数控机床几何误差的检测
数控机床的精度检测与调整方法

数控机床的精度检测与调整方法数控机床是现代制造业中不可或缺的一种设备,它的精度对于产品的质量和性能起着至关重要的作用。
本文将介绍数控机床的精度检测与调整方法,帮助读者更好地了解和应用这些技术。
一、精度检测方法1. 几何误差检测几何误差是数控机床精度的重要指标,包括直线度、平行度、垂直度、圆度等。
常用的几何误差检测方法有激光干涉仪、三坐标测量仪等。
通过这些设备,可以精确测量机床各个轴向的几何误差,并得出相应的数据。
2. 理论切削路径与实际切削路径对比在数控机床的加工过程中,理论切削路径与实际切削路径之间可能存在偏差。
通过对比理论切削路径与实际切削路径,可以判断数控机床的精度是否达标。
常用的方法是使用光学测量仪器,对切削路径进行高精度的测量和分析。
二、精度调整方法1. 机床结构调整数控机床的结构调整是提高其精度的重要手段。
首先,需要检查机床各个部件的紧固情况,确保机床的刚性和稳定性。
其次,根据几何误差的检测结果,对机床的导轨、滑块等部件进行调整,以减小误差。
2. 控制系统调整数控机床的控制系统对于其加工精度起着至关重要的作用。
通过调整控制系统的参数,可以改善机床的运动精度和定位精度。
常用的调整方法包括增加控制系统的采样频率、优化控制算法等。
3. 刀具与工件的匹配调整刀具与工件的匹配对于加工精度有很大影响。
在数控机床的加工过程中,需要根据工件的要求选择合适的刀具,并对刀具进行调整和校准。
同时,还需要对工件进行检测,确保其尺寸和形状与设计要求一致。
三、精度检测与调整的重要性数控机床的精度检测与调整是保证产品质量和性能的关键环节。
只有通过科学的检测方法,准确地了解机床的精度情况,才能及时采取相应的调整措施,提高机床的加工精度。
这对于提高生产效率、降低成本、提升产品竞争力具有重要意义。
四、未来发展趋势随着制造业的不断发展,数控机床的精度要求也越来越高。
未来,数控机床的精度检测与调整方法将更加精细化和智能化。
数控机床加工精度检测与校准方法

数控机床加工精度检测与校准方法在现代制造业中,数控机床是不可或缺的重要设备。
它的高效率、高精度和高稳定性使得加工过程更加精确和可靠。
然而,由于各种因素的影响,数控机床的加工精度可能会出现偏差。
因此,对数控机床的精度进行检测和校准是非常必要的。
一、加工精度检测方法1. 几何误差检测几何误差是数控机床加工精度的重要指标之一。
常见的几何误差包括直线度误差、平行度误差、垂直度误差和圆度误差等。
几何误差的检测可以使用光学测量仪器,如激光干涉仪、光学投影仪等。
通过将测量仪器与数控机床进行联动,可以实时监测数控机床的加工精度,并得出相应的误差数据。
2. 热误差检测热误差是数控机床加工精度的另一个重要指标。
由于加工过程中会产生热量,数控机床的温度会发生变化,从而导致加工精度的偏差。
为了检测热误差,可以使用温度传感器对数控机床进行监测。
通过实时记录数控机床的温度变化,并与加工精度进行对比,可以得出热误差的数据。
3. 振动误差检测振动误差是数控机床加工精度的另一个重要影响因素。
振动会导致数控机床的加工过程不稳定,从而影响加工精度。
为了检测振动误差,可以使用振动传感器对数控机床进行监测。
通过实时记录数控机床的振动情况,并与加工精度进行对比,可以得出振动误差的数据。
二、加工精度校准方法1. 机床调整机床调整是校准数控机床加工精度的常用方法之一。
通过调整数控机床的各项参数,如传动装置、导轨、滑块等,可以减小加工误差。
例如,可以通过调整导轨的平行度和垂直度来改善加工精度。
此外,还可以通过更换加工刀具、调整刀具固定方式等方式来提高加工精度。
2. 补偿技术补偿技术是校准数控机床加工精度的另一种常用方法。
通过对加工过程中的误差进行实时监测,并通过数学模型进行补偿,可以减小加工误差。
例如,可以通过在程序中添加补偿指令,根据误差数据进行补偿,从而提高加工精度。
3. 精度校准仪器精度校准仪器是校准数控机床加工精度的重要工具。
常见的精度校准仪器包括激光干涉仪、光学投影仪、三坐标测量机等。
数控机床空间几何误差识别与检测

关键词 :空间几何误 差; 误差识别; 四线法
Ke y wo r d s : v o l u me t r i c g e o me t r i c e r r o r ; e r r o r i d e n t i f i c a t i o n ; d i a g o n a l me t h o d
杨 拴 强 YANG S h u a n — q i a n g ; 沈振辉 S HEN Z h e n — h u i
( 福 建 江夏 学 院工 业 技 术 研 究 所 ( 福 建 江 夏 学 院 工程 学院 ) , 福州 3 5 0 1 0 8)
( F u j i a n J i a n g x i a U n i v e r s i t y I n d u s t i r a l T e c h n o l o g y R e s e a r c h I n s t i t u t e( C o l l e g e o f E n g i n e e i r n g F u j i a n J i a n g x i a U n i v e r s i t y ) , F u z h o u 3 5 0 1 0 8 , C h i n a )
t a k e n , S O a s t o p r o v i d e t h e o r e t i c a l b a s i s f o r s u b s e q u e n t ma c h i n e t o o l e r r o r c o mp e n s a t i o n .
中图分类号 : T G 6 5 9
文献标识码 : A
文章编号 : 1 0 0 6 — 4 3 1 l ( 2 0 1 3 ) 3 1 — 0 0 3 4 — 0 3
五轴数控机床回转中心的几何误差检测与补偿

4 测量原 理
00 6 — .1 .1 00 5
O0 3 一 .0 .o Oo 3
以只考 虑直线轴联动 回转 中心与 c轴 回转 中心在 0m 1 0 30 6o O O 3 0 6。 y方向上误差 为例。如 图 2 所示 , 数控机床 、 、 y C轴 8 结 语 在 X Y平面内 , / 做大圆联动 , 通过千分表的变化来进行误 转摆台式五轴数控机床 中心不重合几何误差 ,需要 差分析。 图 3 如 所示 , y插 补 轨迹 与理 想 轨迹 之 间的误 建立误差综合模型 , 、 进行多次检测与补偿 , 才可达 到理想 差是 由于直线轴联动 回转 中心 D 与 c轴 回转中心 0在 的几何精度 , : 以提高机床加工精度 。
解决方案
工艺 , 工装 , 骥真 , 诠断 , 姬焉 , 维俺 , 改造 墨臣墨圆
数控机床进行实例研究 , 验证此方法有效 。
2 转摆 台式 五轴 数 控机 床 结构 建模 如图 1 所示 为 转摆 台
5 误 差 补 偿 参 数 算
法 描述
以只 考 虑 直 线 轴
式 五轴 数控 机 床结 构 示 联动回转中心 0 与 C 意图。 直线轴 、 、 l Z联动 轴 回转 中心 0在 、 , y
最小 , 成为了提高五轴机床联动精度的必要手段。
3 几 何误 差 检测 方 法设 计
ak cs =・ O o
() 2
6 HE D N A N I NC 3 数 控 系统 结构 参数 修正 IE H I T 50
() 1检测球头检棒长度补偿值 , 半径补偿值 ;
( ) 量 A 轴 回转 中心 与 C轴 回转 中心 在 y方 向上 2测
回 转 中 心 矢 量 位 置 由加 工 中 心 数 控 系 统 按 照 加
数控机床的几何精度检验

数控机床的几何精度检验数控机床的几何精度是综合反映机床主要零部件组装后线和面的形状误差、位置或位移误差。
根据GB/T17421.1-1998《机床检验通则第1部分在无负荷或精加工条件下机床的几何精度》国家标准的说明有如下几类:(一)、直线度1、一条线在一个平面或空间内的直线度,如数控卧式车床床身导轨的直线度;2、部件的直线度,如数控升降台铣床工作台纵向基准T形槽的直线度;3、运动的直线度,如立式加工中心X轴轴线运动的直线度。
长度测量方法有:平尺和指示器法,钢丝和显微镜法,准直望远镜法和激光干涉仪法。
角度测量方法有:精密水平仪法,自准直仪法和激光干涉仪法。
(二)、平面度(如立式加工中心工作台面的平面度)测量方法有:平板法、平板和指示器法、平尺法、密水平仪法和光学法。
(三)、平行度、等距度、重合度线和面的平行度,如数控卧式车床顶尖轴线对主刀架溜板移动的平行度;运动的平行度,如立式加工中心工作台面和X轴轴线间的平行度;等距度,如立式加工中心定位孔与工作台回转轴线的等距度;同轴度或重合度,如数控卧式车床工具孔轴线与主轴轴线的重合度。
测量方法有:平尺和指示器法,精密水平仪法,指示器和检验棒法。
(四)、垂直度直线和平面的垂直度,如立式加工中心主轴轴线和X轴轴线运动间的垂直度;运动的垂直度,如立式加工中心Z轴轴线和X轴轴线运动间的垂直度。
测量方法有:平尺和指示器法,角尺和指示器法,光学法(如自准直仪、光学角尺、放射器)。
(五)、旋转径向跳动,如数控卧式车床主轴轴端的卡盘定位锥面的径向跳动,或主轴定位孔的径向跳动;周期性轴向窜动,如数控卧式车床主轴的周期性轴向窜动;端面跳动,如数控卧式车床主轴的卡判定位端面的跳动。
测量方法有:指示器法,检验棒和指示器法,钢球和指示法。
数控机床的精度检测方法与标准

数控机床的精度检测方法与标准数控机床是一种高精度的机床设备,广泛应用于制造业的各个领域。
为了确保数控机床的工作精度,需要进行精度检测。
本文将介绍数控机床的精度检测方法和标准,为读者提供参考。
一、数控机床精度检测方法1. 几何精度检测几何精度是指数控机床在工作过程中,工件表面形状、位置、尺寸等与理论位置之间的差异。
常用的几何精度检测方法包括:平行度检测、垂直度检测、直线度检测等。
这些检测方法可以通过使用测量仪器(例如投影仪、三坐标测量机等)进行测量和比较,以确定数控机床是否满足工作要求。
2. 运动精度检测运动精度是指数控机床在运动中达到的位置是否准确。
常用的运动精度检测方法包括:位置误差检测、重复定位精度检测、速度误差检测等。
这些检测方法可以通过使用激光干涉仪、激光漂测仪等测量设备进行测量,以确定数控机床的运动精度是否符合要求。
3. 刚度检测刚度是指数控机床在受力时的变形情况。
常用的刚度检测方法包括:静刚度检测、动刚度检测等。
静刚度可以通过在数控机床各个部位施加力并测量其变形情况来进行检测;动刚度可以通过在数控机床运动状态下进行控制并测量位移来进行检测。
二、数控机床精度检测标准为了统一数控机床的精度检测标准,国内外制定了相应的标准,其中最有代表性的是国家标准GB/T16857-1997《数控机床精度检验方法》。
该标准规定了数控机床的几何精度、运动精度和刚度等指标的检测方法和要求。
以几何精度为例,该标准包括对工件表面形状、位置、尺寸等几何误差的检测,在该标准中,提供了一系列的测量方法,包括投影法、三坐标法、机床内检测法等。
此外,该标准还规定了几何误差的允许值,即数控机床在工作过程中允许存在的误差范围。
除了国家标准,国际标准也对数控机床的精度检测进行了规范,例如ISO 230-1和ISO 230-2等,这些标准主要用于指导和规范制造商以及使用单位在数控机床精度检测方面的操作。
近年来,随着数控机床技术的不断发展,对精度的要求也越来越高。
数控机床几何精度检验

6
使百分表/千分表读数在平尺的两端相等。手轮模式
下沿X轴线移动工作台,在全行程上进行检验。记录
百分表/千分表读数的最大差值,即为在XY水平面内
X轴线运动的直线度误差
整理、清洁。准备进行下一项目检验,不用的量检具应放回规定的位置,不能随 7
意在检验区域摆放
2.检验Y轴线运动的直线度 检验Y轴线运动的直线度方法见表3-12。
录指示器的最大读数差,即分别为在平行于X轴线的
ZX垂直平面内Z轴线运动的直线度及在平行于Y轴线
的YZ垂直平面内Z轴线运动的直线度
整理、清洁。准备进行下一项目检验,不用的量检具应放回规定的位置,不能 4
随意在检验区域摆放
二、线性运动的角度偏差
线性运动的角度偏差包括X轴、Y轴和Z轴线性运动的角度偏差,现 介绍X轴线性运动的角度偏差检验方法,见表3-14。
1.检验X轴线运动的直线度
检验X轴线运动的直线度方法见表3-11。
表3-11 检验X轴线运动的直线度方法
检验项目G1
X轴线运动的直线度: a)在ZX垂直平面内; b)在XY水平面内
标准
GB/T 18400.2-2010《加工中心检验条件 第2部分:立式或带主回转轴的 万能主轴头机床几何精度检验(垂直Z轴)》规定,G1项公差为:
项目1 数控机床几何精度检验
任务三 立式加工中心几何精度检验验
项目1 数控铣床和立式加工中心几何精度检验 任务三 立式加工中心几何精度检验
国家标准GB/T 18400.2-2010《加工中心检验 条件 第2部分:立式或带主回转轴的万能主 轴头机床几何精度检验(垂直Z轴)》
一、线性运动的直线度
线性运动的直线度包括X轴、Y轴和Z轴的线性运动直线度
数控机床的精度与重复定位精度检测方法

数控机床的精度与重复定位精度检测方法数控机床是现代制造业中不可或缺的设备之一,它的精度和重复定位精度对产品的质量和生产效率有着重要的影响。
本文将探讨数控机床的精度以及重复定位精度的检测方法。
一、数控机床的精度数控机床的精度是指其加工零件的尺寸和形状与设计要求的偏差程度。
数控机床的精度受到多种因素的影响,包括机床本身的结构和性能、刀具的质量、工件的材料等。
为了确保数控机床的精度,需要进行精度检测。
二、数控机床精度检测方法1. 几何误差检测几何误差是指数控机床在加工过程中由于机械结构和运动控制系统等方面的因素引起的误差。
常见的几何误差包括直线度误差、平行度误差、垂直度误差等。
几何误差可以通过使用激光干涉仪、三坐标测量仪等设备进行检测。
2. 重复定位精度检测重复定位精度是指数控机床在多次运动后,回到同一位置的精度。
重复定位精度的检测可以通过在机床上固定一个测量工具,然后多次运动并记录每次运动后测量工具的位置,最后计算其偏差值来进行。
3. 理论精度与实际精度对比理论精度是指数控机床在设计和制造过程中所规定的精度要求,而实际精度是指机床在使用过程中的实际精度水平。
通过对理论精度与实际精度进行对比,可以评估机床的性能和加工质量。
4. 环境因素对精度的影响环境因素如温度、湿度等也会对数控机床的精度产生影响。
因此,在进行精度检测时,需要对环境因素进行控制,并进行相应的修正。
5. 精度检测的标准与要求精度检测需要根据不同的机床类型和加工要求制定相应的标准和要求。
这些标准和要求可以包括尺寸偏差、形状偏差、位置偏差等内容,以确保机床的加工质量和性能。
总结:数控机床的精度和重复定位精度对于产品的质量和生产效率至关重要。
通过几何误差检测、重复定位精度检测、理论精度与实际精度对比以及环境因素的控制,可以评估和提高数控机床的精度。
精度检测的标准和要求也是确保机床性能和加工质量的重要保证。
在实际生产中,我们应该重视数控机床的精度检测,以提高产品质量和生产效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控机床几何误差的检测
作者:宋越超
来源:《中国科技博览》2016年第03期
[摘要]能否发挥数控机床的高性能和获得良好的效益,关键取决于它的可靠性和加工精度。
当前为保证机床的精度,普遍采用误差补偿技术,本文针对误差补偿技术中的误差检测技术展开了一系列研究。
[关键词]误差检测;几何误差;数控机床
中图分类号:P123.2+2 文献标识码:A 文章编号:1009-914X(2016)03-0100-01
1.数控机床误差分类
采用误差补偿的方法来提高数控机床的加工精度,为此必须先准确地检测出数控机床的几何误差,通过分析误差了解机床误差变化的规律,然后对其进行针对性的补偿。
机床精度的高低是以机床误差的大小来衡量的。
按照机床误差的产生条件不同、产生根源不同或者性质不同机床误差可以有很多种分类方法:
(1)按产生条件分:
根据机床误差的产生条件不同,机床误差可以分为:
a.静态误差:是在不加工情况下机床的误差,它包括机床的几何精度和制造精度两项内容。
b.准静态误差:它也主要由机床本身的制造精度决定。
准静态误差是指其在给定的条件下,能够在一定时期内基本保持不变或变化缓慢的误差。
c.动态误差:是指机床在实际切削加工条件下所产生的误差,它不仅与机床的原始制造精度有关,还与加工时的环境条件和具体的工艺系统有关。
(2)按产生根源分:
根据机床误差的产生根源不同,机床误差可以分为:
a.几何误差:机床的原始制造、装配缺陷等造成的机床误差。
b.热误差:机床温度变化引起热变形所造成的机床误差。
c.力误差:机床受力引起变形所造成的机床误差。
d.振动误差:机床加工时振动引起的误差。
e.控制误差:机床的控制系统性能造成的机床误差。
f.检测误差:检测系统的性能、测量精度等造成的机床误差。
不同误差源对数控机床的加工精度影响程度是不一样的,其影响程度分配如表1.1所示:
2 误差测量实验方案的设计
2.1 目前几种误差检测方法介绍
目前几何误差的检测方法主要有两类:单项误差直接测量法和综合误差测量参数辨识法。
单项误差参数直接测量法。
选用合适的测量仪器,对机床多项几何误差直接单项测量。
在实际检测中在需要更换测量仪器或测量附件,使得随机误差的影响加大;而且这种方法检测效率低,因此限制了这种方法的应用范围。
综合误差测量参数辨识法。
对机床空间特定点的空间位置误差进行测量,通过数学辨识模型实现误差参数分离,这种方法往往测量仪器简单,效率高,操作方便。
2.2 数控机床几何误差的检测
2.2.1实验仪器技术指标
美国光动公司2l世纪初推出了新产品MCV-500激光多普勒干涉测量系统。
该系统技术先进,软件功能完善,配备了灵敏度和精度很高的温度、气压、湿度传感器环境自动补偿装置,使激光多普勒干涉仪的测量稳定性等技术指标大大提高。
在温度为50C~380C、气压范围750mpa~1 150mpa、相对湿度0%~95%的工作环境中,激光多普勒干涉仪的频率精度可达士1.0ppm,分辨率可达0.01μm。
本次检测的对象为VMC系列数控立式加工中心,设定检测范围为
1200mm×600mm×600mm。
2.2.2工作台X向线位移误差的测定
X向线位移误差测试装置如图2.2所示,测量结果见下表2.1所示。
结论
本文在研究了基于激光多普勒干涉仪的几何误差测试方法,该法测量步骤少,测量路线容易对光,操作简单,数据同步性好;通过对检测数据进行处理(22线法辨识),可以得出三个轴方向的所有21项几何误差值,为后续的空间误差研究提供了原始数据来源。
参考文献
[1] 刘焕牢,李曦,李斌,等.数控机床几何误差和误差补偿关键技术.机械工程师,2003,1:16~18.。