线上,可得,解得,从而,则.由,得,由,得.设直线与曲线相切于点,则①,②,设直线与曲线相切于点,则③,④,由①得,代入②得,即⑤,由③得,代入④得,即⑥,⑤⑥得,,代入⑤得,故答案为.【标注】【知识点】求过某点的切线方程;导数的几何意义的实际应用;导数的几何意义35.若直线是曲线的切线,也是曲线的切线,则.【答案】【解析】设与曲线的切线,曲线的切点分别为,,∵,曲线,∴,,∴,①切线方程分别为,即为,或,即为,解得,②由①②解得,,可得:,则有,.故答案为:.【标注】【知识点】求过某点的切线方程;导数的几何意义。

瞬时变化率——导数

瞬时变化率——导数

以初速度 v0(v0>0)垂直上抛的物体,t 秒时的高度为 s(t)= v0t-12gt2,则物体在 t0 时刻的瞬时速度为________.
[答案] v0-gt0
[解析] 因为Δs=v0(t0+Δt)-12g(t0+Δt)2-(v0t0-12gt20) =(v0-gt0)Δt-21g(Δt)2, 所以ΔΔst=v0-gt0-12gΔt, 所以当Δt无限趋近于0时,ΔΔst无限趋近于v0-gt0, 故物体在时刻t0的瞬时速度为v0-gt0.
第一章
1.1 导 数 第2课时 瞬时变化率与导数
复习 平均变化率
一般的,函数 f (x)在区间上 [x1, x2 ]的平均变化率为
f (x1) f (x2 ) y
x1 x2
x
平均速度
v s t
平均速度反映了在某一段时间内
运动的快慢程度,那么,如何刻画在
某一时刻运动的快慢程度呢?
实例:
小明去蹦极,假设小明下降的运动
重要结论:
x 0
平均变化率
瞬时变化率
二、瞬时变化率与导数
设函数 y=f(x)在 x0 附近有定义,当自变量在 x=x0 附近的 改变量为 Δx 时,函数值相应地改变 Δy=f(x0+Δx)-f(x0).
如果当 Δx 趋近于 0 时,平均变化率ΔΔxy=fx0+ΔΔxx-fx0趋 近于一个常数 l,那么常数 l 称为函数 f(x)在点 x0 处的瞬时变化 率当.Δ记x→作0:时,fx0+ΔΔxx-fx0→l.上述过程通常也记作 Δlixm→0 fx0+ΔΔxx-fx0=l.函数在点 x0 处的瞬时变化率通常称为 f(x)在 x=x0 处的导数,这时,记作 f′(x0),即 f′(x0)=Δlixm→0 fx0+ΔΔxx-fx0,也可记作 y′|x=x0.

1.1.2 瞬时速度与导数 学案(含答案)

1.1.2 瞬时速度与导数 学案(含答案)

1.1.2 瞬时速度与导数学案(含答案)1.1.2瞬时速度与导数瞬时速度与导数学习目标1.理解瞬时速度及瞬时变化率的定义.2.会用瞬时速度及瞬时变化率定义求物体在某一时刻的瞬时速度及瞬时变化率.3.理解并掌握导数的概念,掌握求函数在一点处的导数的方法.4.理解并掌握开区间内的导数的概念,会求一个函数的导数知识点一瞬时速度与瞬时变化率一质点的运动方程为s83t2,其中s表示位移,t 表示时间思考1试求质点在1,1t这段时间内的平均速度答案st831t28312t63t.思考2当t趋近于0时思考1中的平均速度趋近于几怎样理解这一速度答案当t趋近于0时,st趋近于6,这时的平均速度即为t1时的瞬时速度梳理瞬时速度与瞬时变化率1物体运动的瞬时速度设物体运动路程与时间的关系是sft,当t趋近于0时,函数ft在t0到t0t之间的平均变化率ft0tft0t趋近于某个常数,这个常数称为t0时刻的瞬时速度2函数的瞬时变化率设函数yfx在x0及其附近有定义,当自变量在xx0附近改变量为x时,函数值相应地改变yfx0xfx0,如果当x趋近于0时,平均变化率yxfx0xfx0x趋近于一个常数l,则常数l称为函数fx在点x0处的瞬时变化率记作当x0时,fx0xfx0xl.上述过程,通常也记作limx0fx0xfx0xl.知识点二yfx在点x0处的导数1函数yfx在点x0处的导数定义式fx0limx0fx0xfx0x.2实质函数yfx在点x0处的导数即函数yfx在点x0处的瞬时变化率知识点三导函数对于函数fxx22.思考1如何求f1,f0,f12,faaR答案fx0limx0x0x22x202xlimx02x0x2x0,f12,f00,f121,fa2a.思考2若a是一变量,则fa是常量吗答案fa2a,说明fa不是常量,而是关于a的函数梳理导函数的概念1函数可导的定义如果fx在开区间a,b内每一点x都是可导的,则称fx在区间a,b可导2导函数的定义条件fx在区间a,b可导定义对开区间a,b内每个值x,都对应一个确定的导数fx,于是,在区间a,b内fx构成一个新的函数,我们把这个函数称为函数yfx的导函数导函数记法fx或y或yx1瞬时变化率是刻画某函数值在区间x1,x2上变化快慢的物理量2函数yfx在xx0处的导数值与x的正.负无关3函数在一点处的导数fx0是一个常数类型一求瞬时速度例1某物体的运动路程s单位m与时间t单位s的关系可用函数stt2t1表示,求物体在t1s时的瞬时速度解sts1ts1t1t21t11211t3t,limt0stlimt03t3,物体在t1s处的瞬时变化率为3,即物体在t1s时的瞬时速度为3m/s.引申探究1若本例中的条件不变,试求物体的初速度解求物体的初速度,即求物体在t0s时的瞬时速度sts0ts0t0t20t11t1t,limt01t1,物体在t0s时的瞬时变化率为1,即物体的初速度为1m/s.2若本例中的条件不变,试问物体在哪一时刻的瞬时速度为9m/s.解设物体在t0时刻的瞬时速度为9m/s.又stst0tst0t2t01t,limt0stlimt02t01t2t01,2t019,t04.即物体在4s时的瞬时速度为9m/s.反思与感悟1不能将物体的瞬时速度转化为函数的瞬时变化率是导致无从下手解题的常见错误2求运动物体瞬时速度的三个步骤求时间改变量t和位移改变量sst0tst0求平均速度vst.求瞬时速度vlimt0st.跟踪训练1一质点M按运动方程stat21做直线运动位移单位m,时间单位s,若质点M在t2s时的瞬时速度为8m/s,求常数a的值解质点M在t2s时的瞬时速度即为函数在t2s处的瞬时变化率质点M在t2s附近的平均变化率为sts2ts2ta2t24at4aat,又limt0st4a8,a2.类型二求函数在某一点处的导数例21设函数yfx在xx0处可导,且limx0fx03xfx0xa,则fx0________.答案13a解析limx0fx03xfx0xlimx0fx03xfx03x33fx0a,fx013a.2利用导数的定义求函数yfxx在x1处的导数解yf1xf11x1,yx1x1x11x1,f1limx0yxlimx011x112.反思与感悟1求函数yfx在点x0处的导数的三个步骤简称一差,二比,三极限2瞬时变化率的变形形式limx0fx0xfx0xlimx0fx0xfx0xlimx0fx0nxfx0nxlimx0fx0xfx0x2xf x0跟踪训练2已知fx3x2,fx06,求x0.解fx0limx0fx0xfx0xlimx03x0x23x20xlimx06x03x6x0,又fx06,6x06,即x01.1设函数fx在点x0附近有定义,且有fx0xfx0axbx2a,b为常数,则AfxaBfxbCfx0aDfx0b答案C解析fx0limx0fx0xfx0xlimx0abxa.2物体运动方程为st3t2位移单位m,时间单位s,若vlimt0s3ts3t18m/s,则下列说法中正确的是A18m/s是物体从开始到3s这段时间内的平均速度B18m/s是物体从3s到3ts这段时间内的速度C18m/s是物体在3s这一时刻的瞬时速度D18m/s是物体从3s到3ts这段时间内的平均速度考点导数的概念题点导数概念的理解答案C3函数yfx2x24x在x3处的导数为________答案16解析f3limx0yxlimx023x243x23243x16.4一物体的运动方程为stt23t2,则其在t______时的瞬时速度为1.答案2解析设物体在tt0时的瞬时速度为1,因为stst0tst0tt0t23t0t2t203t02t2t03t,所以limx02t03t2t031,解得t02.5已知物体运动的速度与时间之间的关系是vtt22t2,则在时间间隔1,1t内的平均加速度是________,在t1时的瞬时加速度是________答案4t4解析在1,1t内的平均加速度为vtv1tv1tt4,当t无限趋近于0时,vt无限趋近于4.利用导数定义求导数三步曲1作差求函数的增量yfx0xfx02作比求平均变化率yxfx0xfx0x.3取极限得导数fx0limx0yx.简记为一差,二比,三极限。

瞬时变化率

瞬时变化率

平均变化率,也就是该点处的瞬时变化率, O x 它精确地刻画了该点处的变化趋势。
注意: x 称为 x 0 的增量,可以正,也可以负,不可以为 0,只 是无限接近于 0。
例 1.已知 斜率。
f (x) x
2
,求曲线 y f ( x ) 在 x 2 处的切线
解:设 P ( 2 , 4 ),
x x
Q ( x 2 , f ( x 2 ))
k PQ
P( x 1 , f ( x 1 )) O x
f ( x 2 ) f ( x1 ) x 2 x1
平均变化率近似地刻画了曲线在某一区间上的变化率。 如何精确地刻画曲线上某点处的变化率呢?
问题1:抛物线有一个很奇妙的光学性质,你知道吗?
2

解:由变题可知,曲线 y f ( x ) 在 x 1 处的切线 斜率为 2。
切点为 P (1, 2 ) 。
因此,切线方程为 y 2 x .
图象
思考:切线斜率的符号与绝对值大小反映在函 数图象上有什么特点?
方法总结:
求曲线 y
f (x) 在 x x0
处的切线斜率的步骤:
x , f ( x 0 x ))
2
f ( x0 x) f ( x0 ) x
2

[( x 0 x ) 2 ( x 0 x )] ( x 0 2 x 0 ) x
2 x0 x 2 。
当x
0
时, k PQ
f (x)
2 x0 x 2 2 x0 2

2
Q ( 2 x , ( 2 x ) ),
2
则割线 PQ 的斜率为 k

3.1.2瞬时变化率——导数(一) 作业1 2017-2018学年高中数学选修1-1苏教版

3.1.2瞬时变化率——导数(一) 作业1 2017-2018学年高中数学选修1-1苏教版

3.1.2 瞬时变化率——导数(一)5分钟训练(预习类训练,可用于课前)1.已知f(x)=-x 2+10,则f(x)在x=23处的瞬时变化率是( ) A.3 B.-3 C.2 D.-2答案:B 解析:x y ∆∆=xx ∆+---+∆+-]10)23([10)23(22=-3-Δx. 当Δx 无限趋近于0时,xy ∆∆无限趋近于-3,选B. 2.曲线f(x)=x 3+1上对应于x=1处的切线的斜率为( )A.1B.-1C.3D.-3答案:C 解析:x y ∆∆=xx ∆+-+∆+)11(1)1(33=3+3Δx+Δx 2. 当Δx 无限趋近于0时,xy ∆∆无限趋近于3,选C. 3.求曲线y=x +1在点(1,2)处的切线的斜率.解:设在x=1处有改变量Δx ,则对应的函数的改变量为 Δy=1+221)1(1-∆+=+-∆++x x x . 则当Δx 无限趋近于0时,x y ∆∆=)22()22)(22(22+∆+∙∆+∆+-∆+=∆-∆+x x x x x x 221+∆+=x 无限趋近于42,即曲线y=x +1在(1,2)处的切线的斜率是42. 10分钟训练(强化类训练,可用于课中)1.在导数定义中,自变量的增量Δx ( )A.Δx >0B.Δx <0C.Δx=0D.Δx≠0答案:D解析:Δx 表示一个趋向于0的无穷小量,可以大于0,也可以小于0,但不能等于0.2.设函数y=f(x),当自变量x 由x 0改变到x 0+Δx 时,函数的改变量Δy 为( )A.f(x 0+Δx)B.f(x 0)+ΔxC.f(x 0)·ΔxD.f(x 0+Δx)-f(x 0) 答案:D解析:Δy 表示变量y 在区间[x 0,x 0+Δx ]上的增量.即Δy=f(x 0+Δx)-f(x 0).3.已知曲线y=2x 3上一点A(1,2),则A 处的切线的斜率为( )A.6B.4C.6+Δx+2(Δx)2D.2答案:A解析:求点A 处的切线的斜率即求f(x)在点A(1,2)处的导数.∵x y ∆∆=xx x f x f ∆⨯-∆+=∆-∆+3212)1(2)1()1(=6+6Δx+2(Δx)2, ∴Δx 趋向于0时,xy ∆∆趋向于6,所以f(x)在点A(1,2)处的导数为6,即点A 处切线的斜率为6. 4.已知某质点按规律s=2t 2+2t(米)作直线运动,质点在3秒时的瞬时速度为___________. 答案:14 m/s解析:求质点在3秒时的瞬时速度也就是求t=3时的导数.v=0lim →∆t t s ∆∆=0lim →∆t tt t t f t f ∆⨯+⨯-∆++∆+=∆-∆+)3232()]3(2)3(2[)3()3(22 =0lim →∆t (14+2Δt)=14(m/s). 5.已知y=x 3-2x+1,则y′|x=2=______________.答案:10解析:Δy=(2+Δx)3-2(2+Δx)+1-(23-2×2+1)=(Δx)3+6(Δx)2+10Δx,xy ∆∆=(Δx)2+6Δx+10, ∴y′|x=2=0lim →∆x [(Δx)2+6Δx+10]=10. 6.如图,曲线y=x 3在x 0=0处的切线是否存在?若存在,求出切线的斜率和切线方程;若不存在,请说明理由.插入图片F03;Z3mm解:Δy=f(0+Δ x)-f(0)=(Δx)3,x y ∆∆=(Δx)2.当Δx 无限趋近于0时,xy ∆∆无限趋近于常数0,这说明割线会无限趋近于一个极限位置,即曲线在x=0处的切线存在,此时切线的斜率为0(x y ∆∆无限趋近于0),又曲线过点(0,0),故切线方程为y=0.30分钟训练(巩固类训练,可用于课后)1.一质点按规律s=2t 3运动,则在t=2时的瞬时速度为( )A.4B.6C.24D.48答案:Ct s ∆∆=tt ∆⨯-∆+3322)2(2=24+12Δt+2Δt 2. 当Δt 无限趋近于0时,ts ∆∆无限趋近于24. 2.一物体的运动方程是s=5t+23t 2,则下述四个结论中正确的个数是( ) ①物体在时间段[0,1]内的平均速度是213m/s;②物体在t=1 s 时的瞬时速度是8 m/s;③物体在时间段[0,1]内经过的位移是8 m;④物体在时间段[0,1]内经过的位移是213m.A.1B.2C.3D.4答案:C只有③错,选C.3.物体运动方程为s=41t 4-3,则t=5时的瞬时速度为( ) A.5 B.25 C.125 D.625答案:C Δs=41(t+Δt )4-3-(41t 4-3) =41[t 4+4t 3·Δt+6t 2·(Δt )2+4t·(Δt )3+(Δt )4]-3-41t 4+3 =41·[(Δt )4+4t·(Δt )3+6t 2·(Δt )2+4t 3·Δt ]. ∴t s ∆∆=tt t t t t t t ∆∙∆∙+∆∙+∆∙+∆44)(6)(4)(32234 =41[(Δt )3+4t·(Δt )2+6t 2·Δt+4t 3]. ∴当Δt 无限趋近于0时, s′=41(0+0+0+4t 3)=t 3. ∴s′|t =5=53=125.∴t=5时的瞬时速度为125.4.曲线f(x)=x 在点(4,2)处的切线的斜率是_______________. 答案:41 解析:x y ∆∆=24124+∆+=∆-∆+x x x .当Δx 无限趋近于0时,x y ∆∆无限趋近于41. 5.如图,A,B 是抛物线y=2-x 2上的两点,则割线AB 的斜率是_____________,当Δx 无限趋于0时,可得抛物线上过点A 的切线的斜率为_______________.插入图片F04;S*2;X*2答案:-2-Δx -2解析:x y ∆∆=xx ∆--∆+-22)12()1(2=-2-Δx. 当Δx 无限趋近于0时,xy ∆∆无限趋近于-2. 6.曲线y=x 3-4x 在点(1,-3)处的切线的倾斜角为_______________.答案:43π解析:Δy=f(1+Δx)-f(1)=(1+Δx)3-4(1+Δx)-(1-4)=(Δx)3+3(Δx )2-Δx.xy ∆∆=(Δx)2+3Δx -1. 当Δx 无限趋近于0时,xy ∆∆无限趋近于-1,所以曲线y=x 3-4x 在点(1,-3)处的切线的斜率为-1. 因为直线的倾斜角α∈[0,π), 所以,所求切线的倾斜角α=43π. 7.抛物线y=x 2+bx+c 在点(1,2)处的切线平行于直线bx+y+c=0,求两条平行线间的距离.解:x y ∆∆=xc b c x b x ∆++-+∆++∆+)1()1()1(2 =2+Δx+b.当Δx 无限趋近于0时,xy ∆∆无限趋近于2+b ,即切线的斜率为2+b. ∴⎩⎨⎧=-=⎩⎨⎧++=-=+.2,1,12,2c b c b b b 切线方程为x-y+1=0, 平行直线方程为x-y-2=0,两平行直线间的距离为223. 8.若一物体的运动方程为s=⎪⎩⎪⎨⎧≥-+<≤+).3()3(32),30(1322t t t t 求此物体在t=1和t=4时的瞬时速度.解:当t=1时,s=3t 2+1,Δs=s (1+Δt )-s (1)=3(1+Δt )2+1-4=6Δt+3(Δt )2. ∴t s ∆∆=tt t ∆∆+∆2)(36=6+3Δt. 当Δt 无限趋近于0时,ts ∆∆无限趋近于常数6,即物体在t=1时的瞬时速度为6. 当t=4时,s=2+3(t-3)2.Δs=s(t+Δt)-s(t)=s(4+Δt)-s(4)=2+3(4+Δt -3)2-2-3(4-3)2=3[6Δt+3(Δt )2], ∴t s ∆∆=6+3Δt.当Δt 无限趋近于0时,ts ∆∆无限趋近于常数6,即物体在t=4时的瞬时速度为6. 9.已知x 轴是曲线y=x 3+bx+c 的一条切线,试求b 、c 满足的关系式.解:∵y=x 3+bx+c ,∴Δy=(x+Δx )3+b (x+Δx )+c-(x 3+bx+c )=3x 2Δx+3x·(Δx )2+(Δx )3+bΔx. ∴xy ∆∆=3x 2+b+3x·Δx+(Δx )2. ∴当Δx→0时,x y ∆∆→3x 2+b. ∴y′=3x 2+b.由于x 轴是曲线y=x 3+bx+c 的一条切线.设切点(x 0,0),则有⎪⎩⎪⎨⎧=++=+)2(.0)1(,0303020c bx x b x由②得x 0(x 02+b )=-c ,两边平方得:x 02(x 02+b )2=c 2,由①得x 02=3b -,将它代入上式得: 3b -(3b -+b )2=c 2, ∴2743b -=c 2,即27432b c -=. 10.已知自由落体的运动方程为s=21gt 2,求: (1)落体在t 0到t 0+Δt 这段时间内的平均速度;(2)落体在t 0时的瞬时速度;(3)落体在t 0=2秒到t 1=2.1秒这段时间内的平均速度;(4)落体在t=2秒时的瞬时速度.解:平均速度v =ts ∆∆,瞬时速度v=0lim →∆t t s ∆∆. (1)落体在t 0到t 0+Δt 这段时间内(即Δt 时间内)取得的路程增量为Δs=21g (t 0+Δt )2-21gt 02. 因此,落体在这段时间内的平均速度为:v =t s ∆∆=tt t t g t gt t t g ∆∆+∆=∆-∆+)2(2121)(2102020=21g(2t 0+Δt ). (2)落体在t 0时的瞬时速度为v=0lim →∆t v =0lim →∆t 21g(2t 0+Δt)=gt 0. (3)落体在t 0=2秒到t 1=2.1秒时,其时间增量Δt=t 1-t 0=0.1(秒),由(1)知平均速度为 v =21g(2×2+0.1)=2.05g≈2.05×9.8=20.09(米/秒). (4)由(2)知落体在t 0=2秒时的瞬时速度为v=g×2≈9.8×2=19.6(米/秒).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2 瞬时变化率——导数(一)
一、基础过关
1.一质点运动的方程为s =5-3t 2,若该质点在时间段[1,1+Δt ](Δt >0)内相应的平均速度为-3Δt -6,则该质点在t =1时的瞬时速度是________.
2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率的值为________.
3.已知曲线y =12
x 2-2上一点P ⎝⎛⎭⎫1,-32,则过点P 的切线的倾斜角为________. 4.曲线y =4x -x 3在点(-1,-3)处的切线方程为______________.(已知(a +b )3=a 3+3a 2b +3ab 2+b 3)
二、能力提升
5.一物体的运动方程为s =7t 2+8,则其在t =______时的瞬时速度为1.
6.一物体的运动方程是s =12
at 2(a 为常数),则该物体在t =t 0时的瞬时速度为________. 7.已知物体运动的速度与时间之间的关系是:v (t )=t 2+2t +2,则在时间间隔[1,1+Δt ]内的平均加速度是________,在t =1时的瞬时加速度是________.
8.已知直线x -y -1=0与曲线y =ax 2相切,则a =________.
9.求曲线f (x )=3x 2-2x 在点(1,1)处切线的斜率.
10.以初速度v 0 (v 0>0)垂直上抛的物体,t 秒时间的高度为s (t )=v 0t -12
gt 2,求物体在时刻t 0处的瞬时速度.
11.高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)之间
的关系式为h (t )=-4.9t 2+6.5t +10,求运动员在t =6598
s 时的瞬时速度,并解释此时的运动状况.
三、探究与拓展
12.若一物体运动方程如下:(位移单位:m ,时间单位:s)
s =⎩⎪⎨⎪⎧
3t 2+2 (t ≥3) ①29+3(t -3)2 (0≤t <3) ② 求:(1)物体在t ∈[3,5]内的平均速度;
(2)物体的初速度v 0;
(3)物体在t =1时的瞬时速度.
答案
1.-6
2.6
3.45°
4.x -y -2=0
5.114
6.at 0
7.4+Δt 4
8.14
9.解 ∵Δy Δx =f (1+Δx )-f (1)Δx
=3(1+Δx )2-2(1+Δx )-(3×12-2×1)Δx
=3(Δx )2+4Δx Δx
=3Δx +4. ∵当Δx 无限趋近于0时,3Δx +4无限趋近于4, ∴曲线f (x )=3x 2-2x 在点(1,1)处切线的斜率为4.
10.解 ∵Δs =v 0(t 0+Δt )-12
g (t 0+Δt )2- ⎝
⎛⎭⎫v 0t 0-12gt 20 =(v 0-gt 0)Δt -12
g (Δt )2, ∴Δs Δt =v 0-gt 0-12
g Δt , 当Δt 无限趋近于0时,Δs Δt
无限趋近于v 0-gt 0. 故物体在时刻t 0处的瞬时速度为v 0-gt 0.
11.解 令t 0=6598
,Δt 为增量. 则h (t 0+Δt )-h (t 0)Δt
= -4.9×⎝⎛⎭⎫6598+Δt 2+6.5×⎝⎛⎭⎫6598+Δt +10+4.9×⎝⎛⎭⎫65982-6.5×6598-10Δt
=-4.9Δt ⎝⎛⎭⎫6549+Δt +6.5Δt Δt
=-4.9⎝⎛⎭⎫6549+Δt +6.5,∴Δt →0.
∴h (t 0+Δt )-h (t 0)Δt
→0 即运动员在t 0=6598
s 时的瞬时速度为0 m/s. 说明此时运动员处于跳水运动中离水面最高点处.
12.解 (1)∵物体在t ∈[3,5]内的时间变化量为
Δt =5-3=2,
物体在t ∈[3,5]内的位移变化量为
Δs =3×52+2-(3×32+2)=3×(52-32)=48,
∴物体在t ∈[3,5]上的平均速度为
Δs Δt =482
=24 (m/s). (2)求物体的初速度v 0即求物体在t =0时的瞬时速度. ∵物体在t =0附近的平均变化率为
Δs Δt =f (0+Δt )-f (0)Δt
=29+3[(0+Δt )-3]2-29-3(0-3)2
Δt
=3Δt -18, ∵Δt 无限趋近于0时,
Δs Δt
=3Δt -18无限趋近于-18, ∴物体的初速度v 0为-18 m/s.
(3)物体在t =1时的瞬时速度即为函数在t =1处的瞬时变化率. ∵物体在t =1附近的平均变化率为
Δs Δt =s (1+Δt )-s (1)Δt
=29+3[(1+Δt )-3]2-29-3(1-3)2
Δt
=3Δt -12. 当Δt 无限趋近于0时,Δs Δt
=3Δt -12无限趋近于-12, ∴物体在t =1时的瞬时速度为-12 m/s.。

相关文档
最新文档