第10章 相关分析与线性回归分析

合集下载

SPSS的相关分析和线性回归分析

SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于

n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影

第十章 直线回归与相关分析

第十章 直线回归与相关分析

115 125 128 143 132 121 129 112 120 130 125.5
135 137 128 127 155 132 148 117 134 132 134.5

图10-2 NaCl含量对单位叶面积干物重影响的散点图
Y . X X
含义是:对于变量X的每一个值,都有一个Y 的分布,这个分布的平均数就是该线性函数。
ˆ a bX Y
回归截距 与x值相对应的依变量y的点估计值
此方程称为Y对X的直线回归方程(linear regression equation),画出的直线称为回归线 ( regression line)。
ˆ Y a bx
ˆi ) 2 L ( yi y
i 1 n
Y
最小
编号 1 2 3 4 5 血球体积x /mm3 45 52 56 48 42 红血球数y /106 6.53 6.30 9.52 7.50 6.99 6 7 8 9 10 编号 血球体积x /mm3 35 58 40 39 50 红血球数y /106 5.90 9.49 6.20 6.55 8.72
n n
整理后得:
an b xi yi i1 i1 n n n a xi b xi2 xi yi i1 i1 i1
解正规方程得:
x y ( x )( y ) / n b x ( x ) / n ( x x)( y y) = S S ( x x)
第二节:一元线性回归 1 散点图的绘制
2 一元正态线性回归模型 3 直线回归方程的参数估计和回归方 程的建立 4 直线回归的假设检验
5 直线回归的方差分析
6 直线回归的意义( 自学)

回归分析与相关分析

回归分析与相关分析

回归分析与相关分析回归分析是通过建立一个数学模型来研究自变量对因变量的影响程度。

回归分析的基本思想是假设自变量和因变量之间存在一种函数关系,通过拟合数据来确定函数的参数。

回归分析可以分为线性回归和非线性回归两种。

线性回归是指自变量和因变量之间存在线性关系,非线性回归是指自变量和因变量之间存在非线性关系。

回归分析可用于预测、解释和控制因变量。

回归分析的应用非常广泛。

例如,在经济学中,回归分析可以用于研究收入与消费之间的关系;在医学研究中,回归分析可以用于研究生活方式与健康之间的关系。

回归分析的步骤包括确定自变量和因变量、选择合适的回归模型、拟合数据、检验模型的显著性和解释模型。

相关分析是一种用来衡量变量之间相关性的方法。

相关分析通过计算相关系数来度量变量之间的关系的强度和方向。

常用的相关系数有Pearson相关系数、Spearman相关系数和判定系数。

Pearson相关系数适用于连续变量,Spearman相关系数适用于顺序变量,判定系数用于解释变量之间的关系。

相关分析通常用于确定两个变量之间是否相关,以及它们之间的相关性强度和方向。

相关分析的应用也非常广泛。

例如,在市场研究中,相关分析可以用于研究产品价格与销量之间的关系;在心理学研究中,相关分析可以用于研究学习成绩与学习时间之间的关系。

相关分析的步骤包括确定变量、计算相关系数、检验相关系数的显著性和解释相关系数。

回归分析与相关分析的主要区别在于它们研究的对象不同。

回归分析研究自变量与因变量之间的关系,关注的是因变量的预测和解释;相关分析研究变量之间的关系,关注的是变量之间的相关性。

此外,回归分析通常是为了解释因变量的变化,而相关分析通常是为了量化变量之间的相关性。

综上所述,回归分析和相关分析是统计学中常用的两种数据分析方法。

回归分析用于确定自变量与因变量之间的关系,相关分析用于测量变量之间的相关性。

回归分析和相关分析在实践中有广泛的应用,并且它们的步骤和原理较为相似。

线性回归分析ppt课件

线性回归分析ppt课件

21
多元回归分析中的其他问题 u变量筛选问题 Ø向前筛选策略
解释变量不断进入回归方程的过程,首先选择与被解释变量具有最高 线性相关系数的变量进入方程,并进行各种检验;其次在剩余的变量中挑 选与解释变量偏相关系数最高并通过检验的变量进入回归方程。 Ø向后筛选策略
变量不断剔除出回归方程的过程,首先所有变量全部引入回归方程并 检验,然后在回归系数显著性检验不显著的一个或多个变量中,剔除t检验 值最小的变量。 Ø逐步筛选策略
合准则。
最小二乘法将偏差距离定义为离差平方和,即
n
Q( 0, 1, p) ( yi E( yi ))2
i 1
最小二乘估计就是寻找参数β0
、β1、…
βp的估计
值β̂0 、β ̂1、… β ̂p,使式(1)达到极小。通过
求极值原理(偏导为零)和解方程组,可求得估计值,
SPSS将自动完成。
每个解释变量进 入方程后引起的 判定系数的变化 量和F值的变化 量(偏F统计量)
输出个解释变量 和被解释变量的 均值、标准差、 相关系数矩阵及 单侧检验概率值
输出判定系数、 调整的判定系数、 回归方程的标准 误、回归方程显 著性检验的方差 分析表
输出方程中各解 释变量与被解释 变量之间的简单 相关、偏相关系 数和部分相关
30
n回归分析的其他操作
Ø选项
DW值
输出标准化残差 绝对值大于等于 3(默认)的样 本数据的相关信 息
多重共线性分 析: 输出各解释变 量的容忍度、 方差膨胀因子、
特征值、条件 指标、方差 比例等
31
n回归分析的其他操作
Ø选项
•标准化预测值 •标准化残差 •剔除残差 •调整的预测值 •学生化残差 •剔除学生化残差

高考数学一轮复习第10章算法初步与统计第4课时线性回

高考数学一轮复习第10章算法初步与统计第4课时线性回

(4)某同学研究卖出的热饮杯数y与气温 x(℃)之间的关系,得 回归方程 y =-2.352x+147.767,则气温为2 ℃时,一定可卖出 143杯热饮. (5)事件X,Y关系越密切,则由观测数据计算得到的K2的观 测值越大. (6)由独立性检验可知,在犯错误的概率不超过1%的前提下 认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他 有99%的可能物理优秀.

直线方程: y =0.254x+0.321.由回归直线方程可知,家庭年收入 每增加1万元,年饮食支出平均增加________万元.
2 n ( ad - bc ) 构造一个随机变量 K 2 = , ( a+ b)( c+d )(a + c)( b +d )
其中 n=a+b+ c+d 为样本容量.
(3)独立性检验. 利用随机变量 K2 来确定是否能有一定把握认为“两个分类 变量有关系”的方法称为两个分类变量的独立性检验.
1.判断下面结论是否正确(打“√”或“×”). (1)相关关系与函数关系都是一种确定性的关系,也是一种 因果关系. (2)“名师出高徒”可以解释为教师的教学水平与学生的水 平成正相关关系. (3)只有两个变量有相关关系,所得的回归模型才有预测价 值.
答案
C
解析 由已知,变量 x,y 成负相关,排除 A,B. ∵回归直线 - 必过点(x,y),经验算可知,选项 C 满足.
4.(2018· 河南开封一模)下列说法错误的是(
)
A.自变量取值一定时,因变量的取值带有一定随机性的两 个变量之间的关系叫做相关关系 B.在线性回归分析中,相关系数 r 的值越大,变量间的相 关性越强 C.在残差图中,残差点分布的带状区域的宽度越狭窄,其 模型拟合的精度越高 D.在回归分析中,R2 为 0.98 的模型比 R2 为 0.80 的模型拟 合的效果好

线性回归分析

线性回归分析

一元线性回归分析1.理论回归分析是通过试验和观测来寻找变量之间关系的一种统计分析方法。

主要目的在于了解自变量与因变量之间的数量关系。

采用普通最小二乘法进行回归系数的探索,对于一元线性回归模型,设(X1,Y1),(X2,Y2),…,(X n,Y n)是取至总体(X,Y)的一组样本。

对于平面中的这n个点,可以使用无数条曲线来拟合。

要求样本回归函数尽可能好地拟合这组值。

综合起来看,这条直线处于样本数据的中心位置最合理。

由此得回归方程:y=β0+β1x+ε其中Y为因变量,X为解释变量(即自变量),ε为随机扰动项,β0,β1为标准化的偏斜率系数,也叫做回归系数。

ε需要满足以下4个条件:1.数据满足近似正态性:服从正态分布的随机变量。

2.无偏态性:∑(εi)=03.同方差齐性:所有的εi 的方差相同,同时也说明εi与自变量、因变量之间都是相互独立的。

4.独立性:εi 之间相互独立,且满足COV(εi,εj)=0(i≠j)。

最小二乘法的原则是以“残差平方和最小”确定直线位置。

用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。

最常用的是普通最小二乘法(OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。

线性回归分析根据已有样本的观测值,寻求β0,β1的合理估计值^β0,^β1,对样本中的每个x i,由一元线性回归方程可以确定一个关于y i的估计值^y i=^β0+^β1x i,称为Y关于x的线性回归方程或者经验回归公式。

^β0=y-x^β1,^β1=L xy/L xx,其中L xx=J12−x2,L xy=J1−xy,x=1J1 ,y=1J1 。

再通过回归方程的检验:首先计算SST=SSR+SSE=J1^y−y 2+J1−^y2。

其中SST为总体平方和,代表原始数据所反映的总偏差大小;SSR为回归平方和(可解释误差),由自变量引起的偏差,放映X的重要程度;SSE为剩余平方和(不可解释误差),由试验误差以及其他未加控制因子引起的偏差,放映了试验误差及其他随机因素对试验结果的影响。

回归分析与相关分析

回归分析与相关分析

相关分析与回归分析
第11页
根据回归函数的意义,当X取xi时,Y的期望值 应为f(xi),由于随机误差,观察值yi与f(xi)之间有
一定的差距,即:
yi f (xi ) i
i是第i次试验的误差。 对于Y ( y1, y2 , , yn) , X (x1, x2 , , xn )和 (1, 2 , , n ) 有
27 May 2020
相关分析与回归分析
第22页
三、回归方程的检验
1.随机误差 2 的估计
由一元线性回归方程的模型:
yi a bxi i i ~ N (0 , 2 )
Y ~ N (a bx , 2 )
以D剩为基础作为 2的估计是合理的,其估计为
n
n
D剩
2 i
( yi (aˆ bˆxi ))2
27 May 2020
相关分析与回归分析
第8页
第二节 回归分析
一、确定回归函数的思想
要全面地考察两个变量 X、Y 之间的关系,我们就要研究Y 的
条件分布 F (y | X=x ) 随 X 取值 x 的变化情况. 很自然我们会 想到用 F ( y | X=x ) 的数学期望(平均值)来代替它,这样就可 以通过研究 x 与 Y 的条件期望值之间的关系来代表 X 与 Y 之 间的关系. 即:
显著. n个y值的总差异记为D总
n
D总= ( yi y) 2 l yy
程进行预测和控制.
27 May 2020
相关分析与回归分析
第6页
“回归” 一词的历史渊源
“回归”一词最早由Francis Galton引入。英国著
名人类学家Franics Galton(1822-1911)于1885年在

第章线性回归分析详解演示文稿

第章线性回归分析详解演示文稿
数学模型为: y=β0+β1x+ε
上式表明:y的变化可由两部分解释:第一,由解释
变量x的变化引起的y的线性变化部分,即y=β0+β1x; 第二,由其他随机因素引起的y的变化部分,即ε。 β0 、β1 都是模型中的未知参数,β0为回归常数,β1为 y对x回归系数(即x每变动一个单位所引起的y的平
一元二乘估计:
多元二乘估计(略)
第十一页,共52页。
9.3回归方程的统计检验
拟合优度检验 回归方程的显著性检验
回归系数的显著性检验 残差分析
第十二页,共52页。
9.3.1回归方程的拟合优度检验
用于检验样本数据点聚集在回归线周围的密集程度, 从而评价回归线对样本数据的代表程度。 思想:因变量y(儿子身高)取值的变化受两个因素
第二十九页,共52页。
第二、计算残差的自相关系数 自相关系数用于测定序列自相关强弱,其取值范围 -1~+1,接近1表明序列存在正自相关
第三十页,共52页。
第三、DW(durbin-watson)检验
DW检验用于推断小样本序列是否存在自相关的方法。其原 假设为:总体自相关系数ρ与零无显著差异。采用统计量 为:
的影响:自变量x(父亲身高)不同取值的影响,其 他因素(环境、饮食等)的影响。
可表示如下:
因变量总变差 = 自变量引起的 + 其他因素引起的 即因变量总变差= 回归方程可解释的+不可解释的 即,因变量总离差平方和SST =回归平方和 SSA + 剩余平
方和SSE
第十三页,共52页。
图示:
y y i
素对 y 的影响造成的。
第十五页,共52页。
一、一元线性回归方程
拟合优度的检验采用R2统计量,称为判定系数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10章相关分析与线性回归分析
10-1相关分析基本原理
一、相关分析的概念
1、函数关系:确定性关系
2、统计关系:非确定性关系
相关分析就是测度变量之间统计关系强弱的一种工具与手段
二、相关分析的图形分析法
1、SPSS中散点图的种类
(1)Simple 简单散点图:一对变量
(2)Overlay 重叠散点图:多对变量
(3)Matrix 矩阵散点图:多个坐标系显示多对变量之间的关系(4)3-D 三维散点图:以立体图显示多对变量之间的关系
2、基本操作
(1)菜单选项:Graphs->Scatter
(2)选择散点图的类型
(3)按牛对不同的三点图进行定义
☆对于简单散点图:
三、相关系数分析法
1、基本思想
依据变量之间变动方向的关系定义相关系数
变动方向相同:正向相关关系
变动方向相反:负向相关关系
0<r<1, 存在一定程度正向线性相关关系;r=1,存在完全正向线性相关关系
-1<r<0, 存在一定程度正向线性相关关系;r=-1,存在完全负向线性
相关关系
r=0, 不存在线性相关关系
r 的绝对值大于0.8,存在较强线性相关关系
r 的绝对值小于0.8,存在较弱线性相关关系
如果是根据样本计算出的相关系数,总体中变量有无相关性,要进行相应的假设检验。

H 0为总体中两变量无显著的相关性。

2、Pearson 简单相关系数
(1)计算公式:
()()n
i i
x x y y r --=∑(2)假设检验
~(2)t t n =-
3、Spearman 等级相关系数
(1)计算公式:
2
1
261(1)n i
i s D r n n ==--∑
(2)假设检验
n≥30
~(2)t t n =
-

0~(0,1)1
s r z N -=
4、Kendall tua-b 等级相关系数
(省略)
四、偏相关系数分析法
1、偏相关分析
2、偏相关系数
1,2y r r r r -=
r y1,2 表示y 与x1之间的偏相关系数;x2 为控制变量,ry1为y 与x1的简单相关系数; ry2为 y 与 x2之间的简单相关系数; r12为x1与x2之间的简单相关系数
10-2相关分析的基本操作与案例分析
一、简单相关分析
1、基本操作
(1)菜单:Statistics->Correlation->Bivariate
(2)选择变量进入Variables 框
(3)在Correlation Coefficents 框中,选择计算的相关系数
(4)在Test of Significance 框中,确定单尾还是双尾检验
(5)Flag of Significance 选项,确定显示方式是伴随概率还是星号
2、Option 选项
(1)Statistics 选项
(2)Missing Values 选项
3、案例分析
二、偏相关相关分析
1、基本操作
(1)菜单:Statistics->Correlation->Partial
(2)选择变量进入Variables框
(3)选择变量作为控制变量进入Controlling for框
(4)在Test of Significance框中,确定单尾还是双尾检验
(5)Display actual Significance Level选项,确定显示方式是伴随概率还是星号
2、Option选项
(1)Statistics选项
Means and standard deviation:均值与标准差
Cross-product deviation and convariance:交叉离积与协方差,前者为相关系数的分子部分,后者等于交叉离积/(n-1)
(2)Missing Values选项
(3)Zero-order correlation选项,表示在输出偏相关系数的同时也输出简单相关系数。

3、案例分析。

相关文档
最新文档