八年级数学12月月考试题1

合集下载

河南省信阳市平桥区2023-2024学年八年级上学期12月月考数学试题

河南省信阳市平桥区2023-2024学年八年级上学期12月月考数学试题

河南省信阳市平桥区2023-2024学年八年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在每一个学子心中或许都梦想过自己心目中大学的模样,很多大学的校徽设计也会融入数学元素,下列大学的校徽图案是轴对称图形的是()A .B .C .D .2.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为()A .2B .3C .4D .53.下列运算正确的是()A .4312x x x ⋅=B .()()32641a a ÷=C .()2349a a a ⋅=D .()()3224ab ab ab ÷-=-4.下列从左到右的变形,属于因式分解的是()A .()()2422a a a a a-+=+-+B .2244(2)a a a +-=-C .()2a b a a b +=+D .()()24313a a a a ++=++5.在平面直角坐标系中,已知点P 与点1P 关于x 轴对称,点P 与点2P 关于y 轴对称.若点2P 的坐标为()1,2-,则点1P 的坐标为()A .()1,2-B .()1,2--C .()2,1-D .()2,1--6.在等腰三角形ABC 中,AB AC =,100BAC ∠=︒,一含30︒角的三角板如图放置(一直角边与BC 边重合,斜边经过ABC 的顶点A ),则α∠的度数为().A .15︒B .20︒C .30︒D .40︒7.若()22816x m x x +=++.则m 的值为()A .4B .4±C .8D .8±8.已知,如图1,Rt ABC △.画一个Rt A B C ''' ,使得Rt Rt A B C ABC '''△≌△.在已有90MB N '∠=︒的条件下,图2、图3分别是甲、乙两同学的画图过程.下列说法错误的是()A .甲同学作图判定Rt Rt ABC ABC '''△≌△的依据是HL B .甲同学第二步作图时,用圆规截取的长度是线段AC 的长C .乙同学作图判定Rt Rt A B C ABC '''△≌△的依据是SASD .乙同学第一步作图时,用圆规截取的长度是线段AC 的长9.“廊桥凌水,楼阁傲天,状元故里状元桥,绶溪桥上看绶溪”.莆田绶溪公园开放“状元桥”和“状元阁”游览观光,其中“状元阁”的建筑风格堪称“咫尺之内再造乾坤”.如图,“状元阁”的顶端可看作等腰三角形ABC ,AB AC =,D 是边BC 上的一点.下列条件不能说明AD 是ABC 的角平分线的是()A .ADB ADC∠=∠B .BD CD =C .2BC AD=D .ABD ACDS S = 10.如图,在ABC 中,90C ∠=︒,15B ∠=︒,AB 的垂直平分线交BC 于点D ,交AB 于点E .若12DB cm =,则AC =()A .4cmB .5cmC .6cmD .7cm二、填空题14.如图,已知BO 平分CBA ∠12AC =,则AMN 的周长是15.如右图,C 是线段AB 上的一点,三、解答题16.计算:(1)221232ab ab ab ⎛⎫⎛-⋅ ⎪ ⎝⎭⎝(2)()(213242x xy y ++17.计算:(1)()()12a a ++;(2)()()33a b a b +-;(3)()()22(y y y +---18.因式分解:(1)22363m mn n -+;(2)()()24ax y y x -+-19.如图,在平面直角坐标系中,正方形网格的格点上.(1)画出将ABC 沿x 轴方向向右平移(2)画出111A B C △关于x 轴的对称图形△(3)在x 轴上找一点M ,使得MA MC +的值最小.(保留作图痕迹)20.如图,DE AB ⊥于E ,DF AC ⊥于F ,若,BD CD BE CF ==.(1)求证:AD 平分BAC ∠;(2)写出+AB AC 与AE 之间的等量关系,并说明理由.21.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考:22.由已知和作图能得到ADC △≌EDB △的理由是______.A .SSSB .SASC .AASD .HL23.求得AD 的取值范围是______.A .68AD <<B .68AD ≤≤C .17AD <<D .17AD ≤≤【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(1)如图2,AD 是ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE EF =.求证:AC BF =.(1)在ABC 中,按要求完成尺规作图;①求作求作线段AC 的对称轴直线l ,交(2)(1)中得到的图形中,若示)25.如图,在ABC 中,AB 点Q 同时从点C 出发沿线段AC 线段BC 相交于点D(1)如图①,当60A ∠=︒,QP AB ⊥时,求证:2AP CD =;(2)如图②,过点P 作PE BC ⊥于点E ,在PQ 移动的过程中,若改变,请说明理由;若不变,请求出其值.。

湖北武汉部分学校2023-2024学年八年级上学期月考数学试题(原卷版)

湖北武汉部分学校2023-2024学年八年级上学期月考数学试题(原卷版)

武汉市部分学校八年级12月联考数学试卷一、选择题(共10小题,每小题3分,共30分)1. 在ABC 中,40B ∠=°,80C ∠=°,则A ∠度数为( )A. 30°B. 40°C. 50°D. 60° 2. 一个八边形的内角和的度数为( )A. 720°B. 900°C. 1080°D. 1260° 3. 已知点(),2A m 和()3,B n 关于y 轴对称,则()2023m n +的值为( ) A. 1− B. 0 C. 1 D. ()20205− 4. 如图,AB ∥CD ,∠A =35°,∠C =80°,那么∠E 等于( )A. 35°B. 45°C. 55°D. 75° 5. 如图,在等边 ABC 中,AD 是它的角平分线,DE ⊥AB 于E ,若AC =8,则BE =( )A. 1B. 2C. 3D. 46. 如图,已知AD 是△ABC 的角平分线,AD 的中垂线交AB 于点F ,交BC 的延长线于点E .以下四个结论:(1)∠EAD =∠EDA ;(2)DF ∥AC ;(3)∠FDE =90°;(4)∠B =∠CAE .恒成立的结论有( )A. (1)(2)B. (2)(3)(4)C. (1)(2)(4)D. (1)(2)(3)(4) 7. 对于实数a 、b ,定义一种运算:()2*a b a b =−.给出三个推断:①**a b b a =;②()222**a b a b =;③()()**a b a b −=−,其中正确的推断个数是( ) A. 0 B. 1 C. 2 D. 38. 等腰三角形的周长为12,则腰长a 的取值范围是( )的A. a>6B. a<3C. 4<a<7D. 3<a<69. 如图,ABC 是等边三角形,E 、F 分别在AC 、BC 上,且AE CF =,则下列结论:①AF BE =,②60BDF ∠=°,③BD CE =,其中正确的个数是( )个A. 1B. 2C. 3D. 410. 如图,AF D C ∥,BC 平分ACD ∠,BD 平分EBF ∠,且BC BD ⊥,下列结论:①BC 平分ABE ∠;②AC BE ;③90BCD D∠+∠=°;④60DBF ∠=°,其中正确个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(每小题3分,共18分)11. 已知等腰三角形的两边长分别为5 cm ,8 cm ,则该等腰三角形的周长是______cm .12. 如图,点B ,F ,C ,E 在同一条直线上,欲证ABC DEF ∆≅∆,已知AC DF =,AB DE =,还可以添加的条件是______.13. 五条线段的长度分别为1cm ,2cm ,3cm ,4cm ,5cm ,以其中三条线段为边长共可以组成_____个三角形.14 分解因:22424x xy y x y −−++=______________________.15. 如图,在ABC 中,AC 的垂直平分线PD 与BC 的垂直平分线PE 交于点P ,垂足分别为D ,E ,连接PA ,PB ,PC ,若45PAD ∠=°,则ABC ∠=_____°.的.16. 如图,在四边形ABCD 中,ACBC ⊥于点C ,且AC 平分BAD ∠,若ADC △的面积为210cm ,则ABD △的面积为________2cm .三、解答题(共8小题,共72分)17. 因式分解:(1)3−a b ab ;(2)22363ax axy ay ++18. 在ABC 中,2B A ∠=∠,40C B ∠=∠+°.求ABC 的各内角度数.19. 如图所示,已知点A 、E 、F 、D 在同一条直线上,AE=DF ,BF ⊥AD ,CE ⊥AD ,垂足分别为F 、E ,BF=CE ,求证:(1)△ABF ≌△DCE(2)AB ∥CD20 先化简,再求值:(x +3y )2﹣2x (x +2y )+(x ﹣3y )(x +3y ),其中x =﹣1,y =2.21. 如图,在平面直角坐标系中,点()30A −,,点()1,5B −. (1)①画出线段AB 关于y 轴对称的线段CD ;②在y 轴上找一点P 使PA PB +的值最小(保留作图痕迹); (2)按下列步骤,用不带刻度直尺在线段CD 找一点Q 使45BAQ ∠=°. ①在图中取点E ,使得BE BA =,且BE BA ⊥,则点E 的坐标为___________; ②连接AE 交CD 于点Q ,则点Q 即为所求.22. 如图,在Rt ABC △中,90ABC ∠=°,ABC 的角平分线AE 、CF 相交于点D ,点G 为AB 延长线上一点,DG 交BC 于点H ,ACD AGD △≌△,21GDF ∠=∠.(1)求证:GD CF ⊥;(2)求证:CH AF AC +=..的23. 已知等边ABC ,AD 是BC 边上的高.(1)如图1,点E 在AD 上,以BE 为边向下作等边BEF △,连接CF . ①求证:AE CF =;②如图2,M 是BF 的中点,连接DM ,求证:12DM AE =; (2)如图3,点E 是射线AD 上一动点,连接BE ,CE ,点N 是AE 的中点,连接NB ,NC ,当90BNC ∠=°时,直接写出BEC ∠的度数为______ .24. 在平面直角坐标系中,点A 的坐标为()0,4(1)如图1,若点B 的坐标为()3,0,ABC 是等腰直角三角形,BA BC =,90ABC ∠=°,求C 点坐标;(2)如图2,若点E 是AB 的中点,求证:2AB OE =; (3)如图3,ABC 是等腰直角三角形,BA BC =,90ABC ∠=°,ACD 是等边三角形,连接OD ,若30AOD ∠=°,求B 点坐标。

江苏省南京市江宁区竹山中学2023-2024学年八年级上学期12月月考数学试题

江苏省南京市江宁区竹山中学2023-2024学年八年级上学期12月月考数学试题

江苏省南京市江宁区竹山中学2023-2024学年八年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2023次相遇点的坐标是()A .()2,0B .()1,1-C .()2,0-D .()1,1--二、填空题13.将函数22y x =+的图象向下平移式是.14.如图,ABC 中,AB AC =,于点E ,分别以A 、D 为圆心,大于线FG 恰好经过点E ,则BEG ∠17.计算机可以帮助我们又快又准地画出函数的图像.用34y x x =-的图像如图所示.则关于18.在平面直角坐标系xOy 中,一次函数A ,B 两点,若点(),1P m m -在三、解答题19.计算:(1)()231685---;22.如图,ABC 三个顶点的坐标分别为(1)请画出ABC 向左平移5个单位长度后得到的(2)ABC 与222A B C △与关于x 轴对称,点(3)在x 轴上有一点P ,能使PAB 23.如图,已知20AOB ∠=︒,点40CFO ∠=︒.(尺规作图,保留作图痕迹,不写出作法)24.如图,直线1l :4y mx =+与与y kx b =+经过点C ,且与1l 交于点(1)求直线1l 与2l 的解析式;(2)记直线2l 与y 轴的交点为D ,记直线1l 与y 轴的交点为E ,求ADE V 的面积;(3)根据图象,直接写出04mx kx b ≤+<+的解集.25.甲、乙两人从A 地前往B 地,先到终点的人在原地休息.已知甲先出发30s 后,乙才出发.在运动过程中,甲、乙两人离A 地的距离分别为1y (单位:m )、2y (单位:m ),都是甲出发时间x (单位:s )的函数,它们的图象如图①.设甲的速度为1v m /s ,乙的速度为2v m /s .(1)12:v v =______,=a ______;(2)求2y 与x 之间的函数表达式;(3)在图②中画出甲、乙两人之间的距离s (单位:m )与甲出发时间x (单位:s )之间的函数图象.26.建立模型如图1,等腰Rt ABC △中,90,ACB CB CA ∠=︒=,直线ED 经过点C ,过点A 作AD ED⊥于点D ,过点B 作BE ED ⊥于点E ,可证明得到BEC CDA≌模型应用(1)如图2,直线1:24l y x =-+与x 轴、y 轴分别交于A 、B 两点,经过点B 和第一象限点C 的直线2l ,且12,l l BA BC ⊥=,求点C 的坐标;(2)在(1)的条件下,求直线2l 的表达式;(3)如图3,在平面直角坐标系中,已知点(3,1)P -,连接OP ,在第二象限内是否存在一点Q ,使得OPQ △是等腰直角三角形,若存在,请直接写出点Q 的坐标:若不存在,请说明理由.。

福建省永春县崇贤中学2022-2023学年八年级上学期12月月考数学试题(含答案解析)

福建省永春县崇贤中学2022-2023学年八年级上学期12月月考数学试题(含答案解析)
4 故选 B. 【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解 答,解答过程中要充分利用翻折不变性. 9.D 【分析】若 AP+BP+CP 最小,就是说当 BP 最小时,AP+BP+CP 才最小,因为不论点 P 在 AC 上的那一点,AP+CP 都等于 AC.那么就需从 B 向 AC 作垂线段,交 AC 于 P.先设 AP=x, 再利用勾股定理可得关于 x 的方程,解即可求 x,在 Rt△ABP 中,利用勾股定理可求 BP.那 么 AP+BP+CP 的最小值可求.
19.如图,在 4 3 的正方形网格中, ABC 的顶点都在正方形网格的格点上请你在图① 和图②中分别画出一个三角形,同时满足以下两个条件:
(1)以点 A 为一个顶点,另外两个顶点也在正方形网格点上; (2)与 ABC 全等,且不与 ABC 重合. 20.如图,△ABC 中,AB=AC,点 E,F 在边 BC 上,BE=CF,点 D 在 AF 的延长线上, AD=AC,
在 Rt△ABP 中,BP= 52 -1.42 = 23.04=4.8, ∴AP+BP+CP=AC+BP=5+4.8=9.8. 故选:D.
由勾股定理可得, Rt△ADE 中, DE AD2 AE2 5 , 又CE 3 ,
CD 3 5 ,
故选:C.
答案第 2页,共 16页
【点睛】本题考查了勾股定理的运用,由勾股定理求出 DE 是解决问题的关键. 8.B 【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求 AB,根据翻折不变性,可知 △DAE≌△DBE,从而得到 BD=AD,BE=AE,设 CE=x,则 AE=8-x,在 Rt△CBE 中,由勾 股定理列方程求解. 【详解】∵△CBE≌△DBE, ∴BD=BC=6,DE=CE, 在 RT△ACB 中,AC=8,BC=6, ∴AB= AC2 BC2 = 62 82 =10. ∴AD=AB-BD=10-6=4. 根据翻折不变性得△EDA≌△EDB ∴EA=EB ∴在 Rt△BCE 中,设 CE=x, 则 BE=AE=8-x, ∴BE2=BC2+CE2, ∴(8-x)2=62+x2, 解得 x= 7 .

八年级12月月考试题

八年级12月月考试题

图22011-2012学年度第一学期期末八年级数学复习试卷(一)一、选择题1.下列运算中,计算结果正确的是 ( )A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.在平面直角坐标系中。

点P (-2,3)关于x 轴的对称点在( ).A. 第四象限B. 第三象限C.第二象限D. 第一象限 3.化简:a+b-2(a-b)的结果是 ( ) A.3b-a B.-a-b C.a+3b D.-a+b 4.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、 E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是( ) A .10cm B .12cm C .15cm D .17cm 5.下列多项式中,不能进行因式分解的是 ( ) A. –a 2+b 2 B. –a 2-b 2 C. a 3-3a 2+2a D. a 2-2ab+b 2-16.下列函数中,自变量的取值范围选取错误..的是 ( ) A .y=2x 2中,x 取全体实数 B .y=11x +中,x 取x ≠-1的实数 C .x取x ≥2的实数 D .x 取x ≥-3的实数 7.下面有4个汽车标致图案,其中是轴对称图形的是 ( )① ② ③ ④ A 、②③④ B 、①②③ C 、①②④ D 、①②④ 8.等腰三角形的一个内角是50°,则这个三角形的底角的大小是 ( )A .65°或50°B .80°或40°C .65°或80°D .50°或80°9.已知x m =6,x n =3,则x 2—3n 的值为 ( )A. 9B.43 C. 2 D. 34 10.)()(2x y y x ---因式分解的结果是 ( )A .(y-x)(x-y)B .(x-y)(x-y-1)C .(y-x)(y-x+1)D .(y-x)(y-x-1)二、填空题11.已知a m ·a 3=a 10,则m = .12.Rt △ABC 中,∠C=90°,∠B=2∠A ,BC=3cm ,AB=_________cm . 13.若1242+-kx x 是完全平方式,则k=_____________.14.一个汽车牌在水中的倒影为 ,,,则该车牌照号码____________.15.已知,如图2:∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,若以“SAS”为依据,还要添加的条件为______________________.16.对于实数a ,b ,c ,d ,规定一种运算a bc d=ad-bc , 如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x = .三、解答题 17.因式分解:(1)x 2-4(x -1) (2) 44y x -图(二)图(一)18.计算题:(1))22(4)25(22a a a +-+ (2)233)(21)(4⎥⎦⎤⎢⎣⎡--⨯-x y y x19.先化简,再求值。

2023-2024学年江苏省苏州市星海实验初级中学八年级上学期12月月考数学试题

2023-2024学年江苏省苏州市星海实验初级中学八年级上学期12月月考数学试题

2023-2024学年江苏省苏州市星海实验初级中学八年级上学期12月月考数学试题1.下列曲线不能表示y是x的函数的是()A.B.C.D.2.如图,表示了自变量x与因变量y的关系,当x每增加1时,y增加()A.1B.3C.6D.123.下列图形中,表示一次函数与正比例函数(为常数,且)的图象的是()A.B.C.D.4.一辆快车和一辆慢车按相同的路线从地行驶到地,所行驶的路程与时间的函数图象如图所示,下列说法不正确的是()A.快车追上慢车需小时B.慢车的速度是千米时C.,两地相距千米D.快车比慢车早到小时5.若一次函数的图象不经过第二象限,则()A .,B .,C .,D .,6.若是关于的方程的解,则一次函数的图象与轴的交点坐标是()A .B .C .D .7.在平面直角坐标系中,将函数的图象向上平移个单位长度,使其与的交点在位于第二象限,则的取值范围为()A .B .C .D .8.如图,在平面直角坐标系xoy 中,,线段,B 为的中点.点C 在y 轴上滑滑动,当线段长为最小值时点D 的坐标是()A .B .C .D .9.在平面直角坐标系中,一次函数的图象与y 轴交点坐标为__________.10.若点在函数的图象上,则代数式的值为________.11.已知一次函数的图象经过,两点,则________.(填“”“<”或“=”)12.已知一次函数的图象与直线平行,且经过点关于y 轴的对称点,则该函数的表达式为________.13.如图,直线过点与直线交于点,则不等式的解集为______.14.已知:如图(1),长方形中,E 是边上一点,且,,点P 从B 出发,沿折线匀速运动,运动到点C 停止.P 的运动速度为2,运动时间为t (s ),的面积为y ().y 与t 的函数关系式图象如图(2),则下列结论:①;②;③;④当时,为等腰三角形;⑤当时,.其中正确的是______.15.我们知道,若.则有或.如图,直线与分别交轴于点、,则不等式的解集是______.16.已知两个函数图像的表达式分别为:,,,与相交于,求__________.17.已知一次函数.(1)为何值时,它的图象经过原点;(2)为何值时,它的图象经过点.18.某校甲、乙两班参加植树活动.乙班先植树20棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为(棵),乙班植树的总量为(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x(时),分别与x之间的部分函数图象如图所示.(1)当时,分别求与x之间的函数关系式.(2)如果甲、乙两班均保持前4个小时的工作效率,通过计算说明,当时,甲、乙两班植树的总量之和能否超过180棵.19.如图,在正方形网格中(图中每个小正方形的边长均为1个单位长度),若点的坐标为,点的坐标为,请按要求解决下列问题:(1)在图中建立正确的平面直角坐标系;(2)点的坐标为_____________;(3)的面积为_____________;(4)如果的面积为1,且点在轴上,则点的坐标为_____________;(5)如果的周长最小,且点在轴上,则的周长最小值为_____________,点的坐标为_____________.20.如图,已知直线与坐标轴分别交于A,B两点,与直线交于点.(1)求t,b的值;(2)若点在线段上运动,过点M作直线平行于y轴,该直线与直线交于点N,与x轴交于点D,如图所示.①若,求四边形的面积;②若M是线段的3等分点,求m的值.21.某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台冰箱进价1500元,每台空调的进价1200元.现在商场准备一次购进这两种家电共100台,设购进电冰箱台,这100台家电的销售利润为元,(1)求出与之间的函数关系式;(2)要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16400元,请分析合理的方案共有多少种?(3)实际进货时,厂家对电冰箱出厂价下调()元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,求出这100台家电销售时的最大利润.22.如图1,等腰直角三角形中,,,过点作交于点,过点作交于点,易得,我们称这种全等模型为“型全等”.如图2,在直角坐标系中,直线:分别与轴,轴交于点、(,).(1)求的值和点的坐标;(2)在第二象限构造等腰直角,使得,求点的坐标;(3)将直线绕点旋转得到,求的函数表达式.。

南京市江宁区竹山中学2022-2023学年第一学期初二数学12月月考试题及解析

南京市江宁区竹山中学2022-2023学年第一学期初二数学12月月考试题及解析
①求W关于x的函数关系式,并求出自变量x的取值范围;
②该药店应如何进货才能使销售总利润最大?并求出最大利润.
27.如图,在平面直角坐标系中,直线AB:y=kx+1(k≠0)交y轴于点A,交x轴于点B(3,0),点P是直线AB上方第一象限内 动点.
(1)求直线AB的表达式和点A的坐标;
(2)点P是直线x=2上一动点,当△ABP的面积与△ABO的面积相等时,求点P的坐标;
6.如图,已知∠CAE=∠BAD,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】先由∠CAE=∠BAD得到∠CAB=∠DAE,然后分别利用“SAS”、“ASA”和“AAS”对各添加的条件进行判断.
19.计算:
(1) ;
(2) .
20.求下列各式中x的值:
(1) ;
(2) .
21.已知某正数的两个平方根分别 和 , 的立方根为 .
(1)求 的值.
(2)求 的立方根.
22.如图,AB=AC,AD=AE,∠BAC=∠DAE.
(1)求证:△ABD≌△ACE;
(2)若∠1=25°,∠2=30°,求∠3的度数.
3.若点 在一次函数 的图像上,则点 一定不在()
A.第一象限B.第二象限C.第三象限D.第四象限
4.已知 的三边分别为a,b,c,下列条件不能判断 是直角三角形的是()
A B. , ,
C. D.
5.如图,在 中, 垂直平分 ,垂足为E,交 于D,若 ,则 周长为()
A. B. C. D.
6.如图,已知∠CAE=∠BAD,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()

扬州市江都区2022-2023学年第一学期初二数学12月月考试题及解析

扬州市江都区2022-2023学年第一学期初二数学12月月考试题及解析
拓展延伸】
(2)如图2,在 中, , ,若点 是边 下方一点, ,探索线段 、 、 之间的数量关系,并说明理由;
【知识应用】
(3)如图3,两块斜边长都为 的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离 的平方为多少?
答案与解析
一.选择题(本大题共8小题,每小题3分,共24分)
1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()
A.5cmB.4cmC.2cmD.3cm
4.在 , , , ,0.1010010001…(每两个1之间,逐次多一个0)中,无理数的个数有()
A.2个B.3个C.4个D.5个
5.在平面直角坐标系中,点A,B坐标分别为(1,0),(3,2),连接AB,将线段AB平移后得到线段A'B',点A的对应点A'坐标为(2,1),则点B'坐标为()
A.4个B.6个C.7个D.8个
二.填空题(本大题共10小题,每小题3分,共30分)
9.36的平方根是______.
10.已知一个直角三角形的两边长分别为6和8,则第三边长为_________.
11.如图,在 中, , ,则 __________.
12.点P(m,m+2)在平面直角坐标系的y轴上,则点P的坐标是______.
7.如图,有一张直角三角形纸片, , , ,现将 折叠,使边 与 重合,折痕为 ,则 的长为()
A. B. C. D.
【答案】C
【解析】
【分析】先根据勾股定理求出BC的长度,再由折叠的性质可得CE=DE,设 ,然后在 中利用勾股定理即可求出x的值.
【详解】∵ , ,

由折叠可知CE=DE,AC=AD,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十二月月考八年级上册数学测试卷一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,不选、错选或选的代号超过一个,一律得0分) 1. 如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的( ) A.轴对称性B.用字母表示数C.随机性D.数形结合2.下列各式从左到右的变形是因式分解的是( ) A.2(5)(5)25a a a +-=-B.22()()a b a b a b -=+-C.222()121a b a ab b +-=++-D.245(4)5a a a a --=--3.一个多边形的每一个内角都等于150°,那么这个多边形的边数是( ) A.15B.14C.12D.104. 现有2cm ,4cm ,5cm ,8cm ,9cm 长的五根木棒,任意选取三根组成一个三角形,选法种数有( ) A.3种B.4种C.5种D.6种5.如图,∠A =50°,P 是以BC 为底边的等腰△ABC 内一点,且∠PBC =∠PCA ,则∠BPC 为( ) A.100°B.140°C.130°D.115°6. 下列各式计算正确的是( ) A.729()a a =B.7214a a a ∙=C.235235a a a +=D.333()ab a b =7. 如图将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( ) A.50°B.30°C.20°D.15°8. 如图,△ABC 的两条角平分线BD ,CE 交于O ,且∠A =60°,则下列结论中不正确的是( ) A.∠BOC =120°B.BC =BE +CDC.OD =OED.OB =OC9. 一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( ) A.90°B.100°C.130°D.180°第1题图D第10题A第8题图10. 如图,△ABC 是等边三角形,AD 是角平分线,△ADE 是等边三角形,下列结论:①AD ⊥BC ;②EF =FD ;③BE =BD 中正确个数为( ) A.3个B.2个C.1个D.0个二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在横线上) 11.已知124xy +=,1273y x -=,则x y -的值为.12. 如图,AC 、BD 相交于点O ,∠A =∠D ,请你再补充一个条件,使得△AOB ≌△DOC ,你补充的条件是13. 如图所示为杨辉三角系数表,请仔细观察按规律写出4()a b +展开式所缺的系数()a b a b +=+222()2a b a ab b +=++ 33223()33a b a a b ab b +=+++ 443()4a b a a b +=++22344a b ab b ++14. 已知95x y =+,则代数式22225x xy y -+-=.15.如图,已知∠AOB =30°,点P 在∠AOB 内部,P 1与 P 关于OB 对称,P 2与P 关于OA 对称,则P 1、O 、P 2三点所构成的三角形的形状是 .16.如图,在Rt△ABC 中,∠C =90°,AC =10,BC =5,PQ =AB ,点P 和点Q 分别在AC 和AC 的垂线AD 上移动,则当AP = 时,才能使△ABC 和△APQ 全等.第9题图第5题图第7题图第12题图第13题图三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.) 17. 分解因式 (每小题4分,共8分)(1)322x x x --- (2)22144a b ab --+18. 先化简,再求值(每小题5分,共10分) (1)223(2)()()a b ab b b a b a b --÷-+-,其中12a =,1b =-.(2)26(21)(32)(2)(2)x x x x x ---++-,其中3x =.19.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(-4,5),(-1,3). (1)在如图所示的网格平面内作出平面直角坐标系;(2)作出△ABC 关于y 轴对称的△A ′B ′C ′,并写出点B ′的坐标.(3)P 是x 轴上的动点,在图中找出使△A ′BP 周长最短时的点P ,直接写出点P 的坐标.20.(8分)已知1x y +=,12xy =-,求22x y +和x y -的值.21.(8分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连接DC .(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母) (2)证明:DC ⊥BE .22.(10分)如图①,P 是等腰三角形ABC 底边BC 上的一个动点,过点P 作BC 的垂线,交直线AB 于点Q ,交CA 的延长线于点R .(1)请观察AR 与AQ ,它们有何数量关系?证明你的猜想.(2)如果点P 沿着底边BC 所在的直线,按由C 向B 的方向运动到CB 的延长线上时,(1)中所得的结论还成立吗?请你在图②中完成图形,并给予证明23.(10分)如图,四边形ABCD 中,∠DAB =∠ABC =90°,AB =BC ,E 是AB 的中点,CE ⊥BD . (1)求证:BE =AD ;(2)求证:AC 是线段ED 的垂直平分线; (3)△DBC 是等腰三角形吗?并说明理由.图①图②24.(10分)如图①,在Rt△ACB中,∠ACB=90°,∠ABC=30°,AC=1,点D为AC上一动点,连接BD,以BD为边作等边△BDE,设CD=n.(1)当n=1时,EA的延长线交BC的延长线于F,则AF= ;(2)当0<n<1时,如图②,在BA上截取BH=AD,连接EH.①设∠CBD=x,用含x的式子表示∠ADE和∠ABE.②求证:△AEH为等边三角形.数学答题卷一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,不选、错选或选的代号超过一个,一律得0分)二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在横线上)三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.)17.分解因式(每小题4分,共8分)18.先化简,再求值(每小题5分,共10分)图①图②八年级数学参考答案1-5:ABCCD 6-10:DCDBA11.3 12.答案不唯一,如AB =DC 等 13.6 14.900015.等边三角形 16.5或1017.(1)32222(21)(1)x x x x x x x x ---=-++=-+(2)22221441(44)a b ab a ab b --+=--+21(2)a b =--(12)(12)a b a b =+--+18.(1)223(2)()()a b ab b b a b a b --÷-+-=22222a ab b a b ---+=2ab - 当1,12a b ==-时,原式=12(1)12-⨯⨯-=(2)原式=2226(672)4x x x x --++-=276x x +-=2419.(1)图略,(2)图略,B ′(2,1),(3)图略,P (-1,0)20.222()225x y x y xy +=+-=222()2497x y x y xy x y -=+-=∴-=±21.(1)△ABE ≌△ACD ,证明如下:∵△ABC 和△ADE 都是等腰直角三角形∴AB =AC ,AD =AE ,∠BAC =∠DAE =90°∴∠BAC +∠CAE =∠DAE +∠CAE∴∠BAE =∠CAD在△ABE 和△ACD 中AB ACBAE CAD AE AD=⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌ACD (SAS )(2)由(1)可得∠B =∠ACD∵△ABC 是等腰直角三角形∴∠B =∠ACB =45°∴∠ACD=45°∴∠ACB+∠ACD=∠BCD=90°∴DC⊥BE22.(1)AR=AQ,证明如下:∵△ABC是等腰三角形∴AB=AC,∠B=∠C又∵PR⊥BC∴∠RPC=90°∴∠C+∠R=90°,∠B+∠BQP=90°∵∠BQP=∠AQR∴∠AQR=∠R∴AR=AQ(2)略,证明类似(1)23.(1)证△ABD≌△BCE(2)由(1)得AD=BE=AE,∠BAC=∠DAC=45°∴AC是DE的垂直平分线(3)由(2)得CD=CE,由(1)得BD=CE ∴CD=BD,∴△BCD是等腰三角形24.(1)2(2)①∠ADE=∠ABE=30°+x②证△ADE≌△HBE,得∠AED=∠HEB∴∠AEH=∠DEB=60°,AE=EH∴△AEH为等边三角形。

相关文档
最新文档